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In this paper, we investigate the static and dynamic properties of linear polymer in the presence of obstacles. A Monte Carlo (MC)
simulation method in two dimensions with a bond fluctuation model (BFM) was used to achieve this goal. To overcome the
entropic barrier, we put the middle monomer of the polymer in the middle of the pore, which is placed between ordered and
disordered obstacles. We probed the static properties of the polymer by calculating the mean square of the radius of gyration
and the mean square end-to-end distance of the polymer, and we found that the scaling exponents of both the mean square
end-to-end distance hR2i and the mean square radius of gyration hR2

gi as a function of the polymer length N vary with the
area fraction of crowding agents, ϕ. The dynamic properties have also been studied by exploring the translocation of the
polymer. Our current research shows that the escape time τ increases as ϕ increases. Moreover, in the power-law relation of
escape time τ as a function of polymer length N , the scaling exponent (α) changes with ϕ. Furthermore, the study has shown
that the translocation of the polymer favors the disordered barriers.

1. Introduction

In polymer physics, the static and dynamic properties of
polymers are critical issues. The translocation of biopoly-
mers is primarily focused to cope with the features. Biopoly-
mer translocation is the passage of the polymers through a
small aperture. It involves many biological processes, such
as the viral injection of linear and cyclic DNA into a host
cell, the passage of protein through the channel of the mem-
brane, and the transportation of mRNA through nuclear
pores [1]. This implies that, at the scale of molecules, life is
controlled by biopolymers: RNA, DNA, and proteins are
basic features of biological structure and function [2, 3]. Fur-
thermore, the passage of biopolymers through nanopore has
a technological applications in rapid sequencing of DNA [4,
5], therapy of gene [6], and controlled delivery of drug [7, 8].

However, the practical applications of these biopolymers are
affected by their physical properties. Mostly, to deal with
these properties of polymers, their particular classes are
focused. Linear, the polymer architecture to which we are
devoted, forms a very interesting class as it has two ends.
Hence, it has got our attention.

Even though a few studies have been done with simula-
tion [9–14] of this class of biopolymers’ translocation
through nanopore, the deep level theoretical and simulation
investigations of static and dynamic properties in a crowded
environment are still underway. For example, the effect of
obstacle density on polymer diffusion coefficients has not
been studied in previous studies [15, 16] nor have the effects
of fixed-size obstacles on properties [17]. As it is known, the
numerous intracellular and extracellular biological environ-
ments are crowded by cells and large molecules densely
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[18, 19]; hence, we believed that it is very impressive to study
the properties of polymers in the presence of obstacles
(crowding agents).

In the presence of obstacles, Gopinathan and Kim [15]
and Cao et al. [16] studied the translocation of polymers
without applying external field, which is driven by concentra-
tion difference of the obstacles. This means that they studied
the translocation of polymers from crowded cis of obstacles
density ϕc > 0 to sparse or uncrowded trans −ϕt = 0, without
applying potential (Δμ = 0). However, the unforced translo-
cation of polymer from sparse or uncrowded cis-(ϕc = 0) to
crowded trans-(ϕt > 0) is difficult. And, very recently, Gao
et al. [20] studied the translocation of linear and ring poly-
mers in a crowded environment of the same density of obsta-
cles at both cis- and trans-sides, without applying electric
potential, which is driven by the free energy difference. In
our study, we considered a crowded environment of the same
concentrations (ϕc = ϕt) and fixed size of obstacles at both
sides of the membrane, and we studied the unforced translo-
cation of linear polymers in a crowded environment, which is
solely caused by thermal fluctuation. In all simulations, we
contemplated excluded volume obstacles and polymers (no
monomer-obstacle interaction).

Previously, in order to study polymer properties, numer-
ous simulation methods were used, some of which are often
used to simulate polymers, such as the molecular dynamics
(MD) [21, 22] and Monte Carlo (MC) [23, 24] methods.
The MC simulation method, which we employed in this
study, involves generating and accepting or rejecting possi-
ble conformations (states) stochastically [25, 26]. To exam-
ine the parameters of the static and dynamic properties of
the polymer by this method, we employed the bond fluctua-
tion model (BFM).

In this study, we investigate how the density of the
crowding agents (ϕ) affects the static and dynamic properties
of linear biopolymer translocation from one side of mem-
brane to the other in two dimensions (2D). Moreover, we
examined the effects of ϕ on the scaling exponent of mean
square end-to-end distance (hR2i), mean square radius of
gyration (hRg

2i), and escape time (τ) with the chain length
of the polymer N . In addition, we investigated how ϕ influ-
ences the probability distribution of escape time and the dif-
fusion of the polymer.

2. Model and Methods

As we mentioned above, in the simulation method we used,
the acceptance or rejection of possible conformations of the
polymer is a stochastic process. Therefore, we will require a
method for carrying out this task. The bond fluctuation
model (BFM) is used in our simulations to complete the
objective. For coarse-grained polymer chains, it is an effec-
tive lattice Monte Carlo (MC) technique, where each mono-
mer inhabits a certain number of lattice sites exclusively on a
square lattice cell [27]. The model’s implementation is as
follows.

2.1. Bond Fluctuation Model (BFM). BFM, which was pro-
posed by Carmesin and Kremer [27], has been extensively

used to investigate the properties of a several variety of poly-
mer systems. The polymer chain is modeled as a string of
beads (monomers) placed on a lattice where there is a link
(bond) between each monomer. Each of the lattice sites
can only accept one monomer to ensure the self-avoiding
walk (SAW) restrictions. Each of the beads (monomers)
resides at the four vertex points of a square site on the lattice.
The monomers were then joined by a predetermined num-
ber of bond vectors to their nearest neighbors. The neighbor
monomers on a chain must be within a bond distance set,
which are in the range of 2 ≤ b ≤

ffiffiffiffiffi
13
p

, where b denotes
the distance between two consecutive beads. Despite the
bond lengths are allowed to fluctuate, they have to be among
the set of lengths 2,

ffiffiffi
5
p

,
ffiffiffi
8
p

, 3,
ffiffiffiffiffi
10
p

, and
ffiffiffiffiffi
13
p

. All distances
are expressed in lattice size units. The excluded volume effect
is guaranteed by the least distance 2, and the maximum
bond length,

ffiffiffiffiffi
13
p

, keeps off the bonds from crossing each
other. For a single monomer, there are four possible lattice
directions to move, one is chosen randomly with equal prob-
ability, the move is accepted if the trial move does not violate
the two restrictions (self-avoiding and excluded volume
restrictions), and the position is not occupied by an obstacle
bead. Hence, throughout the simulations, the local move-
ment of the randomly selected monomer and the attempted
displacement in the randomly chosen lattice direction are
governed by BFM.

2.2. Simulation Procedure. As we use a lattice for our simu-
lation purposes, the first thing that we do is prepare the
two dimensional L × L square lattice. Thus, we prepared a
2D simulation box of 400 × 400 square lattice cells of unit
length each with an impenetrable membrane wall in the
middle, which was wide enough for the simulation of the
polymers considered in our study. And then, we added a
pore (width = 6) at the middle of the wall, which is small
enough to let only one monomer or two monomers pass
through it. The immobile, impenetrable, and fixed size
obstacle beads are put on the square lattice with the same
area fraction of crowding agents (ϕ) on both the cis- (left)
and trans- (right) sides of the membrane. The fraction of
surface (volume) occupied by crowding agents is estimated
to be 20%-30% (0.2-0.3) of the total surface (volume) or
higher [28] .We simulate the polymer, in different values
of area fractions of the obstacles, which are ϕ ≤ 0:3 [29]
and defined as

ϕ = 4Nc /A, ð1Þ

where Nc is number of crowding agents, and A is the total
lattice points covered by the obstacles; the factor 4 is due
to the fact that each obstacles resides at 4 vertex points of
the square lattice. ϕ is a measure of the density of obstacles,
in a sense that there is the concentration of the obstacles in
the polymer solution. On the trans-side, we placed the disor-
dered obstacles, whereas the ordered obstacles are placed on
the cis-side.

To deal with the impact of self-avoidance on the passage
of polymers through a pore in the coiled state, simulations of
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dimensions greater than one (d > 1) are necessary. 2D poly-
mers are ideally fitted to this aspiration for two reasons that
excluded volume effects which are more ostensive, and
shorter computation time is required, comparing with that
of three dimensional case.

Our simulation is then as follows. To obtain the poly-
mer’s initial configuration, we insert the polymer symmetri-
cally at the center of the simulation box, as shown in
Figure 1.

The number of monomers (chain length) N is randomly
selected and the middle monomer placed in the aperture
symmetrically to overcome the entropic barrier. And the
excluded volume property is acquainted by considering that
each lattice site be allied to one square plainly. The lengths of
the links between neighbor monomers are governed by BFM
on 2D.

Starting from the initial systematic placement of the
polymer, many moves are attained until its equilibration
is reached. To attain such an equilibrated configuration,
the chain is relaxed by making many local moves and
pinching the middle monomer at the center of the pore.
The relaxation time or equilibration time is τequi ~N1+2ν,
where ν = 0:75 for 2D. This means that, τrelax = cN1+2ν, c
is a constant given in MC step time unit, as the unit of
time in this study is Monte Carlo step (MCS), defining
one MC step as N elementary moves. It is counted when
the N monomers are made a local move without violating
the self-avoiding and excluded volume restrictions. In our
simulations, each monomer has relaxed for 106MCS
(c = 106MCS). The reason why we used this much MC
steps for relaxation was to get the fully relaxed polymer.
At t = 0, the middle monomer is permitted to move freely
after the equilibration is complete. The relaxed polymer is
depicted in Figure 2.

Thus, the end of the simulation is at a time t > 0 when
the whole monomers of the polymer are on either side (cis
or trans) of the membrane as shown in Figure 3. Throughout
this study, this is referred to as the “escape time” (τ). The
procedure is repeated a large number of times (5000 runs)
for each polymer length N , and the escape time τ that
occurred at most is recorded.

In the simulations, the average square end-to-end dis-
tance and radius of gyration in square lattice constant unit
are calculated as follows. Because the polymer has different
conformations at each MC step, we calculated the square
end-to-end distance and square radius of gyration at each
MCS time interval. Finally, we took the average over the
total number of the intervals. End-to-end distance is the
distance between the two end monomers, as the name
implies. Its square at each MCS interval (R2

k) is computed
as follows:

R2
k = xkN − xk1ð Þ2 + ykN − yk1ð Þ2, ð2Þ

where k = 1, 2, 3, ..., n (number of MC step intervals),
ðx1, y1Þ, is the position of the first monomer, and ðxN ,
yNÞ is the position of the last monomer. Then, the aver-
age square end-to-end distance (R2

ave) is calculated by
dividing the total sum of square end-to-end distance of
the polymer at each interval for the total number of
intervals (n).

R2
ave =

1
n
〠
n

k=1
R2
k: ð3Þ

0

0

Figure 1: (Color online) The schematic representation of the initial systematic placement of linear polymer (N = 27, blue particles) in the
pore, in the presence of obstacles (red particles) of the same density on both sides of the membrane.
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We also calculated the average square radius of gyra-
tion as follows. First, we calculated the center of mass of
the polymer at each MCS time interval ðxcmk, ycmkÞ as

xcmk =
1
N
〠
N

i=1
xki,

ycmk =
1
N
〠
N

j=1
ykj:

ð4Þ

Hence, the radius of gyration (Rg2
k) at each MC step

interval is

Rg2
k =

1
N
〠
N

j=1
xkj − xcmk

� �2 + ykj − ycmk

� �2
: ð5Þ

Finally, the average square radius of gyration (Rg2
ave)

is calculated as

Rgð Þ2ave =
1
n
〠
n

k=1
R2
gk: ð6Þ

We repeated this procedure 5000 times (5000 runs)
and averaged the results obtained at each run over the

0

0

Figure 2: (Color online) The schematic representation of the fully relaxed linear polymer (N = 27). The middle monomer is anchored in the
pore and does not move till the entire monomer is relaxed.

0

0

Figure 3: (Color online) The schematic representation of the translocated polymer (to trans/disordered obstacles). The all monomers are in
the disordered obstacles.
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number of runs to get hR2i and hR2
gi. The results are dis-

cussed in the following section.

3. Results and Discussion

3.1. Static Properties of Linear Polymer in a
Crowded Environment

3.1.1. End-to-End Distance and Radius of Gyration. A poly-
mer’s end-to-end distance is a measure of how far it
stretches out or how long its chain is. The number of mono-
mers (N) in polymer chains affects this important static
property illustrator parameter. And a radius of gyration is
the proper quantity to describe all forms of polymers. Like
end-to-end distance, it depends on the size of polymers,
and ideal polymer models have indicated the power-law
scaling relation between the parameters, mean square radius
of gyration, and mean square end-to-end distance with chain
length N as hR2

gi ~N1/2 and hR2i ~N1/2, respectively. But in
assumption, ideal polymers does not obey excluded volume
effect constraint betweenmonomers. However, Flory and Car-
mesin [30] indicated that the exponent of the scaling relation
is ν = 3/ð2 + dÞ, which is dimension-dependent, using clear
and efficient approximation on the Rouse model of a SAW
polymer chain, where d is dimension. In the plots of the mean
square end-to-end distance (hR2i) and radius of gyration
(hR2

gi) as a fucntion of chain length N of the polymer
(Figures 4 and 5), the interdependence has been shown. In
our system, we only consider almost short chain length poly-
mers, due to large amount of computational time needed to
simulate very long polymers. The plots in Figure 4 indicate
that in the absence of obstacles (free environment), the slope
is 1:48 ± 0:01; so, the value of the slope is very close to 2ν
(ν = 0:75 in two dimensions) which is in agreement with Flory
and Carmesin’s [30] scaling exponent of end-to-end distance

with degree of polymerization, N. If there are no crowding
agents at both sides of the membrane, for unbiased transloca-
tion of the considered linear polymer chains, the scaling rela-
tion of mean square end-to-end distance as a function of N is
hR2i ~N2ν . However, as shown in Figure 4, in the presence of
obstacles, the scaling exponent changes with the concentration
of the obstacles.

And we observed that the end-to-end distance of the
polymer increases, as ϕ increases. As the concentration of
the obstacles increases, the bead obstacles close to the mono-
mers, this causes the polymers to stretch [31]. Following this,
as the polymer stretches, the entropy increases [3]. There-
fore, the impact of entropic barrier on the translocation of
the polymer increases, as density of the obstacles increases.

And also, the plots of mean square radius of gyration
versus N , depicted in Figure 5, manifest the relationship
between the two parameters. In the absence of obstacles,
the slope = 1:49 ± 0:01 for the polymer is also in agreement
with Flory’s scaling exponent hR2

gi ~N2ν. Nonetheless, the
nonmonotonic fluctuation in polymer size with obstacle
density has been reported in prior studies of polymer char-
acteristics in crowded systems [29, 32, 33].

In the presence of obstacles, as it can be seen from the
figure, for higher ϕ (ϕ > 0), the mean radius of gyration
increases, and the universal power law relation of the mean
square radius of gyration with chain length, hR2

gi ~N2ν is
violated, due to the conformations of the polymers is twisted
by the crowding agents [29]. Therefore, the scaling relation
depends on the density of the obstacles.

3.2. Dynamic Properties of Linear Polymer in a
Crowded Environment

3.2.1. Probability Distribution of Escape Time with Effect of
Obstacles. To see the effect of ϕ, we have also computed
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Figure 4: (Color online) The log-log plot of mean square end-to-
end distance as a function of linear polymer of length N , in a
crowded environment of area fraction (ϕ = 0,0:1,0:2, and 0.3).
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Figure 5: (Color online) The log-log plot of mean square radius of
gyration as a function of linear polymer of length N , in a crowded
environment of area fraction (ϕ = 0,0:1,0:2, and 0.3).
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the probability distribution ðPðτÞÞ of the escape time τ for
polymers translocating via the pore in various densities of
barriers. Figure 6 depicts the probability distribution of lin-
ear polymer of a chain length N = 37 escape time in a
crowded environment for ϕ ≤ 0:3.

As we can see from the figure, our simulations reveal
that the most probable escape time increases as the envi-
ronment becomes more crowded, i.e., the peak of the
graph shifts to the right, as ϕ increases. And also, as delin-

eated in the figure, our simulation results betrayed the his-
togram of the time is a long tailed probability distribution,
as the probability distribution function spoils for the large
escape times τ.

In addition, as there is no external force that pushes the
polymers to either of the sides, the polymers escape to the
side they prefer. From our simulations, as Figure 7 depicts,
we also found that the translocation of the polymer prefers
the disordered side (trans) line with Karplus and Andrew
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Figure 6: (Color online) The probability distribution (P ðτÞ) of escape time τ for linear polymer (N = 37) translocation in a crowded
environment of area fraction, ϕ = 0,0:1,0:2, and 0.3.
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[20] and in the absence of obstacles, the probability of escap-
ing to either of the sides is equally likely. As we mentioned in
the simulation set up, the middle monomer is put inside the
pore, and half of the polymer is on the left side, while the
other half is on the right side. Unless an external force is
applied to push it to the trans-side, the polymer will escape
to either side with equal probability. However, in the pres-
ence of obstacles, the result shows that as the density of
the crowding agent increases, the probability of transloca-
tion to trans-increases [20].

3.2.2. Effect of the Obstacles on the Relation of Escape Time
and Chain Length of the Polymer. One of the key concepts
in polymer physics is the power law relation between trans-
location time τ and polymer size N . We obtain and take the
most probable values of the escape time from the probability
distribution of the escape time of each polymer size and plot
them against the sizes N , as delineated in Figure 8.

The relationship between the escape time of small lin-
ear polymers, like those contemplated in this study, and
their chain size N is a power law. The slope of the log-
log graph constitutes the scaling exponent α. Therefore,
the power law relation is τ ~Nα. The results of our study
manifest, α = 2:49 ± 0:01, for unbiased translocation of the
polymers in the absence of obstacles. This result agrees
with the Rouse model [34] prediction, which is α = 1 + 2ν,
where ν = 0:75 in 2D. Nevertheless, the presence of obstacles
shows a difference. In the presence of obstacles, Gopinathan
and Kim [15] found that the translocation time decreases, as
ϕc increases. Inconsistent with this, Cao et al. [16] for both
unforced (Δμ = 0) and forced (Δμ > 0), they found that the
dependence of τ on ϕc is nonmonotonic. And again, Chen
and Lou [17], in the presence of driving force, they found that
the escape timeτ decreases, as ϕ increases, and they observed

that the scaling relation of τ and chain lengthN , α, is nonuni-
versal. Different from these, Karplus and Andrew [20], in
their study of the translocation of linear and ring polymers
in crowded environments without applying electric potential,
they found that the presence of obstacles does not change the
translocation time. Nevertheless, our simulation results
enabled us to find that the scaling relation varies with the
density of the crowding agents, as it can be seen from the fig-
ure. And the increment of escape time with ϕ is due to the
entropic barrier rising when the concentration of the obsta-
cles increases.

3.2.3. Diffusion of Linear Polymers with Effect of Obstacles.
The dynamic property of the polymer has also been studied
by investigating the feature of the diffusion motion of the
polymer. The time-dependent mean square displacement

(h r 2ðtÞi) set out the diffusion of the comprehensive system.
It is given by

r 
2
tð Þ

D E
= r cm tð Þ − r cm t = 0ð Þ

� �2
� �

: ð7Þ

From the Rouse model, the following relations are
expected [34]:

r 
2
tð Þ

D E
~ t,

D ~N−1:

ð8Þ

The diffusion coefficient of polymers (D) is defined as
Eq. (9), in the absence of obstacles. This implies that the
slope of the graph of the respective mean square
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Figure 8: (Color online) The log-log plots of escape time τ as a function of chain length N for different ϕ (ϕ = 0,0:1,0:2, and 0.3).

7Advances in Polymer Technology



displacements of the polymer chain sizes to the time t yields
the diffusion coefficient D.

4D = lim
t⟶∞

r 
2
tð Þ

D E
t

: ð9Þ

In the absence of obstacles, Cao et al. [16] and Ellery and

Simpson [35] found that h r 2ðtÞi ~ tβ, β = 1, means the diffu-
sion is normal diffusion, and in the presence of obstacles, the
diffusion changes to subdiffusion (β < 1). In agreement with
this, as it can be seen from Figure 9, we observed that the dif-
fusion is Fickian diffusion (normal diffusion, means β = 1)
for the absence of obstacles and subdiffusion (β < 1) for the
presence of obstacles.

The slope of the log-log plot of the mean square dis-
placement vs. time determines the value of β.

We calculated the diffusion coefficient in square lattice
constant unit per MCS time using the definition (Eq. (9))
for normal diffusion after computing the mean square dis-
placement as a function of time for each size of polymer.
The diffusion coefficient of each chain length N is calculated
from the log-log plot of mean square displacement versus
time, which is simulated in the absence of obstacles. We dis-
played the log-log plot of diffusion coefficient D as a func-
tion of N , as shown in Figure 10, to investigate the
relationship between the diffusion coefficient and the poly-
mer chain length.

In free environment, our simulations result for this rela-
tionship that can be put as a power-law scaling expression
D ~N−0:94±0:01 which is very close to the Rouse model scaling
law of the form D ~N−1 [34]. As it is depicted in the figure,
the diffusion coefficient decreases as the size of the polymer
increases.

4. Conclusion

For both static and dynamical simulations of linear polymers
in crowded environments, we used and tested a Monte Carlo
technique in our simulation investigation. To do this, we use
a bond varying length between nearby monomer molecules
in two dimensions (2D) to understand the polymer struc-
tures’ pragmatic dynamics.

In a crowded environment with the same area fraction of
crowding agents, ϕ, we explored polymer diffusion and poly-
mer translocation through a nanoscopic pore. The scaling
relations of end-to-end distance and radius of gyration of a
linear polymer with chain length N greatly depend on the
density of the barriers, ϕ, according to our numerical studies.
Furthermore, we looked at how the scaling relations of hRi2
and hRgi2 with polymer length N vary with the obstacle
density. The escape times τ of the different chain lengths
of the polymer for different ϕ are also found from our sim-
ulations. And we discovered that τ rises as ϕ rises, resulting
in a scaling relationship between τ and polymer length N ,
and α is not universal. We also found that the polymer pre-
fers the disordered side (trans) to translocate.

Data Availability

The data required to support the findings of this study are
included in the manuscript file.
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displacement as a function of time (t) for linear polymer of
length N = 37, in a crowded environment of area fraction ϕ =
0,0:1,0:2 and 0.3.
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