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Appendix A Thermogravimetric analysis of PVC composition 

 

Figure S1: Thermogram of the PVC composition under investigation 
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Annexure B: Determination of the approximate value of model parameters 

Model parameters from creep data  

Figure S2: Determination of the model parameters for creep and recovery 

The creep curve is idealized in Figure S2 for t< tf. It is assumed that the viscoelastic 

deformation of the components I & II in Figure 2 is fully developed for the creep time t=tf, but 

that of the third component is still at the beginning of development. This is equivalent to assume 

that tf/1, tf/2 and tf/3<<1. 

Under these conditions, the deformation components in the creep process (see Equations (12, 

13)) are as follows: 
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The creep curve is extrapolated to the ordinate axis (t0) at point C, and an asymptotic is 

drawn on the creep curve, which intersects the ordinate axis at point B. Referring to Figure S2, 

the approximate value of E1 and E2 are estimated from the Eqs (S1) & (S2) respectively. The 

value of 3 is determined from the slope of the asymptote (Eq. (S3)).  

The value of E3 or 3 has not been determined from the creep curve. Its approximate value 

could be determined from recovery data. 

Rewriting the Eq. (12) with approximation in Eqs. (S1-S3) and then linearizing one obtains: 
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The Y vs. t plot gives 2 (and subsequently2).  
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In expanded view (in the inset of Figure 3), we see that near t0+, there is no instantaneous 

strain, rather a gradual increase in strain is quite evident (compare the compressed and the 

expanded view of the initial recovery in Figure 3 in the main text). The value of 1 is determined 

from this section of the curve as follows: 
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Where 1 is the strain developed in the first component of the model in Figure 2. The 

exponential part of Eq. (S5) is expanded in series, and neglecting the second and the higher-

order terms, the Eq. (S5) is reduced to  
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This is equivalent to assume that t and 1 are in the same order of magnitude. 

The creep data near t0 fitted to Eq.(S6) will give 1. Thus, the approximate values of E1, 1, 

E2, 2, and 3 are determined, but E3 is not determined yet.  

 

Model parameters from recovery data  

The recovery curve is idealized in Figure S2 for t> tf, and it is assumed that the parameter 

values in the recovery process are the same as those in the creep process. A new strain-axis is 

drawn at t= tf.  Then (1, f +2, f) is intercepted from f from the top dropping to the point D, as 

shown in Figure S2. Now the slope of the line joining the point D and the endpoint of the 

recovery curve will give the approximate value of 3 (see the 3rd component of Eq. (18) and its 

development below).   
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Expanding the exponential term of the Eq. (S7), and neglecting higher-order terms, one obtains 
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Thus, a combined (creep and recovery) data treatment approach will give a complete set of 

parameter-values (Ei, i, and/or Ei, i). We shall see in the main text that if the recovery process 

is monitored at t= tf
+ in expanded view, similar to creep curve at t= 0+, there is no instantaneous 

recovery, and the recovery of the 1st and the 2nd components of the model (Figure 2 in the main 

text) proceeds simultaneously, and it is difficult to distinguish them.  

One must keep in mind that the values determined by the described method based on idealized 

curves are highly approximated, but they are a good basis for initiating trial and error method 

for the determination of the model parameters that would satisfactorily describe both the creep 

and the recovery data. 

Annexure C: Creep and recovery model validation, and the prediction of the one with 

the parameters obtained from the other 

 

Figures S3: Creep model validation (Eq. (12)) with load1 for tf = 333 min, and an overall 
view of the prediction of subsequent recovery. In inset: expanded view of creep model 

validation with initial creep data 

 

 



 

 

Figure S4: Expanded view of the prediction of the whole recovery curve with the parameters 
evaluated from the creep curve in Figure S3. In inset: expanded view of the prediction of 

initial recovery data 

 

Figure S5: Recovery model validation (Eq. (18)) after withdrawal of the load1 that has acted 

on the specimen for tf  333 min. In inset: expanded view of the recovery model validation 
with initial recovery data 

 

Figure S6: Prediction of the whole creep curve with the parameters evaluated from the 
recovery curve in Figure S5. In inset: expanded view of the prediction of initial creep data 

 

Figures S7: Creep model validation (Eq. (12)) with load3 for tf = 300 min, and an overall 
view of the prediction of subsequent recovery. In inset: expanded view of creep model 

validation with initial creep data 
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Figure S8: Expanded view of the prediction of the whole recovery curve with the parameters 
evaluated from the creep curve in Figure S7. In inset: expanded view of the prediction of 

initial recovery data 

 

Figure S9: Recovery model validation (Eq. (18)) after withdrawal of the load3 that has acted 
on the specimen for tf = 300 min. In inset: expanded view of the recovery model validation 

with initial recovery data 

 

Figure S10: Prediction of the whole creep curve with the parameters evaluated from the 
recovery curve in Figure S9. In inset: expanded view of the prediction of initial creep data 
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Annexure D: Prediction of creep process: Proposed model vs. the Finley and the 

Weibull models 

 

Figure S11 Model validation for creep time 250 min: the Finley and the Weibull models vs. 

the proposed one for load1 

 

Figure S12 Model validation for creep time 250 min: the Finley and the Weibull models vs. 

the proposed one for load3 
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Table S1: Fitted values of the parameters of the Finley and the Weibull models for creep time 

250 min  

Load 

designation 

Finley model parameters Weibull model parameters 

0 A n 0 u   

Load1 0 0.09 0.11 0 0.28 299.87 0.30 

Load2 0 0.34 0.14 0 1.39 632.80 0.30 

Load3 0 0.50 0.14 0 1.91 563.03 0.24 

 

 


