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The lack of online sensors for Mooney viscosity measurement has posed significant challenges for enabling efficient monitoring,
control, and optimization of industrial rubber mixing process. To obtain real-time and accurate estimations of Mooney viscosity, a
novel soft sensor method, referred to as multimodal perturbation- (MP-) based ensemble just-in-time learning Gaussian process
regression (MP-EJITGPR), is proposed by exploiting ensemble JIT learning. This method employs perturbations on similarity
measure and input variables for generating the diversity of JIT learners. Furthermore, a set of accurate and diverse JIT learners are
built through an evolutionary multiobjective optimization by balancing the accuracy and diversity objectives explicitly. Moreover,
all base JIT learners are combined adaptively using a finite mixture mechanism. The proposed method is applied to an industrial
rubber mixing process for Mooney viscosity prediction, and the experimental results demonstrate its effectiveness and superiority

over traditional soft sensor methods.

1. Introduction

Rubber mixing is a crucial step in rubber and tire industry.
The quality of rubber products highly depends on the exact
mixing of raw materials and additives. The Mooney vis-
cosity, indicating the molecular weight and viscoelastic
behavior of an elastomer, has been recognized as an im-
portant quality index for producing nonvulcanized rubbery
materials [1, 2]. In most rubber and tire factories, however,
the Mooney viscosity can only be determined through
manual analysis, which often takes 4~6h after a batch has
been discharged, while the duration of a batch run of mixing
process is only about 2~5min. Therefore, in recent years,
soft sensor methods have been widely applied to provide
real-time estimations of the Mooney viscosity to obtain the
optimal and uniform rubber product quality [3-12].

In general, it is time-consuming and even impossible to
build accurate first-principles soft sensors for Mooney vis-
cosity due to the lack of in-depth chemical and physical
knowledge of rubber mixing process. Alternatively, data-
driven soft sensors have attracted much attention because of

the availability of large amounts of data and advanced data
mining and analytics tools [13-18]. The early attempts to
data-driven soft sensors for quality estimation mainly focus
on global modeling techniques, such as multivariate sta-
tistical techniques [19, 20], artificial neural networks [3, 21],
support vector regression [22], and Gaussian process re-
gression [4, 5]. Recently, deep learning methods have also
been introduced to soft sensor applications [23].
However, global soft sensor methods cannot always
function well because they may fail to handle local process
characteristics effectively and perform model adaptation
efficiently. Thus, in practical applications, local learning-
based soft sensor methods are more appealing for providing
accurate predictions. Compared to global modeling, local
learning exhibits two outstanding advantages. First, global
soft sensors are usually based on the underlying assumption
of a constant operating phase and conditions throughout the
entire duration of a production process, whereas industrial
processes are often characterized by strong nonlinearity, and
multiple operation phases or modes. Thus, from the process
industry viewpoint, local learning is more suitable for
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handling complex process characteristics. Second, since local
learning is completely localized, the local models can be built
and updated independently of each other, which greatly
simplifies the incremental adaptation, inclusion, or removal
of local models and receptive fields.

Generally, there are two categories of local learning
methods: ensemble methods [24-27] and just-in-time
learning (JIT) methods [6, 7, 9, 12]. These methods employ
the divide-and-conquer philosophy to model the relation-
ships between the inputs and output by building a set of
locally valid models. In particular, JIT learning, known as a
representative local learning paradigm, has gained growing
attention in soft sensor applications for Mooney viscosity
estimation due to its strong capability of handling nonlin-
earity, time-varying behavior, multiphase and multimode
process characteristics, etc. [9, 11, 12]. However, traditional
JIT soft sensors attempt to build a globally optimal encap-
sulation of local modeling techniques, similarity measures,
input variables, model hyper-parameters, etc., while the
diversity of JIT learning is ignored. To tackle this problem,
various ensemble JIT learning (EJIT) soft sensors have been
developed [6, 8, 25, 28-31].

The basic idea of EJIT modeling is to build multiple
component JIT learners and then combine their predictions.
For instance, Liu et al. (2012) [28] employed heterogeneous
predictive models to build base JIT models and then com-
bined them through a simple averaging rule. Liu and Gao
(2015) [6] developed an EJIT soft sensor by using diverse
similar data sets, which are obtained by assigning diverse
hyperparameters to the support vector clustering for outlier
detection. Kaneko and Funatsu (2016) [25] developed an
ensemble locally weighted partial least squares (LWPLS) soft
sensor, where diverse subsets are first built using moving
window method and then multiple of the most relevant ones
to the query state are selected to build diverse LWPLS
models, which are finally integrated via Bayes’ theorem. Liu
et al. (2015) [29] built an EJIT kernel learning framework
through perturbing the hyperparameters of local learning
methods. Yuan et al. (2018) [30] developed an EJIT soft
sensor by using different similarity measures. Besides, we
proposed an EJIT soft sensor by perturbing the input fea-
tures for building diverse input subspaces [8]. Recently, we
developed an EJIT soft sensor by employing multiple
weighted Euclidean distance- (WED-) based similarity
measures, which are optimized through an EMO approach
[31]. These studies show that it is feasible and effective to
enhance the prediction accuracy of JIT soft sensors by in-
troducing ensemble learning.

However, it remains challenging to build high-
performance EJIT soft sensors due to the following issues.
First, many current EJIT soft sensor methods only consider
single perturbation, such as perturbing training data [25],
similarity measure [30, 31], perturbing input variables [8],
perturbing local modeling technique [28], or perturbing
model parameters [29]. In practice, the diversity of JIT
learning is often originated from multiple factors. Second,
most of the current EJIT methods construct base JIT learners
in a heuristic way. In such situations, the accuracy and
diversity objectives of JIT learners are difficult to achieve a
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good tradeoff. Finally, most methods employ nonadaptive
weightings for the combination of base JIT learners, which
will limit the prediction performance of EJIT soft sensors.

To address the aforementioned issues, a novel EJIT soft
sensor method, referred to as multimodal perturbation-
based EJITGPR (MP-EJITGPR), is proposed for enabling
accurate predictions of Mooney viscosity. This method
works through integrating perturbation on similarity
measures and perturbation on input variables together.
With the multimodal perturbation mechanism, a set of
accurate and diverse JIT learners are built by balancing the
accuracy and diversity objectives explicitly through an
evolutionary multiobjective optimization (EMO) ap-
proach. Then, a finite mixture mechanism- (FMM-) based
weighting stagey is used to achieve an adaptive combi-
nation of base learners. In summary, the main contribu-
tions of this study are as follows:

(1) A multimodal perturbation mechanism is proposed
by utilizing heterogeneous similarity measures and
building diverse input subspaces, which allows en-
hancing the diversity of base JIT learners efficiently

(2) The generation of accurate and diverse JIT learners is
formulated as a multiobjective optimization problem
and then solved by an EMO approach

(3) The combination of base JIT learners is achieved
through the finite mixture mechanism, which en-
ables adaptive assignments of weights

(4) A novel EJIT soft sensor modeling framework is built
by integrating the multimodal perturbation mech-
anism-based diversity creation, the EMO-based
generation of base JIT learners, and the FMM-based
adaptive combination of base JIT learners

The rest of the paper proceeds as follows. Section 2
briefly introduces JIT learning and Gaussian process re-
gression. Section 3 details the proposed MP-EJITGPR soft
sensor method and its implementation procedure. The
application of MP-EJITGPR for Mooney viscosity prediction
in an industrial rubber mixing process is reported in Section
4. Finally, conclusions are drawn in Section 5.

2. Preliminaries

2.1. Just-In-Time Learning. JIT learning [32], also known as
lazy learning [33] and locally weighted learning [34], refers
to a family of algorithms in which all historical data are
stored in a database and local models are built dynamically
by retrieving the most similar data to the query state.
Compared to conventional global modeling methods, JIT
learning has the following features:

(1) All available modeling data are stored at a database.
And only those samples most similar to the query
point are used for modeling for each run of
prediction.

(2) Only when an estimation is required, a local model is
built dynamically based on samples with high sim-
ilarities to the query point.
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(3) The constructed local model is discarded after the
estimation is given.

2.2. Gaussian Process Regression. A Gaussian process is a
collection of random variables, any finite number of which
follows joint Gaussian distributions [35]. Considering a data
set D={X,y} =1{x,y,}.,, the regression model can be
formulated as

y=fx+s (1)

where f () represents an unknown regression function and ¢
denotes the Gaussian noise with zero mean and variance o?.

A Gaussian process is completely specified by its mean
function m(x) and covariance function C(x,x'):

f(x) ~GP(m(x),C(x,x")). (2)

Since the modeling data is usually normalized to be zero
mean, the output observations follow a Gaussian distribu-
tion as

y ~ GP(0,C), (3)

where C is an n x n covariance matrix with C;; = C(x;,x;)
representing the ijth element. In this study, a Matérn co-
variance function with noise term is adopted:

C(xi,xj) = 03‘(1 + V3 HX; - Xj“)exp( \B“X; ~ Xj") + ai@ij,
(4)

where @ = {05;, 1, afl} are the hyperparameters, [ is the input
scale, 02 is the noise variance, 0? is the output scale, and

n

0;i#j
Bayesian inference.
Given a query data x,.,,, the training outputs y and the
test output y,., follow a joint Gaussian distribution as

follows:
C | -
L0 con]) @
ynew knew C (Xnew’ XDCW)

where k., = [C(Xpen>X1)s - - »C (Koo X,)] 7. Then, the

8= { Lii=J . The hyperparameters ® are determined by

prediction output ¥,.,, and variance 02, can be calculated as
= T -1
{ Tnew = KnewC™ 1> ©)
T -1
CTflew =C (Xnew’ Xnew) - knewC knew’

3. Proposed MP-EJITGPR Soft Sensor

In this section, a multimodal perturbation-based ensemble
just-in-time learning Gaussian process regression (MP-
EJITGPR) is presented. First, data preprocessing is con-
ducted on the three-way data matrices of industrial rubber
mixing process. Then, heterogeneous similarity measures are
defined. Furthermore, by introducing the multimodal per-
turbation mechanism, a set of accurate and diverse JIT
learners, which are equipped with heterogeneous similarity
measures and diverse subspaces, are generated through an

EMO approach. Next, a finite mixture mechanism is
employed to achieve an adaptive combination of base JIT
learners. Finally, the implementation procedure of MP-
EJITGPR is provided.

3.1. Data Preprocessing. Typically, the online data of those
easy-to-measure variables in industrial rubber mixing
process can be arranged in a three-way matrix X (I x J x K)
consisting of J process variables measured at K points for I
batches. Meanwhile, the quality variable (i.e., Mooney vis-
cosity), which is only available at the end of the batch, i.e.,
time point K, can be expressed as yg (I x 1). Before soft
sensor modeling, it is desirable to perform essential pro-
cessing. First, the process data is first preprocessed using a
simple 30 rule for outlier detection. Then, the three-way data
matrix X (I x J xK) is unfolded into a two-way matrix,
which allows utilizing the standard regression techniques for
building the predictive model between online measured
variables and the end-use quality variable. Generally, X can
be unfolded in six different ways [36], among which
batchwise unfolding is employed in this study, as illustrated
in Figure 1. In practice, this way of unfolding has been
actually recognized to be the most meaningful one for
analysis and monitoring of batch processes. With this way of
unfolding, all potential input variables at different time
instants can be obtained for predicting the final quality
variable. Moreover, since the dimensions and magnitudes of
various process variables are significantly different from
each other, another crucial step to guarantee the reliability
and accuracy of soft sensors is data normalization, which is
achieved by scaling the unfolded data matrices to zero mean
and unit variance in this study.

3.2. Definition of Heterogeneous Similarity Measures.
Similarity measure plays a central role in JIT modeling. In
contrast to traditional modeling methods utilizing all
available data, the JIT method is to construct a local model
based on a small data set with high similarities to the query
data. Thus, the key to building highly accurate JIT soft
sensors is to define appropriate similarity metrics. Despite
the availability of various similarity measures, it is hopeless
to pursue a similarity evaluation criterion, which is con-
sistently better than other metrics across different applica-
tion scenarios. Consequently, it is a common practice to
select one of the best similarity measures for a given task,
which is usually time-consuming and even impossible. In
practice, different similarity measures can provide different
insights into similarity evaluation between data points. Thus,
in this work, heterogeneous similarity measures will be
combined for JIT learning, including Euclidean distance-
(ED-) based similarity, cosine similarity (cosine), covariance
weighted distance- (CWD-) based similarity, and correlation
coefficient- (CC-) based similarity.

The ED similarity measure is the most commonly used
metric for JIT learning due to its simplicity and efficiency. It
is defined based on the Euclidean distance between points in
space; that is,
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FIGURE 1: Batchwise unfolding of three-way data matrices.

_ di
w; = exp —@ 5 (7)
di = ”Xi - Xnew"’

where o, is the standard deviation of d; (i = 1,2, ..
¢ is a localization parameter.

One disadvantage of ED similarity is that the differences
among input variables are ignored. To address this issue,
various weighted distance-based similarity measures have
been proposed, among which the CWD similarity measure is
defined by considering the relationships among input var-
iables and among input and output variables. [37] That is,
CWD similarity is defined by using the weighted distance
metric:

.,n) and

d; = \/(Xi - Xnew)TH (Xi - Xnew)’

_ (Xy)' (XTy)
[x*y?|

(8)

>

where H denotes a weighting matrix, and X and y are the
input and output matrices, respectively.

Alternatively, by exploiting the angle between two
vectors in space, the cosine similarity measure can be defined
as

9)
X Xnew

COS; =
[l |

i

where cos; denotes the cosine value of the angle between two
vectors.
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In addition to the distance and angle criteria, the rele-
vance between two vectors can also be used to evaluate the
similarity between samples. For the sake of simplicity, and
without loss of generality, the frequently used correlation
coefficient (CC) criterion is used to define similarity measure

as follows:
i Xp{ — |
0,9

Cov (x;,x

S
Il

(10)

HEW)

" \/Var (x;)Var(x

new )

where Cov(-,-) and Var(:) are used to compute the co-
variance and variance, respectively.

It is noteworthy that the above similarity measures are
defined from different points of view, thus behaving dif-
ferently in different applications. So, one promising solution
towards further improving the prediction performance of
JIT learning soft sensors is to use heterogeneous similarity
measures together, which has not been well investigated and
will be discussed in the following section.

3.3. Generation of Base JIT Learners through Evolutionary
Multiobjective ~ Optimization. When considering JIT
learning as a base learner for ensemble learning, EJIT
modeling is essentially one ensemble method. It has been
proven both theoretically and empirically that both ac-
curacy and diversity of base learners are crucial to guar-
antee high ensemble performance [38]. According to the
famous bias-variance decomposition [39] and error-am-
biguity decomposition [40] theories, the more accurate and
the more diverse base learners are, the better the ensemble
is. Hence, the success of developing high-performance EJIT
soft sensors lies in generating accurate and diverse base JIT
learners.

Among various ensemble learning soft sensors, per-
turbing training data remains dominant for creating di-
versity, such as clustering [41], moving window [24, 27],
bootstrapping sampling [42, 43], and sequential sampling
[44]. However, such data manipulation strategies do not
always function well for EJIT modeling because JIT learning
only relies on a small subset of relevant samples for each run
of prediction and is less sensitive to the randomness injected
to the database. Moreover, the perturbation on input var-
iables is often ignored in developing ensemble soft sensors.
In addition, many of the current methods for base learner
generation are based on heuristic mechanisms without
measuring or ensuring diversity among base learners
explicitly.

Thus, in this study, the diversity generation is achieved
through the multimodal perturbation mechanism, i.e.,
perturbing similarity measure and input variables together.
Then, the generation of accurate and diverse base JIT
learners is formulated as a multiobjective optimization
problem (MOP). Finally, the MOP problem is solved by
using an EMO approach, which leads to a tradeoff between
accuracy and diversity objectives. In the following, the
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decision variables, optimization objectives, and the adopted
EMO approach are detailed.

Suppose M JIT learners, each of which is characterized
by one similarity measure and one input subspace, are re-
quired for constructing an EJIT model. Since M

Simi 1, JIT learner 1

Simim, JIT learner m

heterogeneous similarity measures have been defined in
advance, the decision variables z only include the selection
variables, which indicate whether an input variable is se-
lected or not in order to form a subspace. That is, the de-
cision vector z can be expressed as follows:

Simi M, JIT learner M

—_— —_— B —————
1 1 1 " 71 M M
z=6',6.,..,0L, ..., 8", 60,00, .., 0", 0.

where M and D denote the number of base JIT learners and
that of potential input variables for building subspaces,
respectively. 8 is a binary variable, which indicates inclusion
and exclusion of an input variable by using “1” and “0”,
respectively.

Furthermore, the accuracy and diversity objectives are
defined. In this study, the ensemble accuracy is given as the
average of individual accuracies. Given the training data set
Dy = {Xin> Yun} and  an  independent validation set
D, = {Xia) Yyai}> the accuracy objective is estimated as

M m
Z m=1 R1v[SEVal

avg,val — M > (12)

RMSE
where RMSE!,, denotes the root-mean-squared error
(RMSE) on the validation set for the m th JIT learner.

In comparison with the accuracy objective, measuring
ensemble diversity is not straightforward. Up to now, there is
no generally accepted formal formulation and measures for
ensemble diversity. Thus, in this study, the standard devi-
ation of individual prediction outputs is used to evaluate the
ensemble diversity. By applying the base JIT learners,
{ ??T}mzl’ the prediction outputs of individual JIT learners
can be given as

=y ~1 ] ~M
Yval = [YVal"”’Y:ZI"”’YVal]’ (13)

where y7, is a column vector denoting the prediction output
vector on the validation data using the mth JIT learner.

Let italic R be a row vector denoting the prediction
outputs from various base JIT learners for the i th query data
in validation set. Then, the ensemble diversity can be defined
as follows:

Y O
= val,t
Oavgval = 1 Nou > (14)
where N, is the number of validation samples, and o,); is
the standard deviation of ¥, ;.

To build accurate and diverse base JIT learners, small
RMSE, ;o and large 0, are desirable. Thus, generating
accurate and diverse JIT learners can be formulated as a

biobjective optimization problem:
min {RMSE, g o> 1/0 g vai | - (15)

To solve the MOP problem in equation (15), one of the
most famous EMO algorithms, ie., NSGA-II (non-
dominated sorting genetic algorithm II), is employed.

6 |, (11)

Details about the NSGA-II algorithm can be found in [45].
First, the decision vector z is coded as a binary string and an
initial population is created. Then, the Pareto-optimal so-
lutions can be obtained by performing the following
procedure:

(i) Step 1: generate an initial population with N,
individuals.

(ii) Step 2: evaluate each individual in the population by
calculating the accuracy and diversity objectives, i.e.,
RMSE, 4 a1 and 1/0;

(iii) Step 3: repeat the following steps until the stopping
condition is reached.

avg,val*

(a) Assign a front number to all solutions by using
nondominated sorting and calculated the
crowding distance.

(b) Generate an offspring population by using the
binary tournament selection, recombination,
and mutation operations.

(c) Evaluate each solution as that in Step (2).

(d) Merge the current and offspring populations
such that elitism is ensured.

(e) Sort the solutions from the merged population
according to the nondominated sorting method.

(f) Choose the first N, solutions from the merged
population and increase the generation counter.

(iv) Step 4: find the Pareto-optimal solutions from the
combined population in the last generation by
applying the nondominated sorting method.

The outcome of this step is a set of Pareto-optimal so-
lutions, one of which is selected for the ensemble con-
struction of MP-EJITGPR modeling.

3.4. Adaptive Combination of Base JIT Learners by Finite
Mixture Mechanism. With the utilization of multimodal
perturbation and EMO optimization, a group of accurate

and diverse JIT learners { ’]’fT}i\::l can be obtained, where
fyir is built by the GPR method in this paper. When a query
data is requested to be predicted, each base JIT learner
makes a prediction for the output variable. To get the final
predictions, these individual predictions have to be
combined.

Generally, there are two classes of combination methods:

nonadaptive and adaptive weightings. In the former, weights



assigned to base learners remain unchanged once deployed
into the real-life operation, whereas in the latter weights are
assigned adaptively to accommodate the query process state.
The simplest nonadaptive weighting method is the simple
averaging rule, which provides the average of individual
predictions as the final prediction. Another popular non-
adaptive weighting is to determine weights according to
their prediction capability on training set or validation set.
For instance, weights can be determined by using linear
regression methods, such as PCR and PLS. Besides, the
combination of base learners can be achieved by learning,
i.e., stacking, which usually leads to a nonadaptive combi-
nation model. However, a deficiency of nonadaptive com-
bination methods is that they tend to assign larger weights to
the models that exhibit excellent prediction on the training
set or validation set, which may lead to overestimation or
underestimation of weights and thus deteriorate the gen-
eralization capability of ensemble models. Therefore,
adaptive combination strategies are highly appealing.

In this study, a finite mixture mechanism-based adaptive
weighting method is proposed to achieve the combination of
base learners. For a new query data x,.,, the predictive
distribution of the mth output y,, .., of the target variable is
estimated from the mth JITGPR model and y,,, ..., follows a
Gaussian distribution as follows:

Ymnew ~ ‘/V([E(ym,new)’Var(ym,new))’ m=12,---,M, (16)

where E(y,, ) and Var(y,, ..,) are the prediction mean
and variance, respectively.

Assume the local predictions ¥ cws>---»> Vonews - -
YMunew are independent realizations of the overall output
variable y, .. That is to say, y,.,, arises from a finite mixture
distribution of ¥ \cws- > Ypunews - - +> Yinew- 1HUS, by ap-
plying the finite mixture mechanism [26, 46], the mean and
variance of the predictive distribution of the target variable
can be estimated by combining all local predictions:

M
Ynew = Z Wy, new Y m,new>

”;1 (17)

2 2 o~ ~ )2
Ohew = Z wm,new{gm,new +(ym,new - ynew) }’

m=1

where 3, .., and 07, .. represent the prediction output and

variance using the m th JITGPR model, respectively; and w,,
denotes the mixture weights satistying the following constraints:

M
0< Wi new <L Z Wi new = L (18)
m=1

Since the prediction uncertainty can effectively indicate
the confidence level of the output predictions, we assume the
mixture weights are inversely proportional to the prediction
variances from individual JITGPR models. Thus, w can
be estimated as follows:

m,new

—~ P
_ (ym,new/am,new) (19)

Zﬁfﬂ (?m,new/o'm,new)p)

where p is an adjustable parameter.

m,new
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The proposed FMM-based combination strategy allows
predictions from individual JITGPR models to be combined
adaptively at each run of prediction.

3.5. Implementation Procedure. The step-by-step procedure
of the proposed MP-EJITGPR soft sensor method for
Mooney viscosity prediction is summarized below and the
schematic diagram of this approach is illustrated in
Figure 2.

3.5.1. Offline Optimization Phase

(a) Collect the process data of the batch process for
model training and validation

(b) Data processing is performed, including outlier
detection, data unfolding, mean-centering, and
scaling

(c) Formulate the generation of accurate and diverse
JITGPR models as a multiobjective optimization
problem (MOP)

(d) Solve the MOP problem using the EMO approach,
i.e, NSGA-II

(e) By using one of the best-performing Pareto-optimal
solutions, a set of JITGPR models characterized by
heterogeneous similarity measures and diverse input
subspaces are constructed

3.5.2. Online Prediction Phase

(a) For any query data, M relevant subsets are obtained
by using the heterogeneous similarity measures and
diverse input subspaces.

(b) M JITGPR models are constructed and further
provide the prediction outputs and variances of the
target variable.

(c) The final prediction output and variance are pro-
duced using the proposed FMM-based combination
method and then those built JITGPR models are
discarded. When new query data comes, go to Step

(a).

It is worth noting that the computational load of the
proposed MP-EJITGPR method is mainly focused on the
offline optimization phase, especially the NSGA-II-based
EMO optimization. However, once the learning configu-
rations for generating diverse JIT models have been ob-
tained, the online prediction for new test samples can be
conducted fast. This is because, on one hand, if the similarity
measures are defined appropriately, only a small number of
samples are selected for online local modeling, which en-
ables fast training of diverse JIT models for each query data.
On the other hand, the finite mixture mechanism-based
adaptive combination is very efficient because only simple
calculations are involved. Therefore, the proposed approach
can be applied for providing real-time estimations of
Mooney viscosity in an industrial rubber mixing process.
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Stage 2: online prediction

Stage 1: offline optimization
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and variance

FIGURE 2: Schematic diagram of the proposed MP-EJITGPR soft sensing approach.

4. Application to an Industrial Rubber
Mixing Process

The effectiveness and superiority of the proposed MP-
EJITGPR soft sensor for Mooney viscosity prediction are
demonstrated through an industrial rubber mixing process
in China. The methods for comparison are as follows:

(1) PLS (partial least squares regression): global PLS
model

(2) GPR (Gaussian process regression): global GPR
model

(3) GMMGPR : Gaussian mixture model- (GMM-)
based ensemble GPR models

(4) JITGPR (ED similarity): JIT learning GPR using ED
similarity measure

(5) JITGPR (cosine similarity): JIT learning GPR using
cosine similarity measure

(6) JITGPR (CWD similarity): JIT learning GPR using
CWD similarity measure

(7) JITGPR (CC similarity): JIT learning GPR using CC
similarity measure

(8) SP-EJITGPR (SAR): similarity perturbation-based
EJITGPR with simple averaging rule (SAR) for
combination

(9) SP-EJITGPR (PLS stacking): similarity perturba-
tion-based EJITGPR with PLS stacking for
combination

(10) SP-EJITGPR (GPR stacking): similarity perturba-
tion-based EJITGPR with GPR stacking for
combination

(11) SP-EJITGPR (FMM): similarity perturbation-based
EJITGPR with the finite mixture mechanism for
combination

(12) MP-EJITGPR (SAR): multimodal perturbation-
based EJITGPR with a simple averaging rule for
combination

(13) MP-EJITGPR (PLS stacking): multimodal pertur-
bation-based EJITGPR with PLS stacking for
combination

(14) MP-EJITGPR (GPR stacking): multimodal pertur-
bation-based EJITGPR with GPR stacking for
combination



(15) MP-EJITGPR (FMM) (the proposed method):
multimodal perturbation-based EJITGPR with the
finite mixture mechanism for combination

A total of 15 soft sensor methods are involved, and their
characteristics are compared in Table 1. These methods can
be roughly categorized into five classes: (1) global methods,
i.e,, PLS and GPR; (2) ensemble methods through training
data perturbation, i.e., GMMGPR; (3) JITGPR methods
using single similarity measure; (4) EJITGPR methods using
similarity perturbation and ensemble learning, i.e., SP-
EJITGPR; (5) EJITGPR methods using multimodal per-
turbation and ensemble learning, i.e., MP-EJITGPR. For
those EJIT methods, four types of combination methods are
investigated, i.e., simple averaging rule (SAR), PLS stacking,
GPR stacking, and finite mixture mechanism (FMM).

The modeling data are split into three parts: training set
for modeling learning, validation set for parameter tuning
and EMO optimization, and testing set for model evaluation.
Moreover, some critical parameters should be pre-
determined. In detail, the number of principal components
for PLS is selected based on the prediction accuracy on the
validation set. The local modeling size | and the adjustable
parameter p in equation (19) are determined by trial and
error. In addition, the optimization settings for NSGA-II are
given as follows: population size N, = 100, and maximum
generation size Ny = 100.

To assess the prediction performance of soft sensors,
three indices, namely, root-mean-square error (RMSE),
relative RMSE (RRMSE), and coefficient of determination
(R?), are used:

P

1 Myest

RMSE = \_ Z (i =)

ntest i=1

2
>

n, —~ 2
l test L — 3 20
RRMSE = \ y (u) % 100%, (20)

Miest i=1 Vi

Y (3 - }’i)z
Myest —\2’
i i)

where y; and ¥; denote the actual and predicted outputs,
respectively; y represents the mean value; and n,, is the
number of testing samples.

The computer configurations for experiments are as
follows. OS : Windows 10 (64 bit); CPU : Intel (R) Core(TM)
i7-6700 (3.4 GHz x2); RAM:8G byte; and the simulation
software is MATLAB R2016a. The MATLAB codes for
running GPR regression can be downloaded from the
website: http://www.gaussianprocess.org/gpml/code/
matlab/doc/.

R =1-

4.1. Process Description. Rubber mixing is a crucial step in
the rubber and tire industry. [7, 8] The industrial rubber
mixing process in this study is practiced in a Chinese tire
company. The industrial production site is illustrated in
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Figure 3. The rubber mixing process lasts for 2 min, during
which various raw materials are fed into the raw rubber to
produce synthetic rubber according to the technical formula
and then various complex chemical reactions take place in
an internal mixer. Generally, Mooney viscosity is a crucial
index for monitoring the product quality of the rubber
mixing process. However, in a practical production process,
Mooney viscosity is only measured through a viscometer
with a large delay of 4~6h after one batch has discharged.
Consequently, it becomes challenging to assure the optimal
and uniform quality of mixed rubber. Fortunately, soft
sensor technology provides the possibility of estimating
Mooney viscosity in real-time. Thus, we attempt to build a
high-performing soft sensor for Mooney viscosity prediction
in this study. The process variables used for soft sensor
modeling include temperature in the mixer chamber, motor
power, ram pressure, motor speed, and energy.

4.2. Prediction Results of Mooney Viscosity. The modeling
data have been collected from DCS system and laboratory
analysis and are then preprocessed by using a simple 30 rule
for outlier detection, batchwise unfolding, zero mean cen-
tering, and one variance scaling. With a sampling interval of
2, a total of 1172 batches are selected from three internal
mixers and are further divided into three sets: 822 batches as
the training set, 175 batches as the validation set, and 175
batches as the testing set. By considering the time instants
0s, 14s, 18s, 225, ..., 118s, a total of 140 delayed and
nondelayed variables are obtained as potential input vari-
ables and the Mooney viscosity is chosen as the output
variable.

The prediction results of Mooney viscosity from different
soft sensor methods are presented in Table 2. It is readily
observed that PLS leads to the poorest prediction perfor-
mance among those methods in terms of RMSE, RRMSE,
and R®. This is mainly because PLS cannot effectively handle
the nonlinearity of rubber mixing process. In comparison,
other nonlinear soft sensor methods achieve much better
prediction accuracy than PLS. Though GPR obtains sig-
nificant accuracy improvement, it still produces high pre-
diction errors due to its failure in dealing with local process
characteristics. Instead of relying on a global model,
GMMGPR and various JITGPR methods employ local
learning philosophy, thus obtaining much better perfor-
mance than global GPR. Although GMMGPR performs well
in this case study, JITGPR methods are more appealing to
provide better prediction performance.

However, the prediction accuracy of JITGPR methods is
highly related to the similarity measure definition. As can be
seen in Table 2, different prediction performance is obtained
by using different similarity measures. In real applications, it
is difficult to determine which similarity measure performs
best in advance. Thus, a promising idea is to fully exploit the
advantages of multiple similarity measures for JIT learning
by using ensemble methods. As expected, by introducing
ensemble learning, SP-EJITGPR can deliver better predic-
tion results than single similarity measure-based JITGPR
methods. It is noteworthy that, however, inappropriate
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TaBLE 1: Characteristics of soft sensor methods for comparison.

No. Method Model structure Learning type Diversity generation mechanism
1 PLS Single Global —

2 GPR Single Global —

3 GMMGPR Ensemble Local Training data perturbation
4 JITGPR (ED similarity) Single Local —

5 JITGPR (cosine similarity) Single Local —

6 JITGPR (CWD similarity) Single Local —

7 JITGPR (CC similarity) Single Local —

8 SP-EJITGPR (SAR) Ensemble Local Similarity perturbation
9 SP-EJITGPR (PLS stacking) Ensemble Local Similarity perturbation
10 SP-EJITGPR (GPR stacking) Ensemble Local Similarity perturbation
11 SP-EJITGPR (FMM) Ensemble Local Similarity perturbation
12 MP-EJITGPR (SAR) Ensemble Local Multimodal perturbation
13 MP-EJITGPR (PLS stacking) Ensemble Local Multimodal perturbation
14 MP-EJITGPR (GPR stacking) Ensemble Local Multimodal perturbation
15 MP-EJITGPR (FMM) Ensemble Local Multimodal perturbation

FIGUre 3: Industrial rubber mixing process.

TaBLE 2: Comparison of Mooney viscosity prediction results using
different soft sensors (I=10 for JIT learning).

No Method RMSE RRMSE (%) R?

1 PLS 73298 117026  0.8002
2 GPR 42628 59354  0.9324
3 GMMGPR 3.4606  4.8077  0.9555
4 JITGPR (ED similarity) 31561  4.2700  0.9630
5 JITGPR (cosine similarity)  3.2053 4.3494 0.9618
6 JITGPR (CWD similarity)  3.6552  5.2370  0.9503
7 JITGPR (CC similarity) ~ 3.2029 43313 0.9618
8 SP-EJITGPR (SAR) 32127 44105  0.9616
9  SP-EJITGPR (PLS stacking) 3.9916 54067  0.9407
10  SP-EJITGPR (GPR stacking) 3.7792  5.0508  0.9469
11 SP-EJITGPR (FMM) 3.0670  4.2073  0.9650
12 MP-EJITGPR (SAR) 43769  6.0332  0.9288
13 MP-EJITGPR (PLS stacking) 4.1966 53943  0.9345
14 MP'EHTG.P R (GPR 37819 49735  0.9468

stacking)
15 MP-EJITGPR (FMM) 2.9202  3.9085  0.9683

ED:Euclidean distance; CWD: covariance weighted distance; CC: corre-
lation coefficient; SAR: simple averaging rule; FMM: finite mixture
mechanism; SP: similarity perturbation; and MP: multimodal perturbation.

combination methods can lead to performance degradation
instead of improvements. Among the compared combina-
tion methods, the proposed FMM-based combination

successfully obtains significant performance enhancement,
while simple averaging rule, PLS stacking, and GPR stacking
lead to performance degradation. These results reveal that
the integration of heterogeneous similarity measures and the
FMM-based adaptive combination method significantly
allows improving the prediction accuracy of JIT learning soft
Sensors.

Apart from the similarity measure, input variable se-
lection is also critical to guarantee the performance of JIT
learning. Thus, it is interesting to explore whether EJITGPR
model using only similarity perturbation can be further
improved or not by performing perturbations on similarity
measure and input variables simultaneously. As we have
expected, when the FMM-based adaptive combination is
employed, EJITGPR model using multimodal perturbation,
ie, MP-EJITGPR (FMM), performs better than SP-
EJITGPR methods. Once again, the simple averaging rule,
PLS stacking, and GPR stacking does not function well in
this study because they are nonadaptive. The above obser-
vations show that the proposed MP-EJITGPR (FMM) soft
sensor method is the best among the compared methods. In
addition, as illustrated in Figure 4, the superior prediction
performance of MP-EJITGPR (FMM) is further verified by a
good agreement between the predicted and actual trend
plots of Mooney viscosity.

To further investigate the estimation performance of
MP-EJITGPR (FMM) soft sensor, the prediction RMSE
values of JITGPR, SP-EJITGPR, and MP-EJITGPR under
different local modeling sizes are compared in Figure 5. It
can be found that the increase of local modeling samples can
lead to prediction accuracy reduction in most cases for all
compared methods. In particular, for this case study, the
prediction accuracy of JITGPR methods and SP-EJITGPR
using small local modeling sizes is significantly better than
that using large local modeling sizes. In comparison, the
proposed MP-EJITGPR (FMM) is much less sensitive to
local modeling size than other methods. Therefore, the
proposed approach is more desirable than other traditional
JIT methods in providing accurate and reliable predictions.

Compared to the traditional JIT learning soft sensors, the
outstanding prediction performance of MP-EJITGPR
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Mooney viscosity prediction

RMSE =2.9202, R* = 0.9683
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FIGURE 4: Trend plots of Mooney viscosity predictions using the proposed MP-EJITGPR (FMM) approach (I=10).
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Figure 5: Comparison of prediction performance using single and ensemble JITGPR models.

(FMM) is mainly due to the effective cooperation of mul-
timodal perturbation, EMO optimization, and adaptive
combination for ensemble construction. On the one hand,
the utilization of heterogeneous similarity measures, i.e., ED,
cosine, CWD, and CC similarity metrics, and input variable
selection for constructing subspaces shown in Figure 6, can
be helpful to generate accurate and diverse base JITGPR
models. On the other hand, the accuracy and diversity
objectives of base JITGPR models can be well balanced by
using an EMO approach. Additionally, the FMM-based

adaptive combination scheme allows the proposed MP-
EJITGPR method to accommodate the query process state
by dynamically assigned weights to base JITGPR models, as
illustrated in Figure 7.

Moreover, the real-time performance of MP-EJITGPR
(FMM) for online prediction is analyzed. The average CPU
time for each run of prediction under different local
modeling sizes is shown in Figure 8. Clearly, the online
computational load becomes large with the increase of local
modeling samples. However, only a small relevant subset is
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required for local modeling, and the prediction taking less
than 1s is completely acceptable in practical application.

The obtained application results confirm that the pro-
posed MP-EJITGPR (FMM) soft sensor method outper-
forms the other traditional JIT soft sensors, implying that it is
more suitable for providing accurate predictions of Mooney
viscosity in an industrial rubber mixing process.

5. Conclusions

In this paper, a new soft sensor method MP-EJITGPR is
proposed for facilitating accurate estimations of Mooney
viscosity in an industrial rubber mixing process. This
method enables to enhance the diversity of base JIT learners
through the multimodal perturbation mechanism, i.e.,
perturbing similarity measure and input variables. More-
over, a group of accurate and diverse base JIT learners is
generated by employing an EMO approach to achieve a
tradeoff between the accuracy and diversity objectives ex-
plicitly. In addition, a finite mixture mechanism is exploited
to achieve an adaptive combination of base JIT learners. By
integrating the multimodal perturbation-based diversity
generation, the EMO optimization-based generation of base
JIT learners, and the FMM-based adaptive combination of
base learners for EJIT modeling, the proposed MP-EJITGPR
method allows providing marked improvement of predic-
tion performance over its conventional counterparts in
nonlinear process modeling. The superiority and effective-
ness of the proposed approach are demonstrated through the
Mooney viscosity prediction of an industrial rubber mixing
process.

Besides the presented case study, the proposed method
has the potential of addressing other nonlinear modeling
issues in process industry. In future research, more efforts
are encouraged to extend the library of heterogeneous
similarity measures and improve the diversity generation
mechanism for building high-performance JIT soft sensors.
Moreover, although this paper mainly focuses on manip-
ulating input variables for building diverse input spaces
based on evolutional multiobjective optimization approach,
exploiting feature extraction by deep learning and making
use of unlabeled data by semisupervised learning for im-
proving the prediction performance of soft sensors are also
interesting [47]. These will be investigated in the future.

Nomenclature

CC: Correlation coefhicient

CWD: Covariance weighted distance
ED: Euclidean distance

EJIT: Ensemble just-in-time learning

EJITGPR: Ensemble just-in-time learning Gaussian
process regression

EMO: Evolutionary multiobjective optimization

FMM: Finite mixture mechanism

GPR: Gaussian process regression

JIT: Just-in-time learning
JITGPR: Just-in-time learning Gaussian process
regression
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MOP: Multiobjective optimization problem

MP- Multimodal perturbation-based ensemble just-
EJITGPR: in-time learning Gaussian process regression
NSGA-II:  Nondominated sorting genetic algorithm II
SAR: Simple averaging rule

SP- Similarity perturbation-based ensemble just-
EJITGPR: in-time learning Gaussian process regression.
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