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Graft modifications of PVDF fluoropolymers have been identified as the efficient route to improve the properties and expand the
applications. Taking advantage of C-F and C-Cl bonds in the repeat units, atom transfer radical polymerizations (ATRP) were
widely used for graft modification. Recently, photoinduced ATRP has shown good spatial and temporal control over the
polymerization process in contrast to thermal activation mode. This minireview highlights the progress in PVDF-based
fluoropolymer modifications by using photoinduced Cu(II)-mediated ATRP and organocatalyzed ATRP. The challenges and
opportunities are proposed with the aim at advancing the development of synthesis and applications of fluoropolymer.

1. Introduction

Poly(vinylidene fluoride) (PVDF) and PVDF-based fluoro-
polymers exhibit unique chemical and physical properties,
which are widely used as membrane and dielectric materials
[1–3]. In order to further enhance their performances and
expand the applications, functionalization of PVDF-based
fluoropolymers has been paid much attention from both
academia and industry, such as copolymerization with func-
tional monomers and graft modification via reversible-
deactivation radical polymerization (RDRP) [4]. Among
them, in the benefit of C-F and C-Cl bond in the repeat
units, atom transfer radical polymerization (ATRP) has been
utilized to introduce different side chains into the PVDF-
based fluoropolymer to improve the solubility, compatibility,
and functionality [5].

Since the discovery in 1995, ATRP has been developed as
one of the most powerful RDRP strategies for the prepara-
tion of well-defined macromolecules [6, 7]. Significant
advances in catalysis system have been achieved for ATRP

[8]. The initial catalyst for ATRP is Cu(I) but the concentra-
tion is high (½Initiator�: ½CuðIÞ� = 1 : 1) in order to compen-
sate for unavoidable radical termination reactions [9].
Subsequent efforts were made to develop improved ATRP
systems to decrease the catalyst loading and increase the
control level, such as activators regenerated by electron
transfer (ARGET) ATRP [10], initiators for continuous acti-
vator regeneration (ICAR) ATRP [11], electrochemically-
mediated ATRP (eATRP) [12], and single-electron transfer
radical polymerization (SET-LRP) (also termed as supplemen-
tal activator and reducing agent (SARA) ATRP) [13, 14].

The switch from thermal mode into photoactivation rep-
resents a big step forward in polymer chemistry [15]. Under
the exposure of the light, Cu(II), iridium, and ruthenium
complexes are served as the photocatalyst for ATRP to acti-
vate the initiator to generate the radicals [16, 17]. Low metal
catalyst loading and good temporal and spatial control bring
about vast opportunities in polymer synthesis. The emerging
organocatalyzed ATRP (O-ATRP) achieves metal-free poly-
mer products, which attracts growing interest and shows
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significant applications in fabrication biomedical and elec-
tronic materials [18–20].

The original graft modification of PVDF-based fluoro-
polymer was reported via thermal-activated ATRP [5].
Cu(I)- and Cu(0)-promoted graft ATRP was presented in
the batch reactor and continuous flow microreactor
[21–24]. Later, photoinduced ATRP was applied in PVDF-
based fluoropolymer modification. This minireview briefly
summarizes thermal-activated ATRP modification and then
highlights recent progress in photoinduced ATRP graft from

PVDF-based fluoropolymers. We hope that it would provide
guidance for fluoropolymer synthesis and application.

2. Modification via Thermal-Activated ATRP

At the elevated temperatures, Cu(I)/ligand-mediated ATRP
was initially employed to synthesize poly(vinylidene fluo-
ride-co-chlorotrifluoroethylene) (P(VDF-co-CTFE)) graft
copolymers [5, 25–28]. Although the dielectric properties
of the resultant copolymers were improved, unexpected
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Figure 1: Mechanism of photoinduced Cu(II)-mediated ATRP [36].
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Figure 2: (a) Graft modification of P(VDF-co-CTFE) via photoinduced Cu(II)-mediated ATRP; (b) semilogarithmic kinetic plots for
photoinduced Cu(II)-mediated RDRP of MMA (½Cl�: ½Cu�: ½L�: ½M� = 1 : ð1/32Þ: ð6/32Þ: 30, UV (λmax = 365 nm)); (c) graft contents vs.
reaction time dependence for photoinduced Cu(II)-mediated RDRP of MMA under “on-off” UV sequence (½Cl� : ½Cu� : ½L� : ½M� = 1 : ð1/32Þ :
ð6/32Þ : 30, UV (λmax = 365 nm)) [38].
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Table 1: Results of P(VDF-co-CTFE) initiated photoinduced Cu(II)-mediated RDRP [38].

Run M [Cl]:[Cu]:[L]:[M] Time (h) Conversion (%)a Graft contentb Graft lengthc Mn,NMR (g/mol)d

1 MMA 1:(1/32):(2/32):30 6 14.8 22.8 3.8 8880

2 MMA 1:(1/32):(4/32):30 6 17.6 27.5 4.6 9350

3 MMA 1:(1/32):(6/32):30 6 39.9 65.5 10.9 13150

4 MMA 1:(1/32):(8/32):30 6 31.2 50.9 8.5 11690

5 MMA 1:(1/64):(6/64):30 6 31.9 52.5 8.8 11850

6 MMA 1:(1/128):(6/128):30 6 27.9 46.3 7.7 11230

7 MMA 1:(1/256):(6/256):30 6 25.8 41.2 6.9 10720

8 MMA 1:(1/512):(6/512):30 6 25.4 42.2 7.0 10820

9 MMA 1:(1/1024):(6/1024):30 6 25.1 41.2 6.9 10720

10 MMA 1:(1/32):(6/32):30 12 64.4 87.2 14.5 15320

11 MMA 1:(1/32):(6/32):50 12 54.6 121.4 20.2 18740

12 MMA 1:(1/32):(6/32):80 12 46.9 173.6 28.9 23960

13 MMA 1:(1/32):(6/32):100 12 45.8 201.4 33.6 26740

14 MA 1:(1/32):(6/32):30 6 19.8 31.6 5.3 9760
aConversion was calculated by 1H NMR, bgraft content was calculated by 1H NMR after extraction, cgraft length equaled graft content divided by 6, dMn,NMR
was calculated by combination of graft content, molecular weight of monomer, and P(VDF-co-CTFE) (½VDF�: ½CTFE� = 94 : 6).
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Figure 3: (a) Graft modification of P(VDF) via photoinduced Cu(II)-mediated ATRP; (b) comparison between PVDF pristine membrane
and PVDF-g-THFMA copolymer membrane [40].
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chain transfer reactions and dehydrochlorination side reac-
tions occurred, which was attributed to the large copper
loading (equivalent to C-Cl initiator) and high reaction tem-
perature. Alternatively, Cu(0) as catalyst enabled lower cop-
per concentration and mild reaction conditions [29–32]. By
using Cu(0) catalysis system (1/4 equivalent Cu(0) to initia-
tor), colorless P(VDF-co-CTFE) graft copolymers were pre-
pared [21–23]. Moreover, copper tubular reactor provided
additional benefits for graft modification, such as faster poly-
merization, suppressed “hot spot” effects, and decreased
ligand feeding [24].

3. Modification via Photoinduced Cu(II)-
Mediated ATRP

Photoinduced ATRP was pioneeringly investigated by Yagci
[33], Hawker [34], Matyjaszewski [35], and Haddleton [36].
Cu(II) together with tertiary amine showed excellent control
of acrylate polymerization under 365 nm UV irradiation.

The polymerization mechanism of Cu(II)-mediated RDRP
was proposed in Figure 1 [36]. By using Cu(II)-mediated
ATRP, heterofunctional polyacrylates, water soluble poly-
mers, and block copolymers were prepared with high effi-
ciency and good control [37].

Hu et al. explored photoinduced Cu(II)-mediated ATRP
of MMA in the presence of P(VDF-co-CTFE) as the macro-
initiator (Figure 2(a)) [38]. In contrast to the traditional
ATRP process by using Cu(I) as the catalyst (equal equivalent
Cu(I) to Cl atom), the catalyst loading of Cu(II) was decreased
into 1/128 equivalent with good performance for P(VDF-co-
CTFE)-initiated MMA polymerization. The Cu(II) concentra-
tion could be as low as 1/1024 equivalent (Table 1). Another
benefit by using photoinduced Cu(II)-mediated RDRP was
that graft content of PMMAwas much higher than traditional
ATRP or SET-LRP. Under optimal reaction conditions, 121.4-
201.4mol% was achieved (Table 1), which was the largest
value for graft modification of P(VDF-co-CTFE). Kinetics
study confirmed the linear dependence of -ln(1-conversion)
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on time, which indicated that polymerization rate is to be the
first order in monomer concentration (Figure 2(b)). Com-
pared to the thermal-activated mode, photochemistry allowed
for temporal control of polymerization process. By turning the
light “on” and “off,” graft polymerization went and stopped,
which showed good light responsive nature (Figure 2(c)).
Through this efficient graft medication strategy, P(VDF-
co-CTFE)-g-PMMA, P(VDF-co-CTFE)-g-PMA, P(VDF-co-
CTFE)-g-PAN, and P(VDF-co-CTFE)-g-(PMMA-b-PMA)
were prepared [39].

C-F bond was also effective to initiate polymerization.
Lei et al. investigated photoinduced Cu(II)-mediated RDRP
of tetrahydrofurfuryl methacrylate (THFMA) by using
PVDF as the macroinitiator (Figure 3(a)) [40]. By incorpo-
rating relatively more hydrophilic segments of PTHFMA
compared with PVDF, the grafted modified membranes
showed good antifouling property and filtration perfor-
mance (Figure 3(b)). A pure water flux of 293.9 L/m2/h/bar
and a molecular weight cutoff of 39.5Kda were achieved.
After filtration and washing by deionized water, the PVDF-

g-PTHFMA membrane exhibited a recovery ratio of the
pure water flux of 89.1%.

4. Modification via Photoinduced O-ATRP

Photoinduced Cu(II)-, Ir-, and Ru-mediated ATRP inspired
the use of organic photoredox catalyst. In 2014, the first
example of organocatalyzed metal-free ATRP (O-ATRP)
was reported by Fors and Hawker (N-phenylphenothiazine
(PTH)) [41] and Miyake and Theriot (Perylene) [42],
respectively. Until now, a series of organocatalysts via oxida-
tive quenching (Figure 4(a)) or reductive quenching path
(Figure 4(b)), varied vinyl monomers (Figure 4(c)), and
related applications (Figure 4(d)) have been investigated
and nicely reviewed [18].

Hu et al. employed PTH as a model organocatalyst to
conduct O-ATRP modification of poly(vinylidene fluoride-
co-chlorotrifluoroethylene) (P(VDF-co-CTFE)) [43]. Both
1H NMR and 19F NMR demonstrated that less active C-Cl
bond in P(VDF-co-CTFE) acted as the initiator for O-ATRP
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of methyl methacrylate (MMA) under 6h 365nm UV irradi-
ation. The advantage of temporal control for photochemistry
enabled graft modification “on” and “off” by switching the
UV irradiation. The graft contents of PMMAwere varied from
4.69mol% to 37.67mol% through regulating the reaction con-
ditions. A series of P(VDF-co-CTFE)-g-PMA, P(VDF-co-
CTFE)-g-PBA, and P(VDF-co-CTFE)-g-PMMA-g-PMA were
obtained by expanding the monomer scope and performing
chain extension experiment (Figure 5).

Hu et al. developed p-anisaldehyde as the photoredox
catalyst for photoinduced O-ATRP in the presence of
P(VDF-co-CTFE) as the macroinitiator (Figure 6) [44].
The catalyst loading was one-fifth lower than PTH
(0.025 eq vs. 0.125) for MMA graft polymerization. Besides
PMMA, 5.09-12.69mol% poly(glycidyl methacrylate)
(PGMA) was incorporated into the fluoropolymers under
8 h UV irradiation. Thermal property study showed that
the crystallinity and the crystal domain size were reduced
by attaching the graft chains into fluoropolymer backbone.
The functional epoxy groups in GMA provided opportuni-
ties for postmodification. In the benefit of using organocata-
lyst, metal catalyst contamination was avoided in the
resultant fluoropolymers. It was demonstrated that metal-
free P(VDF-co-CTFE)-g-PMMA exhibited reduced dielec-
tric loss at low frequency and high temperature, decreased
conduction loss, and enhanced breakdown strength [45].

O-ATRP was also used for hydrogenation of P(VDF-co-
CTFE) to prepare P(VDF-co-TrFE) and P(VDF-co-TrFE-co-
CTFE) [46]. The C-Cl bonds in P(VDF-co-CTFE) were
activated by PTH under the exposure of UV. In the absence
of monomer, the generated macroradicals transferred into
either polar solvent or other reagents. As a result, CTFE units
were partly or all converted into TrFE. This organocatalyzed
atom transfer radical chain transfer reaction provided an alter-
native modification strategy for fluoropolymers.

5. Conclusion

Graft modifications of PVDF-based fluoropolymers have
achieved great progress with improved properties and
expanded applications. To the best of our knowledge, 7
papers have been published in this related field [38–40,
43–46]. Photoinduced ATRP showed remarkable priorities

in contrast to thermal-activated ATRP (Cu(I) and Cu(0)),
including but not limited to (1) spatial and temporal control
over polymerization process, (2) lower catalyst loading, (3)
higher graft contents, and (4) metal-free grafted polymers
(O-ATRP). The current results indicated that the catalyst
concentration and control level should be improved further
for O-ATRP graft modification of PVDF-based fluoropoly-
mers. Recently, a series of powerful organocatalysts have
been presented with 1-10 ppm catalyst loading and high
activity toward more monomer polymerization [47, 48],
which will be a good candidate to be applied to graft modi-
fication. C-F bond-initiated polymerization should be deeply
investigated, and the fluoropolymers should be expanded
from PVDF and P(VDF-co-CTFE) to more fluorinated poly-
mers. We believe that high-performance fluoropolymers will
be prepared by using photoinduced ATRP and applied in
many interesting fields in the future.
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