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Rapid and reliable optimal control of injection molding machines (IMMs) is critical for the effective production of injection-
molded goods, especially in the situation of restricted computer resources of embedded equipment in IMMs. In this paper, an
optimal tracking injection velocity control problem arising in a typical IMM is studied. An effective hybrid intelligent control
approach with less computing resources for real-time implementation based on the deep learning (DL) method to mimic the
classical model predictive control rule is developed to deal with the tracking control of the injection speed. The proposed
method utilizes the gated recurrent unit neural network to learn and predict the optimal time series control process data
produced by the traditional model predictive controller. The benefits of this approach over the conventional optimization
method are illustrated through simulation results, which show that the convergent DL-based controller can effectively avoid
the complex calculation in the control process of IMMs and meet the requirements of more robustness and resist
environmental uncertainty to a certain level and can be potentially implemented in embedded hardware much more efficiently
and conveniently with a smaller memory footprint and faster computation time.

1. Introduction

Plastic products have become an integral element of all indus-
tries and our everyday lives all over the world due to their
outstanding flexibility, good durability, low cost, and other
advantages [1]. In the field of discrete manufacturing, IMMs
are professional operating equipment used to produce plastic
components and other polymers. Nearly 70% of plastic prod-
ucts are produced by IMMs, which has become an important
field of aerospace, national defense, electronics, and photoelec-
tric communications. They provide important equipment
support for high-end manufacturing such as aerospace, power
electronics, clean energy, and chip production.

The injection molding process in IMMs is a complex
processing technology to make resin materials into plastic
products. In this process, the parameter setting of IMMs is

very important and closely related to the final product.
Any improper changes of the parameter will affect the final
quality of the product and produce various defects [1–3].
The injection molding process generally includes six stages:
mold clamping, injection, pressure holding, plasticization,
cooling, and mold opening. Injection molding is a cyclic
process that each process includes above all stages. The sim-
plified structure of a typical IMM is shown in Figure 1. Plas-
tic granules are fed into the IMM through the hopper and
melted by friction heating through a heating belt in the bar-
rel. When the molten resin is uniformly heated to the appro-
priate temperature and fills the material area in the injection
unit, the injection and filling can be started. The servo valve
causes the reciprocating screw in the injection barrel to
move swiftly, allowing the resin material to be injected via
the nozzle into the closed metal mold. The screw is then kept
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at constant pressure, and more molten resin is injected into
the mold to cover the gap left by the resin’s cooling and
shrinkage. When the resin has cooled and completely solid-
ified, the pressure held on the screw is removed. The compo-
nents are released from the mold with the push of the
demolding mechanism and fall into the collecting box once
the mold is opened. This process is not only a cyclic process
but also a complex parameter change process. For the pro-
duction process of injection-molded parts, how to achieve
precise control of system variables in each production stage
is an important prerequisite for ensuring product quality.
At different stages, there are also different requirements for
parameters of the IMM. As the high-end manufacturing
industry puts forward higher and higher requirements for
the quality of plastic products, the traditional IMM control
technology is gradually unable to meet the requirements in
terms of accuracy and efficiency, especially the traditional
PID-based control strategies, which have high requirements
on the technology of the engineers, and is not easy to resolve
problems in production as quickly as possible.

In recent years, there have been many related researches
on control technologies in the field of the injection molding
process [3–12]. For example, Tan et al. proposed an adaptive
control approach for controlling injection speed changes
throughout the injection molding process [4]. The strategy
shows better performance than the traditional PID control
strategy, which can adaptively adjust the mathematical
model to deal with parameter changes during the sudden
changes in speed. Gao et al. proposed an iterative learning
control theory-based robust IMM control approach with
flawless performance for systems with unknown initiation
and disturbances [5]. Hopmann et al. proposed an iterative
learning control system in which the reference tracking of
the cavity pressure can be improved over several cycles and
recurring disturbances can be automatically corrected to
improve component quality even further [7]. With the
development of more and more related researches, MPC-
based approaches have also been widely employed in the
injection molding process control [13–19]. Dubay used a
self-optimizing MPC strategy to control the melt tempera-
ture in injection molding [17]. Furthermore, Reiter et al.
proposed an MPC-based control method based on the

IMM physical gray box model and realized the cavity pres-
sure control of the IMM [18]. Hopmann et al. proposed an
MPC strategy based on the self-optimizing injection mold-
ing process to control the cavity pressure of the IMM and
the adaptive adjustment of process parameters [19]. MPC
is a mature technology and has become the standard
approach for implementing constrained, multivariable con-
trol in the process industries today [20]. However, there
are still some problems that limit the applications of MPC,
especially in the real-time control of complex systems. In
the actual control process, due to the complex model or
complex constraints, the calculation of MPC is sometimes
time-consuming and it is difficult to realize real-time control
or have high requirements for equipment. The MPC imple-
mentation for IMM systems with limited onboard process-
ing capability, high sampling rates, and strong dynamics is
still a difficult task [21], especially in the related embedded
devices in the IMM equipment.

With the quick growth of artificial intelligence theories
such as deep learning (DL) and machine learning (ML)
[22–33], deep neural networks (DNNs) have shown great
abilities in various fields [34–37]. In addition to computer
vision and natural language processing, DL has broad appli-
cations in the control area, particularly in the field of high
control accuracy, where some great results have emerged
through the combination of DL and control approaches
[23, 25, 30, 31, 38]. The powerful learning ability of DNNs
can often reproduce complex control processes well, simplify
the application of the control theory, and enable it to be
quickly deployed in complex models. Existing researches
show that DL has better effects on the effective representa-
tion and approximation of predictive control laws [39–41].
In this paper, we study how to combine DL with traditional
MPC to produce a high-performance predictive controller
that is simple in design and more time efficient, while pro-
viding the concept of constraint satisfaction to ensure safety.
The main purpose is to overcome the shortcomings of tradi-
tional MPC in solving efficiency and make full use of the
advantages of deep learning networks to realize the design
of a data-driven real-time optimal controller. To this end,
we propose a DL-based predictive controller which can be
applied to the optimal speed curve tracking control problem
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Figure 1: A typical simplified structure of an injection molding machine.
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in a typical IMM system. A gated recurrent unit (GRU) net-
work is designed to study the predictive control process of
the controller, so as to replace the original model predictive
controller and avoid the complex calculation and save run-
ning time brought by the traditional optimization process.
The constructed GRU-based neural network module can
play the same role as the original MPC controller by learning
a large amount of time sequence data, allowing the GRU
neural network module to follow changes in the target out-
put and perform optimal control as a result. Furthermore,
the problem of long computation time caused by repetitive
recursive calculation and rolling optimization in the original
model predictive control can be effectively avoided by using
the GRU network module, allowing for real-time optimal
control of injection molding machines with various tracking
output targets. Experimental results also show that our
designed DL-based predictive controller is able to accurately
approximate the control law with a small memory footprint,
very simple implementation, and low computational com-
plexity. In the field of injection molding, particularly in the
field of IMM control, this strategy can be quickly deployed
in the embedded controller of the IMM without high
requirements for equipment hardware performance and
has a good application prospect.

The rest of this paper is organized as follows. In Section
2, we introduce the problem description and constraints of
injection speed control of an IMM. In Section 3, we propose
a DL-based MPC for the injection molding velocity control.
In Section 4, numerical experimental results are taken to ver-
ify the feasibility of the proposed method. Finally, we con-
clude this paper in Section 5.

2. Problem Formulation

This section mainly provides a brief introduction on mathe-
matical model of ram velocity, initial state, constraints, and
cost function in IMM. We formulate the control task of
ram velocity as a dynamic optimal control problem.

2.1. Mathematical Modeling. As a complex control process,
resin temperature, cavity pressure, and ram velocity are
the key process control parameters that are closely related
to the final quality of plastic products [42]. Therefore,
many mathematical models describing the changes in
these parameters have also been proposed and one of
important research directions is the velocity control. Dur-
ing this process, the molten plastic is injected and filled
into the mold cavity at a certain speed driven by the con-
trol signal. The screw speed control is a process that
changes with time, and the injection velocity profile has
several zones, as shown in Figure 2. In different zones,
the ram speed needs to reach the corresponding value to
ensure that the parts meet the production requirements
[43]. When the speed curve is set unreasonable, it may
cause defects in the plastic parts.

Because the value of injection velocity needs to change
with the change of reference trajectory, the control accuracy
of the controller is required to be higher. In this paper, we
adopt the following fourth-order transfer function model

[44] as our control model which is given by relating the valve
opening to the injection ram velocity:

G sð Þ = p

s + s1ð Þ s + s2ð Þ s + s3ð Þ2 + s24
Â Ã , ð1Þ

where p, s1, s2, s3, and s4 are configuration parameters that
can be set according to different IMM systems. By trans-
forming the above transfer function and discretizing the
state equation with the zero-order preservation method,
the dynamic model of the studied IMM system can be repre-
sented as the following discrete-time state equations:

x k + 1ð Þ = Ax kð Þ + Bu kð Þ +Dξ kð Þ,
y kð Þ = Cx kð Þ,

ð2Þ

where A ∈ℝnx×nx , B ∈ℝnx×nu , C ∈ℝny×nx , and D ∈ℝnx×nξ are
parameter matrices of the ram speed model in the IMM. x
ðkÞ ∈ℝnx×1 is the state vector, yðkÞ ∈ℝny×1 is the IMM injec-
tion speed measured by the sensor, uðkÞ ∈ℝnu×1 is the con-
trolling variable which is proportional to the input signal
of the servo valve, ξðkÞ ∈ℝnξ×1 is an uncorrelated random
sequence representing the process noise, and k is the control
time. In this paper, ξðkÞ is a Gaussian noise sequence with
zero mean and random variance in the range of ½ϵ, σ2�. In
practice for the IMM, the future noise is difficult to predict;
thus, we take the following discrete-time model as the con-
trol object:

x k + 1ð Þ = Ax kð Þ + Bu kð Þ + Kbξ kð Þ,
y kð Þ = Cx kð Þ,

ð3Þ

where bξðkÞ is introduced to describe the model errors
along the time horizon k and K is the Kalman filter gain.

In sampling time k, we take the error bξðkÞ = yðkÞ − CxðkÞ.
As indicated in [13], if the mathematical model is stable,
the observer gain K could be regarded as D. The control
objective of the model is to calculate a control trajectory
u so that the controlled ram speed y follows the predeter-
mined trajectory yref as much as possible and minimizes
the error between them.
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Figure 2: Injection velocity profile during the injection molding.

3Advances in Polymer Technology



2.2. Initial State and Constraints. In the actual control pro-
cess, the initial state of the injection molding is generally
slightly different. Most of these differences are caused by
external disturbances or noise. To simplify the calculation,
we assume that there is no noise before the system works.
The initial states in IMM at starting time k = 0 are denoted
as follows:

S 0ð Þ = x 0ð Þ, y 0ð Þ, u 0ð Þ½ �, ð4Þ

where all the initial values of Sð0Þ are set 0. In the IMM, the
ram velocity yðkÞ and the controlling variable uðkÞ are lim-
ited by the machine. Due to the actual physical limitation,
yðkÞ and uðkÞ in equations (2) and (3) should satisfy the fol-
lowing bound constraints:

0 ≤ y kð Þ ≤ ymax,
0 ≤ u kð Þ ≤ umax,

ð5Þ

where ymax and umax are the given maximum constants of
ram velocity and control variable. During the injection
molding process, uðkÞ and yðkÞ need to meet the above con-
straints and change within this interval. Through combining
the mathematical model (3) and constraints (5), then, we
can apply the MPC method to ram speed control in IMM.

2.3. Objective Index. In this paper, our main goal is to con-
trol the ram velocity of the IMM system as quickly as possi-
ble to converge to the specified target value. In this work, we
define the following objective index as the control target:

min
u kð Þ

J = 〠
p

k=1
y kð Þ − yref kð Þð ÞTQ y kð Þ − yref kð Þð Þ + 〠

n

k=1
Δu kð ÞTRΔu kð Þ,

ð6Þ

where yref ðkÞ, yðkÞ, and ΔuðkÞ are the reference tracking
output, output of the plant, and control input increment
at the discrete time k, respectively. The control input incre-
ment satisfies ΔuðkÞ = uðkÞ − uðk − 1Þ. Q is the weight
matrix of y, and R is the weight matrix of ΔuðkÞ. The pre-
cise control of the dynamic model can finally be attained by
minimizing the value of the loss function (8), and the ram
velocity yðkÞ can also quickly converges to the stated target
velocity yref ðkÞ.

3. Deep Learning-Based Predictive Control

In this section, we will introduce our proposed control strat-
egy in three parts: model predictive control, dataset construc-
tion, and deep learning architecture design and optimization.
First, we will introduce how to use MPC to solve the speed
control problem. Second, we will introduce our design idea
of the DL network and optimization strategies. Finally, we
will introduce how to build an MPC-based dataset and con-
nect the above two parts to form a closed loop.

3.1. Model Predictive Control. MPC is a dynamic optimiza-
tion approach for determining the optimal control input
and output trajectory. The optimality of the prediction vec-
tor can be achieved by solving optimization problems in
the prediction and control time domains in a cyclical man-
ner. The QP problem is a popular standard type in the
MPC. In Figure 3, we illustrate the schematic of the control
process in the IMM based on the MPC strategy. By inputting
a given reference value yref to the MPC controller, the con-
troller optimally calculates the optimal control value uðkÞ
at the next moment in combination with the current state
variables. The key idea of linear MPC is to predict the trajec-
tory of parameters in prediction horizon through the combi-
nation of the current state vector and the mathematical
model. Based on MPC, the dynamic model (3) can be refor-
mulated as follows:

k + 1ð Þ = Ax kð Þ + Bu kð Þ + Kbξ kð Þ,
x k + 2ð Þ = A2x kð Þ + ABu kð Þ + Bu k + 1ð Þ

+ AKbξ kð Þ + Kbξ k + 1ð Þ,
⋮

x k + pð Þ = Apx kð Þ + Ap−1Bu kð Þ
+ Ap−2Bu k + 1ð Þ+⋯+Bu k + p − 1ð Þ
+ Ap−1Kbξ kð Þ + Ap−2Kbξ k + 1ð Þ
+⋯+Kbξ k + p − 1ð Þ,

ð7Þ

where p denotes the prediction horizon and n denotes the
control horizon.

Combining all the above formulas, we can get the follow-
ing optimal control problem with constraints for the ram
velocity control in IMMs as follows:

Optimization

Predictive

MPC x

y
u

yref

Figure 3: Schematic of the control process in IMM based on MPC.
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min
u kð Þ

J = 〠
p

k=1
y kð Þ − yref kð Þð ÞTQ y kð Þ − yref kð Þð Þ + 〠

n

k=1
Δu kð ÞTRΔu kð Þ,

s:t: x k + 1ð Þ = Ax kð Þ + Bu kð Þ + Kbξ kð Þ,
y kð Þ = Cx kð Þ,

Δu kð Þ = u kð Þ − u k − 1ð Þ,
0 ≤ y kð Þ ≤ ymax,

0 ≤ u kð Þ ≤ umax,

k = 1,⋯, n:
ð8Þ

The MPC-based control sequence ðuðkÞ,⋯, uðk + n − 1ÞÞ
over the predict horizon can be solved by solving the QP prob-
lem of the above optimization problem.

Although MPC has many advantages compared to tradi-
tional control methods, such as higher control accuracy, fas-
ter response speed, and better control effects, which are based
on a large number of optimized calculations, as the industrial
control process becomes more and more complex, the com-
plexity of the model used in MPC is also getting higher and
higher, which undoubtedly increases the computational bur-
den of the control process. This problem is particularly obvi-
ous in low computing performance devices such as
embedded devices. A large number of matrix operations
and memory usage in the MPC calculation process are unaf-
fordable for the embedded devices widely used in the indus-
try, so real-time control is hard to guarantee. This difficulty
can be efficiently overcome with the advancement of deep
learning. The DL-based MPC controller can greatly reduce
the consumption of computing resources while achieving

the MPC control function and realize the real-time control
while ensuring the control accuracy and robustness. To
address this problem in the injection molding prediction
control process, we propose a DL-based MPC method to
realize the real-time rapid control of the ram velocity.

3.2. Deep Learning. DL is a subset of a broader class of
machine learning techniques that can be used to efficiently
represent highly varying functions and help to extract abstract
nonlinear features from data. It has gained popularity in recent
years because of its success in resolving difficult problems that
were previously unsolvable in the field of artificial intelligence
[34, 36, 45, 46]. Many impressive applications have used DL
architectures such as convolutional neural networks, deep
belief networks, and deep reinforcement learning for super-
vised as well as unsupervised learning. Using the capabilities
of the DL multilayer deep architecture, large labeled datasets
can be learned and evaluated. DNNs with numerous layers
of nonlinear hidden units and a big output layer can now be
taught more successfully owing to advances in machine learn-
ing techniques and computer technology.

In this paper, we combine the DL technique with the tra-
ditional MPC to produce high-performance predictive con-
trollers that are simple in design and time efficient, while
providing the concept of constraint satisfaction to ensure
safety. We construct a GRU neural network to learn the
optimal time series control process data produced by the tra-
ditional model predictive controller and replace the original
model predictive controller, avoiding the complex calcula-
tions associated with the traditional optimization process
and shortening the optimization solution calculation time.
The real-time online control of an injection molding
machine is thus achieved, based on assuring stability, robust-
ness, and real time.

Control
signal Controller Servo

motor
Injection

unit
Injection
velocity Reference

Measurement

yref

yref

Estimator

Implementation process

3. Data acquisition

1. IMM model selection 2. Closed-loop MPC design

4. DL-based MPC training

ot+1

st+1
V

U
W W

xt+1

5. Application & verification

DL-MPC

Input
u

u
y

x

X

Ouput
y

Encoder

Decoder

Attention

ot

st
V

U
W

xt

ot–1

st–1
V

U

W

xt–1

min

s.t.

1
2

Figure 4: The flowchart of DL-based real-time MPC for IMM.
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3.3. Deep Learning-Based Architecture Design and
Optimization. In this section, we now propose a DL-based
architecture design framework and investigate the impact
of various network configurations in detail. The overall flow-
chart of our proposed DL-based MPC control strategy for
the IMM is shown in Figure 4, which mainly consists of
two parts: offline controller design and training, online con-
troller verification, and application. The former is mainly
composed of four parts. We first select the control model,
design the MPC controller for the mathematical model,
and realize the closed-loop MPC control process simulation
according to the MPC control theory. In the process of sim-
ulation, the state vector of the control process is collected
and an offline dataset is formed, which is used for the subse-
quent training and tuning of the controller. The latter is to
apply the trained controller to the model to verify and ana-
lyze its performance. Compared with the MPC controller,
the DL-based controller is simpler in structure. The predic-
tion results can be obtained through the forward calculation
of the network during the control process, avoiding tedious
optimization calculations.

In the framework of DL-based MPC strategy, the most
important to-be-designed part is the DL neural network to
learn the controller. To this end, we construct a GRU-
based neural network to learn the optimal time series control
process data produced by the traditional model predictive
controller. The DL-based architecture design is mainly com-
posed of the GRU module, sequence-to-sequence (Seq2Seq)
module, and attention module, as shown in Figure 5. The
module consists of encoder and decoder parts, which are
responsible for data acquisition and predicted output,
respectively. As indicated in [47–49], the Seq2Seq architec-
ture learns to encode variable-length sequences into fixed-
length vector representations and to decode fixed-length
vector representations back into variable-length sequences.
In deep learning, especially in natural language processing,
Seq2Seq networks are often used to solve tasks such as

machine translation. In addition, the structure of Seq2Seq
performs well in solving problems such as time series predic-
tion [45] and sequence trajectory prediction [50]. This struc-
ture allows us to predict the next changes in the model by
combining data from multiple past sampling times.

The encoder-decoder learning structure is composed of
the GRU which is a popular scheme for learning dependency
features of series data. The GRU is an LSTM variant with
gating units that control information flow inside the unit
but no discrete memory cells. For the learning of time series
datasets with a huge amount of data, time series neural net-
works such as RNN and LSTM often have excellent perfor-
mance [51, 52]. In comparison to LSTM, the GRU involves
less calculation, making it easier for the controller to accom-
plish real-time control. he GRU consists of an update gate zk
and a reset gate rk:

hk = 1 − zkð Þ ⊙ hk−1 + zk ⊙ ~hk,

~hk = tan h Whxk +Uh rk ⊙ hk−1ð Þð Þ,
zk = σ Wzxk +Uzhk−1ð Þ,
rk = σ Wrxk +Urhk−1ð Þ,

ð9Þ

where hk is the activation of the GRU unit at time k, ~hk is the
candidate activation, e is an element-wise multiplication,
and σ is a logistic sigmoid function. Wh, Uh, Wz , Uz , Wr ,
and Ur are the GRU parameters which are all updated at
each training step and stored. To compute the current out-
put yk and the next activation hk, the GRU unit uses the pre-
vious activation hk−1 and the current state xk. To avoid
vanishing gradients, the update gate zk determines how fre-
quently the unit changes its activation or content. The reset
gate rk forces the unit to read the first symbol in an input
sequence, thus erasing the previously computed state.
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Figure 7: Raw and min-max data for network training.
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In our experiments, the total number of the network
inputs is set as 56, including the vector S = ½x, y, yref , u�T of
the past 6 sampling time, start, and end flags. The output
of the GRU network is the predictive control calculation
result, which relates to the control input of the next step.
To enhance the performance of the network, the attention
module is added to the Seq2Seq model. The module can help
the network pay more attention to important information in
the network input, thereby improving the network’s predic-
tion accuracy. The mathematical formula of attention mech-
anism can be formulated as

Attention Y ,Hð Þ = softmax WV tan h WK St−1,Hð Þð Þð , ð10Þ

where Y and H are the predicted output and hidden state of
the encoder, respectively. WK and WV are weight matrices
which can be viewed as multiple single-layer neural
networks.

The mean square error (MSE) is chosen as the GRU neu-
ral network’s loss function, and its mathematical formula-
tion is as follows:

Loss û, urefð Þ = 1
n
〠
n

i=1
ûi − uref i
À Á2, ð11Þ

where n indicates the batch size in each training epoch, û is
the predictive control of the network, and uref is the true
optimal control according to the IMM control input which
is obtain by MPC. The depth of the network structure is pro-
portional to the network’s training pace. Although a deeper
network structure can produce higher convergence results,
the time required for training and forward computation
increases proportionally and the shallow network performs
worse. The architecture of the encoder is 6 hidden layers

and that of decoder is 3 hidden layers. The decoder is
followed by a single-layer neural network which outputs
the prediction results.

3.4. Construction of Datasets. After designing the learning
neural network, we need to consider how to build an effi-
cient dataset to train and test our designed DL-based control
network. In DL, the training of neural networks mainly relies
on large amounts of data. Before designing the DL network
and training the controller, we first need to collect data
and cover the whole process of ram velocity and all the
dynamics should be taken into account. There is a potential
correlation between data and data at different sampling
times during the injection molding process. In practice, the
data that we obtain through the collector is time series data,
which contains the mathematical relationship between dif-
ferent parameters. By evaluating the gathered data and
determining the internal relationship between the input
and output changes over time, we can develop a model to
learn and predict the future value of the time series.

In order to efficiently train the designed DL-based MPC
controller, we get the data from 360 distinct runs, each of
which lasts 1 second and includes 200 steps, resulting in
72000 data pairs. All the runs are under the same initial con-
ditions but different in reference output yref ðkÞ and Gaussian
noise ξðkÞ. Each data pair includes state vector xðkÞ, output
vector yðkÞ, reference output vector yref ðkÞ, and the predict
control input vector uðk + 1Þ in the sampling time k. The
hybrid approach should be able to train the planned network
to follow the control rule generated by MPC and attain the
required final predictive value, as we hope. The recursive
online calculation method is no longer required once we
have trained a sufficient number of the GRU for various
guiding tasks, with the optimization phase being replaced
by a GRU-trained controller.
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Figure 8: Effect of different activation functions on the network.
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Furthermore, in order to enable the trained network to
converge to a stable value faster and avoid the bad local opti-
mal solution during the training process, we carry out a min-
max normalization (12) technique for the collected data as
follows:

Xmin−max =
X − Xmin

Xmax − Xmin
: ð12Þ

The min-max normalization can compress the dimension
of the raw data to between 0 and 1, thereby enhancing the
identifiability of the data and improving the prediction accu-
racy of the network. It can be seen in Figure 6 that the distri-
bution of various unprocessed data is different, and the
range of data size is not concentrated, so that the training pro-
cess network will be more inclined to fit parameters with larger
values. The data preprocessing method provided by min-max
normalization can solve this problem well. Figure 7 shows the
results of network training using raw and min-max data. The
experimental results show that this method can make the net-
work converge to stability more quickly.

4. Numerical Experiments

The simulation and experimental findings are reported in
this part to validate the efficacy of our suggested DL-based
control approach. The simulations are run using MATLAB/
PyTorch systems, which are powered by an Intel Core i7-
8700 processor and 16GB of RAM. We use 90% of the col-
lected dataset for training and the remaining 10% as the val-
idation set. In our experiments, the encoder and decoder are
composed of 6 GRU units and 3 GRU units, respectively, and
the hidden state of seq2seq is 5 dimensions. The learning rate
and batch size are 0:001 and 64, respectively. The Adam algo-
rithm is used for the neural network optimization, while the
ReLU function is used as the activation function. In Figure 8,
we show the effect of ReLU, Sigmoid, and tanh functions in
the network structure. The results show that the ReLU-

based network can converge faster than other commonly
used activation functions. Figure 9 shows the training and
evaluation errors for the network in 100 epochs, and the
errors between them are very small that no overfitting occurs.
The network parameters with the lowest MSE during train-
ing and verification will be preserved as the best once each
round of training is finished and compared to the prior
results. Table 1 shows the best results of the training after
100 epochs. The training and verification MSE of the final
trained network are basically the same and less than 10−3.

In our experimental simulations, we acquire the simula-
tion running process of different approaches under the same
conditions by utilizing different controllers to control the
IMM model. In order to further compare the performance
of different controllers, we also designed the injection mold-
ing simulations based on the widely adopted PID controller.
Figure 8 shows the results for 200 steps using an MPC con-
troller, the proposed DL-based controller, and PID control-
ler. As shown in Figure 10, Figure 10(a) is the trajectory of
model prediction input u calculated by MPC, DL-based con-
troller, and PID controller and Figure 10(b) is the trajectory
of noise ξ, reference yref , and plant output y corresponding
different controllers of u. When the noise ξ is 0, the DL-
based controller perfectly reproduces the control process of
the MPC controller and PID-based controller. For further
comparison, we also generate two sets of running results
Figures 10(c)–10(f) under different noise conditions, which
have the same conditions but different in noises which vari-
ances Z = ð0:1,0:5Þ. The results show that the proposed DL-
based controller can achieve more comparable performance
than the MPC and PID controllers at each sample time. The

Table 1: Training statistics.

Scenario Amount of data MSE

Training 64800 4:19 × 10−6

Validation 7200 5:88 × 10−6
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Figure 9: Training and validation loss in 100 epochs.
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Figure 10: Continued.
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ram speed y curves under the network and MPC techniques
are nearly identical, implying that when the reference yref
changes, the GRU network makes the best decision. Even
in the comparison with the PID method, the deep learning
method still shows the same or better performance than
PID. Moreover, the proposed method does not need to
adjust the control parameters. Even in the presence of exter-
nal interference, the DL-based MPC controller can still track
the reference well and the effect is basically the same as that
of the MPC controller. However, limited by the MPC strat-
egy that we used, when the reference ram velocity reaches
the maximum value with noise, the control curve will fluctu-
ate greatly in order to make the controlled speed change
within the constrained range as much as possible.

Figure 11 shows the control process of ram velocity in
noiseless and noisy conditions under the constraints. When
y is close to the boundary constraint, the network is prone
to receive noise interference and frequent fluctuations. Lim-
ited by the training data of the model, the training of the net-
work may have the problem of overfitting. We have also
taken some measures to address this problem. The first is to
expand the coverage of training data to ensure that it can
cover most IMM changes. Secondly, one of the important
reasons for overfitting is often the high complexity and depth
of the model. Compressing the size of the model and reduc-
ing the complexity of the network can generally alleviate this
problem. Finally, we can reduce the training times of the net-
work and select the best model weight in 100 iterations.

Table 2 illustrates the average tracking error of the two
controllers over the course of 30 simulation runs, demon-
strating that they have almost identical control capabilities
under identical initial conditions and random disturbances.

We take the curve of the MPC controller control output as
a reference and calculate the average tracking error between
the curve under the designed controller and the reference. A
very small error is obtained for the proposed DL-based
MPC. The computation time for each iteration is consider-
ably decreased from 4.677ms to 1.691ms, and the MSE loss
is near zero, as shown in Table 2. This finding demonstrates
that the DL-based MPC controller has predictive control
capabilities comparable to the MPC controller. The current
system state predicts the optimal value of the control input
at the next moment. The errors mainly appear in the zones
that the ram velocity changes. It can be concluded that the
controller that we designed basically has the same control
performance and robustness as the MPC controller and it
consumes less time. In addition, we also made a comparative
experiment on the network that contains the attention
mechanism and the network that does not contain this
mechanism. Under the same conditions, the training MSE
of the GRU network without an attention mechanism is
0.000388 and the run time is 1.02ms. Obviously, compared
to the increase in time consumption, the attention mecha-
nism greatly improves the prediction accuracy of the net-
work. The mechanism not only greatly improves the
performance of deep neural networks for text or images
but is also effective for data-driven control tasks. The key
advantage of this DL-based method over the typical MPC-
based IMM control method is that it is very simple to con-
struct and calculate, with the highest time consumption
coming from the forwarding calculation of the designed net-
work. This unquestionably reduces the control process’s
computation time and lowers the MPC method’s equipment
threshold.
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Figure 10: The control process of different controllers under the same conditions. (a–f) The predictive input u and plant output y under the
control of MPC, designed network, and PID from 0 to 1 s. (a, c, and e) The trajectories of u, and (b, d, and f) the trajectories of the reference
output yref , noise ξ, and plant output y.
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5. Conclusions

This paper proposes an effective control strategy with min-
imal computational efforts for real-time implementation
based on the DL technique to approximate the classic
MPC strategy to deal with the optimal tracking control of
the injection speed in a typical IMM. The system operating

data obtained by the classic MPC strategy of the injection
speed for the IMM are collected and then used to train
the designed network. The trained learning-based controller
can output corresponding predictive control results accord-
ing to the real-time sampled states of the IMM system.
Numerical simulation results show that the proposed
method is feasible and requires less computational time
than the traditional predictive control method. While
ensuring the accuracy of predictive control, this method
can complete the complex control task of the IMM system
well and output the predictive control results quickly, which
meets the real-time requirement. With a considerably lower
memory footprint and faster calculation time, it can be also
implemented in embedded hardware much more efficiently
and simply.
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Figure 11: Constrained control process. (a, b) The trajectories of control u and output y when the reference yref touches the constraint
boundary without noise, while (c, d) are the corresponding trajectories under the noise ξ.

Table 2: Average tracking error and run time results of proposed
DL-MPC and MPC.

Controller Tracking error Run time (ms)

MPC 0 4.677

DL-based MPC 0.006 1.691
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In the following work, we will continue to study the DL-
based predictive control methods and further improve the
experimental methods in this paper, such as considering
the impact of the dataset size on the network learning effi-
ciency, comparing the effects of different activation functions
and standardized methods, etc. In addition, the proposed
method will be applied to more complex injection molding
systems combined with such as network compression, net-
work pruning, and other methods, to achieve more efficient
real-time predictive control. Note that although the method
proposed in this paper mainly focuses on numerical simula-
tion and realization, it is a first and a pretty preliminary
attempt at the intelligent control of the injection molding
process manufacturing area. In addition, the numerical
method and experiment presented in this paper also have a
positive role in guiding the subsequent practical experiments.
We are also now building a real experimental platform and
are trying to implement the proposed strategy for lab-on-
chip, and the experimental work is still in progress.
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