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As a nondestructive testing (NDT) technology, pulsed thermography (PT) has been widely used in the defect detection of the
composite products due to its efficiency and large detection range. To enhance the distinction between defective and defect-free
region and eliminate the influence of the measurement noise and nonuniform background of the thermal image generated by PT,
a number of thermographic data analysis approaches have been proposed. However, these traditional methods only consider the
correlations among the pixel while leave the time series correlations unmodeled. In this paper, a sparse moving window principal
component thermography (SMWPCT) method is proposed to incorporate several thermal images using the moving window
strategy. Also, the sparse trick is used to provide clearer and more interpretable results because of the structure sparsity. *e
effectiveness of the method is verified by the defect detection experiment of carbon fiber-reinforced plastic specimens.

1. Introduction

*enondestructive testing (NDT) [1, 2] is a method to detect
the presence of defects or unevenness in the tested objects by
utilizing the characteristics of light, heat, magnetism, or
electricity, which do not affect the performance of the testing
objects. *e nondestructive nature of the inspection makes
NDT more and more popular, such as the detection of
defects on the surface and subsurface of composite materials.
Among different types of NDT methods, pulsed thermog-
raphy has been widely used and studied owing to its fast
detection speed, noncontact, and nonpollution [3]. *rough
scanning, recording, or observing the change of the surface
temperature field, which is caused by the difference of heat
transfer to the deep layer, the NDTwill realize the detection
of the surface and internal workpiece defects or analyze the
internal structure [4–6].

For enhancing the detection efficiency and visibility,
several signal processing and data analysis methods have
been proposed. Among them, the most straightforward
approach is to reduce the measurement noises and eliminate
the nonuniform background. *ermographic signal

reconstruction (TSR) method [7] converts time domain
signals into frequency domain signals, which separated the
nonuniform noise and significantly reduce noise interfer-
ence by removing noise part in the data reconstruction.
Besides, the differential absolute contrast (DAC) [8] and
mathematical morphology (MM) [9] are also proposed for
the same purpose, which are both based on the recon-
struction of defect-free images so that the nonuniform
background has been eliminated by extracting the features of
the original thermal images. However, both TSR and DAC
have processed the time domain data while they ignored the
spatial information. Hence, penalized least square (PELS)
[10] has been developed to utilize the time series thermal
images and their spatial information simultaneously. Fur-
thermore, Chang et al. have decomposed the thermal images
into high-frequency noises, low-frequency background, and
signal information using the signal decomposition, which is
called the multimaintenance ensemble empirical mode de-
composition (MEEMD) method [11]. Even though PELS
and MEEMD have been proven the effective signal pro-
cessing methods for NDT, they are still quite time-con-
suming, and the model selection is hard to achieve due to a

Hindawi
Advances in Polymer Technology
Volume 2020, Article ID 4682689, 12 pages
https://doi.org/10.1155/2020/4682689

mailto:zhoule@zust.edu.cn
https://orcid.org/0000-0001-8875-295X
https://orcid.org/0000-0003-3303-8825
https://orcid.org/0000-0001-9825-3732
https://orcid.org/0000-0002-7907-2255
https://orcid.org/0000-0002-7852-1370
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4682689


large number of model parameters. In addition, the noise
reduction and background removal methods are only
suitable for defect detection of single temperature attenu-
ation curve or single thermal images.

Another kind of approach is the thermographic data
analysis method, which extracts the principal features from
multiple thermal images and automatically recognize the
defects using these features or loading matrixes. Recently,
the data analysis and feature extraction technologies have
been widely used in process modeling, monitoring, and
optimization areas [12–17]. Utilizing their advantages, the
main information can be maintained with few features and
the minimum reconstruction errors [18–20]. *e higher-
order statistics (HOS) [21] extracts the features of red-hot
image sequences and compresses the feature information
into a unique image for defect detection. *e pulsed phase
thermography (PPT) method separates one-dimensional
Fourier for each pixel of the thermal imaging sequence and
judge defects according to amplitude and phase [22]. Be-
sides, principal component thermography (PCT) [23] ap-
plied principal component analysis (PCA) [24] to the
thermal image data processing, which has the advantages of
feature extraction, data compression, and noise reduction.
Compared with the original data, the obtained PCT feature
map has a significant improvement in defect significance.
Similar to PCT, several extension works have been made for
improvement of the defect detection performance, such as
stable principal component pursuit (SPCP) [25], sparse
principal component thermography (SPCT) [26, 27], and
independent component thermography (ICT) [28].

Among them, SPCT is an improved algorithm for PCT,
which can obtain the sparse principal components by ap-
plying L1 constraint [29]. Indeed, the components con-
taining few features will enhance the interpretability and
visibility of the detection results. Moreover, an improved
method called CCIPCT is proposed to use a shorter com-
putational cost to estimate the covariance matrix and sin-
gular value decomposition (SVD) when calculating the
principal component. *e main advantage of CCIPCT is its
faster performance in higher sequential acquisition [30].
However, PCT, SPCT, and CCIPCT only considered the
correlations within the signal image and ignored the dy-
namics of heat transfer. *e pulse thermal imaging defect
detection method mainly determines the defect location
based on the inconsistent heat transfer rates of different
areas inside the object. Hence, there are strong cross-cor-
relations among the adjacent temporal thermal images. In
this paper, sparse moving window principal component
thermal imaging (SMWPCT) is proposed to extract both
cross-correlations from the temporal and spatial scales. For
this purpose, the moving window strategy is utilized to cover
several adjacent temporal thermal images within a period of
time. *e principal features of these moving windows are
further extracted by sparse PCT, which will provide clearer
and more interpretable detection results.

*e rest of this paper is structured as follows. In the
second section, the structure of the data collected from the
pulse thermal imaging is briefly introduced. *en, the
moving window strategy-based SPCT is proposed with the

detailed algorithm in the third section. Next, the feasibility
and effectiveness of the proposed method are demonstrated
by the carbon fiber-reinforced plastic (CFRP) specimen.
Finally, some conclusions are made.

2. Thermographic Data Preprocessing

*e pulse thermal imaging data are collected as follows.
Firstly, the tested object is firstly heated by the flash lamps
using the pulse signals. After that, it is cooled naturally.
During the whole heating and cooling period, the thermal
images are acquired by the infrared camera, which is shown in
Figure 1. *e collected thermal data are the grayscale image
and the pixel value of the image which represents the heating
degree of the corresponding position. If there is a defect area
within the object and the material is nonuniform, it will result
in the discontinuity of heat conduction inside the object.
Hence, the temperature of the defect area will be abnormally
higher or lower than that of the surrounding area, which
results that the pixel value of the defect area is different from
that of the surrounding area on the thermal image.

For some obvious defects inside the testing object, it is
also apparent to find out the defect areas directly from the
original thermal images. However, it is born to be an un-
attractive work to check every image on visual observations.
Also, some tiny defects are more difficult to distinguish by
sight. On the contrary, the uneven heating will lead to
uneven background, and the presence of measurement noise
is inevitable, which further increases the detection difficulty.
Finally, suppose there are n frames of thermal images have
been collected, in which each image consists of h × w pixels.
For most data analysis models, the three-dimensional data
cannot be directly applied.*erefore, the thermal image data
processing methods are needed to reduce the number of
thermal images detected by vision and improve the signif-
icance of defects.

For the three-dimensional matrix h × w × n, the com-
mon data processing method is to expand the original data
to a two-dimensional matrix. According to the chronological
order, each thermal image can be converted to a row vector
of length h × w, which is shown in Figure 2. *en, a two-
dimensional matrix with n × hw size can be obtained, in
which each row represents the original thermal image data,
and each element represents an image pixel value. Finally,
the normalization of the processing data is made, which
firstly subtracts the average value of each row and then
divides it by the standard deviation.

3. Sparse Moving Window Principal
Component Thermography

In this section, the traditional PCTmethod is firstly extended
using the moving window strategy. After that, the sparse
moving window principal component thermography
(SMWPCT) method is proposed, which follows the detailed
model parameter derivation. In PCT, the original thermal
image data are projected along the maximum orthogonal
direction, in which the principal components are extracted.
Since PCT is built based on the preprocessing data two-

2 Advances in Polymer Technology



dimensional matrix, it indicates that the thermal image at a
sampling interval is independent with its historical thermal
values.When the sampling interval is large, such assumption
is valid. However, the pulse thermography sampling interval
is extremely short. Hence, it becomes necessary to consider
both cross-correlations between the pixels in different re-
gions of the single thermal image and the autocorrelations of
pixels in the same region at different sampling intervals.

For this purpose, the moving window strategy is intro-
duced before PCT is used, which is named as moving window
PCT (MWPCT). In MWPCT, the augmented matrix con-
taining several past values is constructed. Using the moving
window, the time series correlations among the thermal
images can be effectively extracted, and it is helpful to dis-
tinguish the defect region and the normal region. Assume that
the preprocessed thermal image data matrix X contains n

thermal images, and each image is composed of m � h × w

pixel values. Hence, X ∈ Rn×m can be expressed as follows:

X �

x11 x12 · · · x1m

x21 x22 · · · x2m

⋮ ⋮ ⋱ ⋮

xn1 xn2 · · · xnm
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, (1)

where xi ∈ Rm(i � 1, 2, . . . , n) is the m-dimensional row
vector, and it indicates that a single thermal image with m

pixel values.
Using themoving window strategy, the augmentedmatrix

of the original observation X is constructed as follows:

X �

xl xl− 1 · · · x1
xl+s xl+s− 1 · · · xs+1

⋮ ⋮ ⋱ ⋮

xn xn− 1 · · · xn− l+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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, (2)

in which l is the moving window length and s is the moving
window step. Usually, these two parameters make a trade-off
between the model accuracy and calculation complexity.
When the window size l is large and moving step s is small,
the model accuracy will improve while the calculation
complexity increases and vice versa. Based on the augmented
matrix X, the first principal component (PC) is obtained by

max ‖Xp‖2

Subject to ‖p‖2 ≤ 1,
(3)

in which p is the principal eigenvector using the singular value
decomposition, and it is also called the loading vector. ‖·‖2
denotes the L2 norm. *e first PC can be calculated using
t � Xp, which can be treated as the linear combination ofX. By
calculating the first PC, the maximal correlated feature is ob-
tained. Next, replacing X using the model reconstruction error
can obtain PCs orthogonal to each other in a similar manner
[31]. Usually, the primary information of X is mainly con-
centrated on several components. *erefore, few PCs will
represent the original thermal images, and the defects can be
visualized using these PCs. Assuming that the number of se-
lected PCs is k, the size of the extracted featurematrix is hwl × k.
To visualize the final results, each PC can be reshaped into a two-
dimensional matrix of h × w. Hence, a total of l × k loading
images can be generated, in order to achieve data compression
and reduce the number of images to be observed. Due to the
difference of features between defects and background, they are
separated into different PCs and appear in different loading
images. In addition, the measurement noise is retained in the
residual subspace to achieve the purpose of noise suppression.

Even though MWPCT is able to extract both autocor-
relations and cross-correlations in the 2-D expanded matrix,
it still inherits some disadvantages of PCT. At first, each PC
is linearly weighted by the original data, whichmeans that all
the elements in the loading vectors are usually nonzero,
which brings out the difficulty and disturbance in final
detection. To highlight the visual results and reduce the
detection noise, a sparsity penalty can be added on the
loadings to use few features and enhance the interpretability
of the final results. Hence, the sparse moving window
principal component thermography (SMWPCT) method is
further developed next.*e optimization problem of the first
PC extracted by SMWPCT is usually expressed as follows:

max
􏽥p

‖X􏽥p‖
2
2 − c‖􏽥p‖0

Subject to ‖􏽥p‖2 ≤ 1,

or max
􏽥p

‖X􏽥p‖2 − c‖X􏽥p‖1

Subject to ‖􏽥p‖2 ≤ 1,

(4)
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Figure 2: *ree-dimensional expansion.
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Figure 1: *ermal imaging data acquisition.
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where c is the tuning parameter that controls the sparsity of
􏽥p, ‖·‖0 denotes the L0 norm, which is calculated as the total
number of nonzero elements in the vector and it represents
the vector sparsity, and ‖·‖1 denotes the L1 norm, which
represents the sum of the absolute values of the elements in
the vector, and it is usually used to obtain the sparse result.
Similar to MWPCT, the other PCs that are orthogonal to
each other can be obtained repeatedly by performing the
definition step and replacing X with the current errors.

*e sparse approach is able to select the most related PCs
and restrict the feature variables that are not closely related
to zero. In such manner, noise is further eliminated, and the
dimension reduction becomes more condensed and easier to
be interpreted. To make the model parameter estimation
procedure more effective, the optimization problem can be
transformed to be a Lasso regression problem; Zou et al.
have introduced an L2 norm regularization term in the
objective function of the optimization function [32], which
is given as

min
P,Ω

X − XPΨT
����

����
2

+ c1 􏽘

I

i�1
ψi

����
����
2
2 + c2 􏽘

I

i�1
ψi

����
����1

Subject to PTP � Ι,
(5)

where P is the loading matrix andΨ � ψ1 ψ2 . . . ψI􏼂 􏼃 is a
sparse approximation of P with I PCs. c1 and c2 are model
tuning parameters.*e combination of L1 and L2 constitutes
an elastic net penalty and encouraging grouping which
indicates that the variables of strong correlations will appear
or disappear together [27].

Finally, the entire algorithms for the SMWPCT-based
thermographic data analysis method are summarized as
follows:

(1) Collect the thermal image data based on the pulsed
thermography technology

(2) Rearrange the three-dimensional matrix to a two-
dimensional form and normalize the measurement

(3) Select the appropriate moving window size and step
size, and perform a moving window on the aug-
mented matrix X

(4) Estimate the model parameter P and the sparse
matrix Q by solving the optimization problem of
equation (5)

(5) Reconstruct the thermal images based on Q
(6) Observe the reconstructed thermal image to obtain

the defect detection result

4. Case Study

In this section, a tested carbon fiber-reinforced polymer
(CFRP) with subsurface defects is demonstrated to validate
the feasibility of the proposed method. CFRP is obtained by
pressing and drawing a plurality of continuous fibers and
resin. It has been widely used in military, aerospace, racing,
and other fields [9].

In this case, several Teflon strips were inserted into the
fiberboard before the resin transfer molding to mimic the
defective areas. In the tested CFRP board, there are totally
ten defect areas, where the left bottom rectangle is a surface
defect and the other nine rectangles are subsurface defects.
*e depth of these subsurface ones is different. *ree defects
on the left side were covered by one layer of fiber sheet while
the middle column was beneath two layers and three on the
right were covered by three layers.*e thickness of each fiber
sheet is about 0.26 cm. Besides, three kinds of defects are
designed, where their sizes are 1.6 cm× 1.6 cm,
0.8 cm× 0.8 cm, and 0.4 cm× 0.4 cm, respectively (Figure 3).

To obtain the pulsed thermal imaging data, two 3000W
flashes are used to heat the acquisition in the form of thermal
pulse, and the heating time is about 3ms. An infrared
camera (TGS-G100EXD, NEC) is installed to collect thermal
images in the reflection mode. *e resolution of this camera
is 320× 240 pixels, and the sampling rate is 30 frames per
second. A computer is connected to the camera for thermal
imaging data processing. *e process is cut to get the
thermal images of the region of interest (ROI). Finally, there
are 54 thermal images with 105×120 pixels which are
collected. In Figure 4, the 1st, 10th, 20th, 30th, 40th, and 50th
thermal images of the thermal images are illustrated. *e
color bars indicate the pixel values. From the original
thermal images, it can be seen that it is difficult to infer the
defect locations owing to the nonuniform background and
noises.

In order to evaluate the performance of the proposed
SMWPCTmethod, several alternative methods PCT, SPCT,
and MWPCTare also tested using the same thermal images.
*e experimental hardware platform is Window10, Intel i5-
7500 CPU@3.40GHz and 16GBRAM. Also, the visibility of
the defect area is measured by the signal-to-noise ratio
(SNR) indicator, which refers to the ratio of signal to noise in
an electronic device or system [33, 34]. In this paper, three
kinds of SNR considered in [33, 34] are tested, which can be
expressed as

SNR1 �
Μdef − Μn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

σn
,

SNR2 � 10 log10
Μdef − Μn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

σ2n
,

SNR3 �
Μdef − Μn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�����������
σ2def + σ2n􏼐 􏼑/2

􏽱 ,

(6)

where Μdef is the average pixel value of the defect area and
Μn is the average pixel value of the nondefect area. σdef is the
standard deviation of the pixel in the defect area and σn is the
standard deviation of the pixel in the nondefect area. SNR is
dimensionless, which reflects the contrast relationship be-
tween the defective area and the nondefective area. *e
larger the value of SNR, the more significant the defect.

*e traditional PCT method is built based on all 54
thermal image samples. *e detection results using the first
six loading images of PCT are given in Figure 5(a). *e
loading values are represented by the red and blue color bars,
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in which the redder one indicates the larger value while the
bluer one represents the lower value. From the final results, it
can be seen that the PCT loading of the first several PCs can
better reveal the position of the defect areas compared to the
original thermal image. Since the heat transfer efficiency of
the defect area is lower than that of the normal one, the
loading value is smaller. And most of the defect information
exists in the first loading image. However, PCT still has
certain limitations. On the one hand, there are still more
background or noise information in the first loading image,
which cause some disturbances in defect detection and
recognition. On the other hand, the defect information can
still be observed more or less in the remaining loading

images, which brings out difficulty on the selection of
number of PCs.

By applying sparsity penalties to the loadings, SPCT is
able to reduce the background and noise interference of the
result, which makes it more compact and interpretable.

In SPCT, the sparsity parameter is designed to penalize
the loadings of different principal components, and it
corresponds to an upper bound on the L1-norm of the BETA
coefficients. Due to the nature of the L1 penalty, some
coefficients will be shrunk to zero if the sparsity parameter is
large enough. By contrast, SPCA results in a regular PCA
when it equals to 0. Zou et al. [32] have specified the choice
of penalty parameter, and it is set to 500 in this article. *e

Figure 3: Illustration of defective regions.
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Figure 5: Continued.
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Figure 5: Continued.
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results are shown in Figure 5(b). Compared with PCT, the
loading image of SPCT is much sparse, in which the shal-
lower defects are highlighted in the first loading image. It can
be also seen that the deepest defect is better displayed in the
second loading image. In the third and subsequent loading
images, the loading image becomes very sparse due to much
useful information retained. *erefore, the defect detection
process for the thermal image can ignore these loading

images, which also reduces the number of images that needs
to be observed.

Next, MWPCT is compared with the moving window
strategy. For the moving window technology, the window
size and the step size are two model parameters to make a
trade-off between the accuracy and computational load [35].
To select the proper values for these model parameters,
several simulations have been made. Finally, the moving
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Figure 5: Results: (a) PCT, (b) SPCT, (c) MWPCT, and (d) SMWPCT.
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window size is set to 7, and the step size is 5 in MWPCT in
this case. *e experiment result is shown in Figure 5(c).
Compared to PCT, the defect areas in the first loading image
of MWPCT are more prominent and are greatly reduced in
the second loading image. It indicates that more accurate
features have been captured using MWPCT. Besides,
MWPCT concentrates the defect information in the first
loading image so that we can only pay attention to the first
loading image to identify the defect. Due to the inclusion of
more defect information, the defect area is significantly
improved, and the image appears that the defect area is
darker in color.

Finally, the proposed SMWPCT method is tested,
which combines the advantages of SPCT and MWPCT. It
extracts the defect features based on the moving window
strategy with sparsely loading images. *e detection re-
sults are shown in Figure 5(d). It can be seen that both the
concentration of defect features and the sparseness of
irrelevant information are reflected in SMWPCT, and the
saliency of defect areas has also been improved. *e result
is also quite reasonable since the proposed SMWPCT
method extracts both cross-correlations from the tem-
poral and spatial scales, and more accurate and compact
features are obtained. Based on that, the defect detection
procedure becomes straightforward and easy to be
operated.

Moreover, the defect visibility is quantified by the signal-
to-noise ratio indicator. Since the three defects in the last
column are covered by three layers of fiberboard, when the
heat conduction reaches the thickness of three-layer fiber-
board, the loss of energy leads to poor visibility of the
thermal image. *erefore, the calculation of the SNR index
does not include the three deepest defects. *ree kinds of
different SNR values based on PCT, SPCT, MWPCT, and

SMWPCT are listed in Tables 1–3. It can be seen that the
performance of the proposed SMWPCT is superior to
several alternatives in most cases even based on different
SNR indicators. Also, the results have verified the effec-
tiveness and reliability of SMWPCT.

5. Conclusion

Due to the existence of noises and nonuniform background,
the artificial detection of the defects inside the composite
products is difficult to achieve. Hence, it is necessary to apply
the data analysis approaches based on the thermal imaging
data. In this paper, a SMWPCTmethod is proposed, which
combines SPCT with the moving window strategy. In
SMWPCT, both dynamic and static information of the
thermal imaging data can be captured under the sparse
structure. *e experimental results have illustrated the ef-
fectiveness of the proposed method. It reveals that not only
the correlations between the pixels in different regions of the
single thermal image but also the correlations of pixels in the
same region at different sampling intervals are extracted in
SMWPCT. Hence, the performance of the proposed method
is superior to several alternatives.
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Table 1: SNR1 of different methods.

Methods/SNR1/defect Def_1 Def_2 Def_3 Def_4 Def_5 Def_6 Def_7 Sum
PCT 3.35 2.48 2.76 2.66 1.10 0.79 0.90 14.04
SPCT 3.67 2.70 3.01 2.89 1.21 0.88 0.98 15.32
MWPCT 4.32 2.94 3.19 3.11 1.14 0.77 0.94 16.42
SMWPCT 4.45 3.21 3.62 3.37 1.39 0.99 1.11 18.15

Table 2: SNR2 of different methods.

Methods/SNR2/defect Def_1 Def_2 Def_3 Def_4 Def_5 Def_6 Def_7 Sum
PCT 10.50 7.88 8.81 8.48 0.85 − 2.00 − 0.87 39.39
SPCT 11.28 8.62 9.56 9.23 1.64 − 1.15 − 0.20 41.68
MWPCT 12.71 9.38 10.08 9.85 1.17 − 2.27 − 0.53 46.00
SMWPCT 12.97 10.13 11.18 10.55 2.86 −0.05 0.90 48.65

Table 3: SNR3 of different methods.

Methods/SNR3/defect Def_1 Def_2 Def_3 Def_4 Def_5 Def_6 Def_7 Sum
PCT 1.84 1.36 1.52 1.46 0.61 0.44 0.50 7.73
SPCT 1.87 1.38 1.54 1.48 0.62 0.45 0.50 7.83
MWPCT 2.08 1.42 1.54 1.50 0.55 0.37 0.45 7.90
SMWPCT 2.00 1.45 1.63 1.52 0.63 0.45 0.50 8.17
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