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Superhydrophobic sponge as potential absorbing material for oil/water separation is attracting great attention recently. However, there 
are still some challenges to feasibly fabricate superhydrophobic sponge with large scale and low cost. Herein, a novel photochromic 
superhydrophobic melamine sponge (PDMS-SP sponge) is fabricated by facilely dip-coating and thermocuring of hydroxyl-
terminated polydimethylsiloxanes mixed with photochromic spiropyran. FT-IR, EDS, and XPS results con�rm the successful coating 
of PDMS-SP upon melamine sponge. �e resultant sponge not only possesses excellent water repellency with a contact angle of 154.5° 
and oil-water separation e�ciency with an oil absorption capacity of 48–116 folds of itself weight, but also shows photochromic 
phenomenon between colorless and purple when it is successively exposed to UV irradiation and visible light.

1. Introduction

Along with the rapid development of urbanization and indus-
trialization, water pollution from oil pollutants and oil leakage 
is increasingly severe that has caused serious damages to human 
health and ecological balance. For example, about 4.9 million 
barrels of oil spill in the Gulf of Mexico in 2010 and cover thou-
sands of square kilometers of sea, which cause a great harm to 
local marine and aquatic ecosystems [1–5]. �erefore, the e£ec-
tive separation of oil from water is a major concern. Traditional 
oil separation techniques can be summarized as physical, chem-
ical, and biological methods, such as in-situ burning, disper-
sants, activated carbon [6], cotton �ber [7] exploited for spilled 
oil. Nevertheless, traditional separation materials have high cost, 
poor selectivity, and nonrecyclability. Fortunately, the rapid 
development of interface science provides a more e�cient solu-
tion to separate oil from mixtures [8].

Superhydrophobic interfaces, including two-dimensional 
materials [9–15] and three-dimensional porous materials 
[16–23], can realize e£ective oil and water separation. �e 
two-dimensional meshes or membranes need to be treated 
before oil water separation, but the three-dimensional super-
hydrophobic porous materials are promising solution with low 

energy. Various advanced 3D porous materials, such as foam, 
sponge, aerogel, and xerogel materials have been developed 
and show high selectivity and outstanding absorption capacity 
toward various oils and organic solvents [24–27]. Pham and 
Dickerson [28] explore a robust superhydrophobic 3D porous 
materials by the silanization of commercial melamine (MA) 
sponge, which reveals a water contact angle of 151.0°, good 
adsorption ability to a variety of organic solvents and grease, 
and excellent recyclability. Especially, the polysiloxane back-
bone exhibits a low surface tension value of around 21 mN/m 
that is suitable for water repellency [29]. Peng et al. [30] intro-
duce a facile dip-coating/UV-curing method to prepare supe-
rhydrophobic and oleophilic melamine sponge, coated 
polydimethylsiloxane (PDMS) �lm onto the sponge skeleton 
through UV-assisted thio−ene click reactions. Dip-coating 
o£ers a robust and e£ective approach in large-scale preparation 
of a superhydrophobic sponge, which exhibits an absorption 
capacity of 103−179 folds its own weight. �erefore, silanized 
sponge is an e�cient and economical method to explore 
three-dimensional oil-water separation materials.

In recent years, some advanced materials can respond to 
external stimuli (e.g., light, magnetic, thermal, and pH) and 
are employed in oil/water separation [31–36]. Light energy, 
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due to clean and convenient, has drawn more and more atten-
tion. Spiropyran (SP) is a photosensitive molecule featuring 
reversible optical-switching between two forms, the colorless 
ring-closed SP form and the colored ring-opened merocya-
nine (MC) form [37]. In our group, epoxy resin is thoroughly 
mixed with an SP derivative to formulate anti-counterfeiting 
coatings that could be applied to ©exible substrates, such as 
food and medicine packaging [38]. Spiropyran (SP)-containing 
©uorinated polyacrylate (F-PA-SP) latex is prepared by emul-
sion polymerization, which is potential to cellulosic paper with 
outstanding reversible color changes and hydrophobicity [39].

Herein, a novel photochromic superhydrophobic sponge 
is developed by dip-coating and thermocuring of commer-
cial melamine-formaldehyde (SM) sponge with poly-
dimethylsiloxane (PDMS) mixtures containing spiropyran 
methacrylate (SPMA) as photochromic motif, and hexade-
cyltrimethoxysilane as multi cross-linker. Aªer thermocur-
ing, PDMS is covalently covered on the surface of the 
sponge, and SPMA is restricted in the cured rubber. 
Compared to other chemical methods of graªing SP to SM, 
this is a new simple physical way to cover SPMA on the 
surface of a sponge. By simple UV irradiation, PDMS-SP-
coated melamine sponge transforms from colorless to pur-
ple. Next, the superhydrophobicity for oil/water separation 
and photochromic behavior of (PDMS)-coated melamine 
sponge are studied. In addition, the internal porosity, 

thermal, and chemical stability of SM endows PDMS-SP-
coated melamine sponge with high absorption capacity (116 
times) for oil absorption. �ese �ndings also exhibit poten-
tial applications to indicate the depth of UV curing three-
dimensional porous materials.

2. Materials and Methods

2.1. Materials. Melamine sponge was purchased from 
a commercial store (7.90 × 10−3 g/cm3). �e hydroxyl-
terminated polydimethylsiloxane (HO-PDMS) with a 
viscosity of 5000 MPa·s was provided by Gangzhou Juchen 
Zhaoye Organic Silicone Co., Ltd. Hexadecyltrimethoxysilane 
(HDTMS), dibutyltin dilaurate (DBTDL) and cetane were 
purchased from Aladdin Reagent Co., Ltd. (Shanghai, 
China). All chemicals used as received without further 
puri�cation. 1′-(2-Methacryloxyethyl)-3′,3′-dimethyl-6-
nitro-spiro(2H-1-benzopyran-2′,2′-indoline) (SPMA) was 
synthesized according to previous work [39], showed in 
Figure 1(b).

2.2. Preparation of Superhydrophobic PDMS-SP Melamine 
Sponge. �e dip-coating and thermocuring process were 
implemented according to the reported method [30] with 
modi�cation, showed in Figure 1(c). �e HO-PDMS 2.5 g, 
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Figure 1: (a) Chemical structure of pristine melamine sponge, (b) chemical structure of SPMA, (c) schematic rout of PDMS thermocuring.
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HDTMS 0.25 g, SPMA 0.008 g, and DBTDL 0.05 g were 
dissolved in 25 mL CH2Cl2. �e pristine melamine sponge 
was cut into 1 × 1 × 1 cm3 pieces and were immersed in the 
above mixture for 5 min. �en removed from the solution and 
squeezed to extract the absorbed solution, cured at 50°C for 
10 min. It was then repeatedly washed with CH2Cl2 using the 
sorption/squeezing process for the removal of any untreated 
starting materials. Finally, it was dried in air for 6 h, �e 
PDMS-SP-coated melamine sponge obtained.

2.3. Oil Absorption Experiments. �e absorption capacities 
of PDMS-SP-coated sponge for various oils and organic 
solvents were determined by dipping a piece of PDMS-SP-
coated sponge into the liquid (oil or organic solvent) until 
the sponge was saturated with the liquid and leª to drip for 
30 s for weighting. Repeated sorption/squeezing processes 
were used to evaluate recyclability of PDMS-SP-coated 
sponge.

2.4. Characterization. Attenuated total re©ection-Fourier 
transform infrared (ATR-FTIR) spectra were collected 
4000 and 500 cm−1 on a Nicolet iS50 spectrometer with a 
4 cm−1 resolution over 32 scans. �e micromorphology was 
observed by SEM on an SU-8010 (Hitachi Ltd., Japan) �eld 
emission electron microscope at an accelerating voltage of 
5 kV. Samples were coated with a thin gold layer before SEM 
analysis. An energy-dispersive X-ray spectrometer �tted to the 
scanning electron microscope was used for chemical elemental 
identi�cation. �e wetting properties of PDMS-coated sponge 
were investigated by static contact angle measurements 
at room temperature using an OCA 15Pro contact angle 
goniometer with a droplet volume of 5 μL and each contact 
angle was average of 5 di£erent positions for each sample. 
X-ray photoelectron spectroscopy (XPS) measurement was 
performed on a Kratos ESCA spectrometer (Axis Ultra DLD) 
with an Al Kα X source (150 W, 15 kV) at a take-o£ angle of 
45° from the normal surface.
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Figure 2: (a) ATR-FTIR spectra of pristine melamine sponge and PDMS-SP modi�ed melamine sponge, (b) XPS spectra of pristine melamine 
sponge and PDMS-SP modi�ed melamine sponge, (c) EDS spectra of pristine melamine sponge on the sponge framework surface, (d) EDS 
spectra of PDMS-SP modi�ed melamine sponge.
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at 284.8 eV and an O1s peak at 532.3 eV. Moreover, Si2s and 
Si2p peaks were found at 165.6 eV and 102.4 eV, respectively. 
�is indicates that PDMS-SP was successfully coated to sponge 
frame by dipping-coating. �e N1s peak located at 398.3 eV 
was detected on pristine melamine surface and disappeared 
in PDMS-SP-modi�ed sponge spectrum. �is is because that 
the small amount of nitrogen species is completely covered by 
PDMS-SP layer. As shown in Figure 2(c), three elements C, 
N, and O are detected by EDS in pristine melamine sponge. 
As expected, silicon in PDMS-SP modi�ed melamine sponge 
is shown in EDS spectrum of Figure 2(d). Togethering with 
XPS results, it demonstrates the coating of silicone chains on 
melamine sponge surface.

�e morphologies of melamine sponge before and aªer 
PDMS-SP-coating are examined by SEM and shown in 
Figure 3. �e melamine sponge comprises a three-dimen-
sional, elasticity, porous structure with pore sizes in the range 
of 100–150 μm (Figure 3(a)). �e skeletons of the melamine 
sponge are smooth with an average diameter of ∼10 μm 
(Figure 3(b)). Compared to the pristine melamine sponge, 
PDMS-SP-coated melamine sponge have signi�cant changed 
morphologies. �e porous structure of sponge is not destroyed 

3. Results and Discussion

3.1. Characterizations of PDMS-SP Melamine Sponge. Figure 
2(a) shows the ATR-FTIR spectra of untreated SM melamine 
sponge and PDMS-SP-coated melamine sponge. �e spectrum 
of SM displayed prominent peaks at 811, 1163, 1546, and 
3383 cm−1 that are assigned to triazine ring bending, C–O 
stretching, C=N stretching, and N–H (of the secondary amine) 
stretching, respectively. Peaks centered at 1343 cm−1 and 
1483 cm−1 are indicative of C–H bending. Aªer dip-coating 
with PDMS, the spectrum of PDMS-SP-coated melamine 
sponge show obviously absorption band near 1259 cm−1 is 
attributed to symmetric deformation of the –CH3 group in –
Si(CH3)2 of HO-PDMS, and the bands located at 865 cm−1and 
796 cm−1are assigned to Si–C and Si–O vibration, 2962 cm−1

and 1086 cm−1 are ascribed to stretching vibrations of –CH3, 
and Si–O–Si groups in the HO-PDMS [40] respectively.

Figure 2(b) shows the XPS curves of untreated melamine 
sponge and PDMS-SP modi�ed melamine sponge. �e spec-
trum in Figure 1(b) SM sponge indicates �ve elements, includ-
ing C, N, O, S, and Na which is consistent with the composition 
of commercial sponge [28]. Both samples exhibit a C1s peak 
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Figure 3: (a, b) SEM images of a pristine melamine sponge and (c, d) PDMS-SP modi�ed melamine sponge.
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purple to colorless as irradiated with visible light. Before UV 
irradiation, no obvious absorbance of PDMS-SP sample in the 
range of 450−700 nm. Figure 4(c) illustrates the absorbance 
curves of the samples upon exposure to UV irradiation for 0 and 
160 s. A distinct absorption peak appears at 555 nm due to the 
transformation of SP into MC form, the observed absorption 
intensity increases markedly with exposure time. When the 
purple sample is immediately irradiated with a ©uorescent 
lamp, the absorption peak at 555 nm clearly decreases with the 
irradiation time and the latex color fades (Figure 4(d)).

3.3. Superwetting and Oil/water Separation of Sponge. �e 
pristine melamine sponge exhibits amphiphilic properties with 
water contact angles (WCA) and an oil contact angles (OCA) 
of hexadecane closed to 0º, while PDMS-SP coated sponge 
was hydrophobic and oleophilic (Figure 5). �e di£erence in 
PDMS-SP coated sponge is re©ected in its wetting property as 

during the dipping-coating process. However, it is obviously 
observed that the 3D skeleton of sponge became rough aªer 
dipping-coating and regularly arranged resembling strips are 
observed throughout the whole sponge skeleton (Figures 3(c) 
and 3(d)). Curing-induced shrinkage and migration of silicone 
result in undulating wrinkles with an average distance between 
these strips less than 3 μm, and the width of these strips is 
about 1 μm. �ese results indicate that PDMS-SP solution can 
be adhered to the surface of sponge skeleton �bers uniformly 
by thermocuring.

3.2. PDMS-SP Melamine Sponge with Photochromic 
Properties. As reported, spiropyran is a photosensitive molecule 
featuring reversible optical-switching between two forms [30]. 
As shown in Figures 4(a) and 4(b), PDMS-SP-coated melamine 
sponge transforms from colorless to purple upon exposure to 
UV irradiation (λ = 365 nm), while it can reversibly change from 
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Figure 4: (a, b) Photochromic coloration of PDMS-SP modi�ed melamine sponge under UV irradiation, (c) absorbance curves of cross-linked 
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Figure 5: Superwetting of PDMS-coated sponge. (a) Amphiphilic property of pristine melamine sponge. (b) Superhydrophobic of PDMS-SP 
coated melamine sponge. (c) Hydrophobic and oleophilic property of PDMS-SP coated melamine sponge aªer UV irradiation. Contact angles 
of (d) pristine melamine sponge, (e) PDMS-SP coated melamine sponge, and (f) PDMS-SP coated melamine sponge aªer UV irradiation.
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Figure 6:  Photographs of the selective sorption of oil with the PDMS-SP coated melamine sponge. �e oil was dyed with Sudan I. (a) 
Hexadecane as oil. (b) Chloroform as oil.
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absorbs various oil in oil/water mixture with high absorption 
capacity and selectively, but also changes its color from color-
less to purple upon exposure to UV irradiation. �ese results 
suggest that the superhydrophobic PDMS-SP sponge may not 
only provide great potential application for oil recovery, but 
it also shows potential applications in construction of UV cur-
ing three-dimensional porous materials.
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