Experimental details of transverse diffusivity studies

Paul Scott, Eleni Toumpanaki* and Janet M. Lees

Dr. P. Scott

Cambridge Design Partnership, Church Road, Toft, Cambridge, CB23 2RF, UK. Email: Paul.Scott@cambridge-design.com

Dr. E. Toumpanaki University of Bristol, Department of Civil Engineering, University Walk, Bristol, BS8 1TR, UK. Email: <u>eleni.toumpanaki@bristol.ac.uk</u>

Prof. J.M. Lees University of Cambridge, Department of Engineering, Civil Engineering Building, JJ Thomson Ave 7a, Cambridge, CB3 0FA, UK Email: jmL2@eng.cam.ac.uk

Author	V_f	De	t	D 22/	Temp.	RH	Satura	Diff.
		(mm^2/s)	(mm)	D_e	(°C)	(%)	tion	Model
							level	
Bohlmann &	0.630	^{c)} 8.00×10 ⁻⁷	0.72	0.180	24	100	No *	Fickian
Derby (a) (1977)	0.630	^{c)} 9.20×10 ⁻⁵	0.65	0.211	60	100	No *	Fickian
[37]	0.630	^{c)} 7.60×10 ⁻⁵	0.68	0.240	82	100	No *	Fickian
	0.630	No data	0.67	0.176	60	50	No *	Fickian
Bohlmann &	0.700	No data	0.63	0.009	60	100	No *	Fickian
Derby (b) (1977)								
[37]								
Kondo & Taki (a)	0.600	7.01×10^{-7}	1	0.445	75	40	-	Fickian
(1982) [32]	0.600	7.86×10^{-7}	1	0.397	75	65	_	Fickian
	0.600	8.88×10^{-7}	1	0.464	75	90	_	Fickian
Kondo & Taki (b)	0.560	1.23×10 ⁻⁷	1	0.315	30	65	_	Fickian
(1982) [32]	0.560	1.29×10 ⁻⁷	1	0.360	30	90	_	Fickian
	0.560	1.50×10 ⁻⁶	1	0.294	75	40	_	Fickian
	0.560	1.63×10 ⁻⁶	1	0.387	75	65	_	Fickian
	0.560	1.58×10 ⁻⁶	1	0.342	75	90	_	Fickian
	0.600	7.65×10 ⁻⁸	_	0.139	23	100	_	Fickian

Table S1. Experimental details of transverse diffusivity studies.

DeIasi &	0.600	3.10×10^{-7}	-	0.258	49	100	-	Fickian
Whiteside [39]	0.600	1.61×10 ⁻⁶	_	0.190	82	100	_	Fickian
Bond [10]	0.610	7.42×10 ⁻⁷	0.5, 1	0.359	50	23	Yes	^{d)} Relax
	0.610	6.66×10 ⁻⁷	0.5,1	0.360	50	50	Yes	^{d)} Relax
	0.610	5.16×10 ⁻⁷	0.5, 1	0.549	50	75	Yes	^{d)} Relax
	0.610	5.31×10 ⁻⁷	0.5, 1	0.565	50	96	Yes	^{d)} Relax
	0.610	1.51×10 ⁻⁶	0.5, 1	0.361	65	75	_	^{d)} Relax
	0.610	1.36×10 ⁻⁶	0.5, 1	0.395	65	96	_	^{d)} Relax
	0.610	2.45×10 ⁻⁶	0.5, 1	0.412	85	43	No ^{b)}	^{d)} Relax
	0.610	2.31×10 ⁻⁶	0.5, 1	0.462	85	75	No ^{b)}	^{d)} Relax
	0.610	1.94×10 ⁻⁶	0.5, 1	0.479	85	94	No ^{b)}	^{d)} Relax
Adams & Singh [22]	0.53	2.15×10 ⁻⁶	2,1.2	0.540	100	100	No	Fickian
Hong et al. [39]	0.665	6.26x10 ⁻⁷	1.4	0.038	23	DW		Relax
	0.665	24.17x10 ⁻⁷	1.4	0.022	40			
	0.665	61.14x10 ⁻⁷	1.4	0.025	60			
Wang et al. [24]	0.50	8.69x10 ⁻⁶	2.0	0.067	60	DW	Yes	Fickian
	0.50	8.69x10 ⁻⁶	2.0	0.163	60			
	0.50	3.68x10 ⁻⁶	2.0	0.043	60			
	0.50	3.68x10 ⁻⁶	2.0	0.102	60			
Arnold et al. [40]	0.58	11.91x10 ⁻⁸	1,2,4	0.372	23	W	Yes	Fickian
	0.58	31.2x10 ⁻⁸	1,2,4	0.401	40	W		
	0.58	143.2x10 ⁻⁸	1,2,4	0.482	70	W		
	0.58	155.5x10 ⁻⁸	1,2,4	0.418	70	85		
	0.58	175.5x10 ⁻⁸	1,2,4	0.361	70	60		
	0.58	11.91x10 ⁻⁸	1,2,4	0.144	23	W		
	0.58	31.2x10 ⁻⁸	1,2,4	0.124	40	W		
	0.58	143.2x10 ⁻⁸	1,2,4	0.151	70	W		
	0.58	155.5x10 ⁻⁸	1,2,4	0.135	70	85		
	0.58	175.5x10 ⁻⁸	1,2,4	0.110	70	60		
Shen & Springer	0.680	¹ 8.00×10 ⁻⁴	1.27	0.068	121	100	No ^{a)}	Fickian
[9]	0.680	¹ 5.00×10 ⁻⁵	1.27	0.072	93	-	No ^{a)}	Fickian
	0.680	¹ 8.50×10 ⁻⁵	1.27	0.078	71	_	No ^{a)}	Fickian
	0.680	¹ 2.00×10 ⁻⁶	1.27	0.070	49	-	No ^{a)}	Fickian
	0.680	¹ 7.50×10 ⁻⁶	1.27	0.064	27	-	No ^{a)}	Fickian

^{a)} Understanding based on sample presented from the dataset
^{b)} Though saturation is not observed, it is estimated through use of regression analysis
No data, W=Water and DW=Distilled water
^{c)} obtained from figure so there may be a loss of accuracy ^{d)}Fickian parameters also calculated