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The increasing concerns about solid waste disposal have led to the development of innovative strategies for repurposing waste
materials. This paper describes a simple solution casting process for recycling postconsumed footwear leather fiber (PCF) into a
biocomposite film reinforced with graphene oxide (GO) and polyvinylpyrrolidone (PVP). PVP was utilized as a compatibilizer to
strengthen the interfacial bonding of GO and leather fiber via π–π interactions. UV–visible spectroscopy, Fourier transform
infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy were used to examine
the material dispersibility bonding between GO and PCF, structural properties, thermal properties, and surface morphology of the
biocomposite films, respectively. Compared to pure PCF film, the oxygen transmission rate of the prepared biocomposite films is
elevated by 64% as well as the biodegradability rate is intensified up to 60%. In addition, the film’s tensile strengths are raised by
216%, while their elongation at break is increased by 164.64% as compared with PCF. The versatility of these eco-friendly and
biodegradable composite films extends to its possible applications in packaging and interior design. The outcomes of the research
reveal the viability of manufacturing affordable and sustainable biocomposites through the utilization of waste leather from
consumed footwear.

1. Introduction

Around the world, customers demand for fashionable foot-
wear is gradually increasing to cope up with the current fash-
ion trends [1]. As well as the change of consumers taste, the
useable life of footwear is comparatively lower while rapid
market fluctuations are also fortifying the progressive reduc-
tion of product lifespan. As a result, a huge amount of foot-
wear is being dumped every year after its functional life. But
the landfill sites are causing severe environmental pollution,
including surfaces as well as groundwater through the leaching
from decomposed waste [2]. Recently, incineration, mechani-
cal breakdown, and biological treatment systems were intro-
duced tominimize environmental impact. Despite having such

compatible strategies, the concept of waste recycling has
emerged to reuse the postconsumed footwear leather fiber
(PCF) materials rather than direct disposal into the environ-
ment [3]. To ensure this, large footwear manufacturers such as
Nike and SATCOL started programs to reuse the wastage
footwear through a recycling process [4]. Staikos and Rahimi-
fard [1] suggested the fabrication of the coverings for play-
grounds and roads or as sound insulation from postconsumed
footwear waste. To address the issue of environmental pollu-
tion, leather solid waste from tannery or other leather indus-
try are incorporated with different binders and filler such as
polycaprolactone (PCL), polylactic acid, nanomaterials, natu-
ral rubber latex, linear low-density polyethylene (LLDPE),
polyvinyl alcohol (PVA), and so forth to fabricate composite
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materials. The well dispersion and distribution in the poly-
meric matrix and high degree of interaction are the two pri-
mordial conditions for obtaining composite materials [5].
Leather solid wastes were used as fillers in fabricating compo-
sites, which are potential, conducive, and cost-effective. Those
composite materials are being used as heat insulators, sound
insulators, interior moldings for automobiles, soles and mid
soles of shoes as well as packaging materials. Composite films
were fabricated from leather solid waste incorporated with
LLDPE, which possess moderate mechanical properties [6].
Composite sheets were fabricated from leather solid waste
incorporated with natural rubber latex [7]. Biodegradable
composite materials were produced from leather trimmings
with PVA and PCL, but it exhibits poormechanical properties
[8]. On the other side, nanofillers such as graphene, carbon
nanotubes, hydroxyapatite, clay, and so forth are being used
in nanocomposite technology with low loading, which has
already been certified to produce new materials with high
performances and specific properties [9]. Among the above
nanofillers graphene oxide (GO) is one of the promising
nanofillers, which has both dispersion and interaction mag-
nitude [10, 11].

GO is a single-layer atomic-thick structural films with
different functional groups (hydroxyl, carbonyl, carboxyl,
and epoxy). This is used in different applications owing to
its significant properties including more mechanical strength,
thermal stability, antioxidant properties, and larger surface
area (2,418m2/g) [12, 13]. More specifically, these nanoma-
terials are frequently applied in such functions where larger
surface area and material strength are required. They are the
most concerning issues including polymer composites, energy
storage, water purification, and catalysts [14–16]. In terms of
dispersibility, oxygen-containing groups made GO more
hydrophilic and causing the easy dispersion in water media
with proper exfoliation rather agglomeration [17]. Therefore,
GO is a promising nanofiller for improving the properties of
composites. Additionally, El Achaby et al. [18] prepared bio-
nanocomposite film with extraordinary properties by incor-
poration of GO in CS-PVP blend [19]. Then, Mahmoudi et al.
[20] fabricated antimicrobial, transparent nanocomposite
through GO in CS-PVP blend. In those composites, polyvi-
nylpyrrolidone (PVP) was used as compatibilizer with film-
forming ability and nontoxic behavior. It is a long-chain,
well-defined, structured synthetic polymer with aN-vinylpyr-
rolidone monomer [21]. Besides, Pandele et al. [22] and
Panda et al. [23] successfully prepared nanocomposite films
with good mechanical strength and biocompatibility proper-
ties on incorporation of GO in CS-PVA blend as well as
starch-PVA composites films were prepared. Moreover,
Rodríguez-González et al. [24] developed biocomposites of
CS-starch and carboxymethyl cellulose–starch blends rein-
forced with GO and keratin-grafted GO. It was noticed in
these studies, with addition of GO the thermomechanical
properties of the composites were notably enhanced.

This study introduces a novel and cost-effective method
for producing environmental friendly biodegradable com-
posite films from PCF and GO, where PVP was used as
compatibilizer. The dispersibility, bonding, thermal stability,

surface morphology, and mechanical strength of the fabri-
cated composite films were ensured through UV–Vis spec-
troscopy, Fourier transform infrared spectroscopy (FTIR),
thermogravimetric analysis (TGA), scanning electronmicros-
copy (SEM), and tensile test, respectively. Moreover, gas bar-
rier properties and biodegradability of the composite films
were also investigated through oxygen transmission rate
(OTR) and soil burial test. The characterization results indi-
cate that the fabrication of PCF/GO composite films from
postconsumer waste leather fibers and GO represents a sig-
nificant step forward in producing environmentally sustain-
able packaging and interior decorating materials.

2. Materials and Methods

2.1. Materials. Postconsumed waste footwear leather was
collected from the dumping site of Khulna City Corporation,
Bangladesh. All of the analytical graded chemicals including
PVP, natural graphite flakes, dimethylformamide solution,
sodium nitrate, potassium permanganate, hydrogen perox-
ide, hydrochloric acid, and sodium hydroxide were pur-
chased from Sigma–Aldrich, Bangladesh through a local
supplier of Khulna city.

2.2. Methods

2.2.1. Preparation of Graphene Oxide from Natural Graphite
Flake. In this experiment, natural graphite flake (crystalline,
300mesh) was used to prepare GO via modified Hummer’s
method [25]. Around 2 g of graphite flakes were dispersed in
46mL of H2SO4 (95%) to prepare a homogeneous suspen-
sion through rigorous mixing in ice-water bath (∼5°C) for
30min. At the same time, 2 g of NaNO3 and 12 g of KMnO4

were added into the solution dropwise and stirred for 2 hr in
the ice-water bath. Simultaneously, 12 g of KMnO4 was
mixed slowly to the suspension and stirred for 2 hr. After
removing it from the bath, the suspension was stirred again
at 35°C in a preheated oil bath for 6 hr. With the progress of
reaction with time, the solution was successively turned into
a colloidal paste-like appearance and seemed to be brownish
in color. Then, 92mL of deionized (DI) water was added
carefully to the mixture and stirred for an additional 2 hr.
Subsequently, 280mL of DI water was mixed again and fol-
lowed by 35% of hydrogen peroxide until turns to golden
yellow. To remove unwanted impurities, the mixture was
centrifuged with 5% HCl and rinsed with DI water several
times to confirm the neutral pH of the solution. Finally, the
desired amount of GO was dispersed in DI water (1mg/mL)
and sonicated for 30min and centrifuged to remove the
unexfoliated part. The resultant was contained stable disper-
sion of GO and it was collected through freeze-drying.

2.2.2. Extraction of Leather Fiber from Footwear. At the ini-
tial stage, abandoned collected footwear leather waste was
washed properly and dried in an oven at 60°C to remove
moisture for 2 hr. Then the sample (3 g) was shredded into
small pieces and hydrolyzed in alkali media (150mL, 1.0N
NaOH) and stirred at 80°C for 3 hr owing to complete and
uniform digestion of leather fiber [26]. After that, the sample
was cooled at room temperature, filtered to collect residue,
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and washed thoroughly to remove the unwanted alkaline
solution. Finally, the residue was placed in a petri dish and
heated in an oven at 70°C until it was properly dried. Subse-
quently, desiccationwas also performed to completely remove
any residual moisture.

2.2.3. Preparation of GO–Leather Fiber-Based Composite. At
first, the hydrolyzed leather fiber (PCF) was dissolved in
water and sonicated for 2 hr. A fixed amount of PVP (3 g)
compatibilizer was separately dissolved in 150mL DI water
with constant stirring for 1 hr and mixed thoroughly. Then,
the obtained solution of PVP was added to the PCF solution
followed by mechanical stirring for 2 hr to confirm proper
mixing. For the preparation of GO-based composite films,
the desired amount (5, 10, 15, 20 wt% in regard to PCF) of
synthesized GO was dissolved in water via sonication for 1 hr
to maintain homogeneity. Then, these solutions were mixed
in PCF slowly and sonicated again for 2 hr to acquire a
proper homogenous solution. Then, the mixer was refluxed
at 80°C with 24 hr [27]. At last, the solution was filtrated and
dried in an oven at 70°C to prepare the final composites. The
composite films were prepared using different amounts (0%,
5%, 10%, 15%, and 20%) of GO with PCF and designed as S1,
S2, S3, S4, and S5, respectively. The compositions of blended
films are shown in Table 1.

2.2.4. Characterization of Composite. UV–Vis spectroscopy
was conducted to check the dispersibility of nanomaterial
in water by using a UVS-2100 SCINCO spectrophotometer.
X-ray diffraction (XRD), FTIR and TGA were investigated
to inspect the structural properties, functional groups, and
thermal stability of composite via D/Max 2500 V/PC (Rigaku
Corporation, Tokyo, Japan) (Cu Kα∼ 0.1541 nm) at a scan
rate of 2°(2θ) min−1, NICOLET 6700 FTIR instrument
(Thermoscientific, USA) in the frequency range of 500–
4,000 cm−1 and TGA was performed using high resolution
2950 TGA thermogravimetric analyzer according to ASTM
E1131 standard method, respectively. Moreover, SEM and
OTR were also carried out to analyze the structure and
gas barrier properties of GO-based biocomposite through
the utilization of JSM-7800F, JEOL, and ASTM D3985,
respectively. At the last stage, tensile strength, as well as
percentage of elongation, were tested by SATRA TM137.
Biodegradability of fabricated composite and PCF were
studied according to Chiappero et al. [28]. Samples were
collected and specimens were cut into a size of 2× 2 cm2.
The precisely sized specimens were then buried in the soil
of a plant pot. Water was regularly added to the soil at room
temperature to maintain the appropriate level of humidity.

The specimens were brought out from the soil, washed with
clean water, and dried for 30, 60, 90, and 120 days, respectively.
In the soil burial biodegradability test, the weight loss
percentage for each sample was calculated.

3. Results and Discussion

3.1. UV–Vis Spectroscopy. Figure 1 shows the UV–Vis spectra
of pure GO, PCF, and composite (S3). A strong peak at
∼230 nm corresponding to the π–π transition of C=C and
a small peak at∼305 nm attributed to the nÀ! π∗ transition
of C=O were indicating the presence of oxygen-containing
functional groups in GO [29]. In view of PCF, the broad peak
at 297 nm was noticed, which confirms the presence of tan-
ning agents in dispersing media [30]. However, both of these
peaks from GO were absent in the case of S3 and a peak was
shifted from 230 to 286 nm due to the increase in absorbance
and it signifies dispersion characteristics of the S3 [31].

3.2. FTIR Analysis. The FTIR spectra of GO, PCF, and com-
posite (S3) are presented in Figure 2. The FTIR spectrum of
GO is indicating the presence of different oxygen-containing
functional groups such as a broad band at ∼3,435 cm−1

denoting the O–H stretching vibration of hydroxyl groups
[32]. The peak at ∼1,733 cm−1 is presenting C=O moiety of
–COOH groups and the peak at ∼1,634 cm−1 is highlighted
for intercalated water molecules or unoxidized graphitic
domain. Moreover, the band at ∼1,061 cm−1 is described
for epoxy stretching. In addition, peaks at ∼1,396 cm−1 is
appeared O–H deformation [26]. In respect of PCF, broader
peaks have appeared at 3,453 and 603 cm−1 for H2 bonded
–OH stretching vibration and –NH group vibration in
fibrous material, respectively [33, 34]. Moreover, peaks at
∼1,657 and ∼1,385 cm−1 appeared for amide I, and amide
III absorption peaks of collagen fibers, respectively [35].
With regards to the S3, some distinct peaks were observed
at 2,955, 1,269, 1,090, and 1,014 cm−1. These peaks were

TABLE 1: Blended films composition.

Sample name Composition

S1 100% PCF+ 0% GO
S2 95% PCF+ 5% GO
S3 90% PCF+ 10% GO
S4 85% PCF+ 15% GO
S5 80% PCF+ 20% GO
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FIGURE 1: UV–Vis spectroscopy of pure GO, PCF, and composite
(S3).
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shifted and intensified, indicating interactions between GO
and the collagen in PCF. These peaks were attributed to the
shifting of functional groups in the S3, including –NH group
vibrations, epoxy groups, and O–H deformation.

3.3. Thermal Analysis. For hydrothermal stability test of PCF,
GO, and composite (S3), TGA and derivative thermogram
(DTG) was performed and shown in Figure 3. The DTG
analysis of PCF, GO, and S3 revealed a two-stage degradation
process. It helped to identify decomposition peaks, providing
insights into the composite’s (S3) stability and thermal
behavior. The curves revealed a gradual 5% weight loss in
PCF at 50–100°C, attributed to water and moisture removal.
Furthermore, a significant 35% mass reduction occurred
between 400 and 500°C, indicating the breakdown of colla-
gen structure and degradation of tanning materials in PCF.
These observations provide valuable insights into the ther-
mal behavior and composition of the material [36]. In the
case of GO, two distinct decomposition points were identi-
fied. The first point was 8% weight loss at 50–100°C caused
by the loss of absorbed water. The second point was a 40%
weight loss at 150–210°C due to the decomposition of vari-
ous oxygen-containing groups [18]. On the other hand, the
temperatures of degradation for S3 is shifted toward the high
temperatures with a minimum weight loss (2%, 25%) at
50–100°C, 450–550°C, respectively, as identified in the two
steps of degradation, which gives advantage to improve the
thermal stability of these S3 films. Therefore, maximum tem-
perature for degradation and lower mass weight loss was
observed in the analysis of S3 film for the sequence of the
hydrogen bond network formation between negatively
charged functional groups of GO and positively charged
side chain amino functional groups of collagen fibers of
PCF as illustrated in the FTIR spectra analysis. So, it can
be explained that a possible mobility suppression of the
PCF segments by embodied of GO is appeared.

3.4. SEM Study. The morphology and structure of GO, PCF,
and composite (S3) are characterized using SEM and the
respective images are shown in Figure 4. The excellent dis-
persion and smooth surface of GO is observed in Figure 4(a).
The surface of PCF demonstrates a typical fiber-like, irreg-
ular ribbon structure with a smooth surface and having
agglomeration due to a strong bonding effect such as hydro-
gen bonding between fibers [37]. In case of S3, it was
observed that GO are densely packed on the surface of
the irregular and flake-like leather fiber films and a new
uniform morphology was infused due to the strong interfa-
cial interaction between GO and leather fiber. In addition, a
cross-sectional image of S3 is presented in Figure 4(d). It is
evident from the figure that graphene sheets remained well
dispersed throughout the matrix in the S3. Moreover, these
may happen due to the low molecular weight of PVP, which
acts as a compatibilizer with the increment of matrix chain
mobility [38]. However, the morphological observations
described above are consistent with the mechanical proper-
ties of the S3, as evidenced by the tensile properties of the
materials.

3.5. XRD Analysis. In order to apprehend the crystal struc-
ture of the composite (S3) films and PCF, also to look into the
exploitation of GO within the composite, the samples were
analyzed through XRD which is shown in Figure 5. The as-
prepared GO showed a broad peak at 2θ of around 10.10°
with an interlayer spacing of 0.83 nm. This confirmed that
graphite was well oxidized to produce GO [39]. Effective
dispersion of GO may be achieved due to its surface’s abun-
dance of oxygen-containing functional groups and the elec-
trostatic repulsion between negatively charged GO sheets
[40]. The XRD characteristics of PCF showed the presence
of the broad peak at around 24.45° and 42.80° in which these
peaks correspond to the hydrated crystalline structure and
the existence of an amorphous structure. XRD analysis of the
PCF shows that the structure is semicrystalline and the sharp
peaks observed around 42.80°, indicating the average inter-
molecular distance of the amorphous part regenerated from
the PVP. Regarding S3, a broader peak with a 2θ value in
the range of 15°–28° revealed the absence of the peak corre-
sponding peak to GO (2θ= 10.10°) [41]. The XRD analysis
of S3 indicated that GO is totally exfoliated in the composite
matrix. Besides, the high consistency between GO and the
PCF matrix is responsible for limiting the rearrangement of
sheets into the layered structure of graphite oxide. Over and
above, after addition of GO the S3 shows a structure similar
to that of PCF, indicating that the structure of composites is
not affected by GO.

3.6. Biodegradability Test. Figure 6 shows the weight loss
percentages after soil burial tests for PCF and fabricated
composite films. The observation of degradation under soil
was done for 120 days, where the samples were checked for
weight loss at every 30-days interval. Three random strips of
dimension 2× 2 cm2 were cut from pure PCF and S3 and the
results are given as mean of three samples, whereas PCF film
was used as a control. The degradation rate was nearness
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FIGURE 2: FTIR spectra of pure GO, PCF, and composite (S3).

4 Advances in Polymer Technology



similar for both the PCF and S3 in the first 30 days. The rate
of degradation for biocomposite film (S3) was consistently
enhanced through the next 30 days. The overall surface of the
film was found to be shrunken. On comparison to PCF film,
the S3 showed the maximum rate of degradation of 60% on

120th day and there was no further weight loss recorded after
120 days. This saturation in degradation rate could be attrib-
uted to the difficulty in breaking down ester linkages by citric
acid. The protein-enriched S3 was observed to more amena-
ble source for the soil bacteria than PCF films. The vital cause
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for the increased biodegradability of fabricated composite
film S3 was a favorable hydrophilic condition by incorporat-
ing GO in PCF which is suitable for increasing enzymatic
activity by different microorganisms [42].

3.7. Oxygen Gas Barrier Properties. The OTR of PCF and
composite (S3) is depicted in Figure 7. To enhance the gas
barrier properties of fabricated composite, alternation of gas
molecules is highly significant to consider. But in the case of
leather-like fibrous material, gas barrier capacity is quite low
in the dry state. So the infusion of GO-like impermeable
nanomaterial can enhance the barrier property through uni-
form distribution as well as proper orientation in the host

matrix of composites [43]. From the result of OTR, the key
function of nanofillers (GO) is to block the gas molecule
diffusion with higher tortuosity, which causes the longer
and tortuous diffusive pathway for gas molecules and result-
ing in improved gas barrier properties than pure material-
based films [44, 45]. In consequence, the OTR value of PCF
(∼195 cc/m2·d·atm) was higher at the initial stage. But after
grafting with GO, the OTR value of S3 was decreased up to
∼125 cc/m2·d·atm, which represents the 64% increase in the
gas barrier properties after incorporation of GO in composite
fabrication. Therefore, this improvement significantly indi-
cates the eventual distribution of GO as well as the reduc-
tion of intermolecular gap within composite materials. This
behavior can be explained in terms of the homogeneous
dispersion of GO, which creates a tortuous path for the pene-
tration of earth material and limits the gas passing properties
of the produced composites, which is most suitable condition
for its potential application as packing material [46].

3.8. Tensile Strength and Percentage of Elongation. The
mechanical properties of the pure PCF film (S1), PCF with
GO (S2, S3, S4, and S5) were investigated by tensile testing
machine. The tensile strength and the percentage of elonga-
tion of the fabricated films are presented in Table 2. The
tensile strength represents the maximum stress value applied
to the material and percentage of elongation is defined as the
strain to break off the material. From the table, the S1 has an
elongation of 25.2%, tensile strength of 47.13MPa in the
absence of GO. After that, adding GO nanomaterials the
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TABLE 2: Mechanical properties of fabricated composite films.

Sample name Tensile strength (MPa) Elongation (%)

S1 47.13Æ 3.5 25.20Æ 1.9
S2 103.45Æ 8.8 47.48Æ 3.1
S3 149.00Æ 12.7 66.69Æ 4.8
S4 113.49Æ 9.3 58.75Æ 3.9
S5 73.63Æ 5.9 42.45Æ 2.7
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elongation is increased up to 47.48% for S2 indicating that
the films become more ductile in comparison with pure PCF
(S1). The increase in elongation is accompanied by an
increase in tensile strength (103.45MPa). For further addi-
tion of GO nanomaterials (10%) within the PCF, a remark-
able increase in elongation (40%) and tensile strength (44%)
is clearly visible. This could happen due to the formation of
more compact network that generated from the addition of
GO nanomaterials within the PCF. This trend has been also
reported in the literature for GO filled bionanocomposite
films [47, 48] Such improvements confirm that GO has
significant impacts on PCF. However, further addition of
GO (higher than 10%) results in the decrease of tensile
strength and elongation at break. At 15% GO addition, S4
has 113.49MPa tensile strength and percentage of elongation
as 58.75%which are less than the tensile and elongation prop-
erties of S3 (10% GO). In addition, low tensile strength as well
as elongation percentage are noticed for S5 (20% GO). So, the
gradual decrease of tensile strength and elongation percentage
after 10%GO addition in PCF is happened due to the agglom-
eration of the materials rather than eventual distributed in
the composite matrix, and the same phenomena was also
observed in earlier studies [49–51] After all, the percentage
of elongation and tensile strength of the PCF with the opti-
mum dose of 10% GO (S3) is about 66.69% and 149MPa,
which is an increase of 164.64% and 216%, respectively, in
compared to control. These phenomenons were also demon-
strated in the stress–strain curve of the composites which was
presented in Figure 8. The stress–strain curves stated a
remarkable improvement in strength and stability for S3 com-
pared to other composites. The curve for S3 exhibited a steady
rise in stress until reaching the ultimate tensile strength
149MPa with a strain of 0.67, showcasing the enhanced
load-bearing capacity of the composite. Furthermore, the S3
composite material displayed exceptional resilience, with

minimal deformation even under prolonged stress, highlight-
ing its durability and suitability for demanding applications
[47, 48]. In apparently, the large aspect ratio of GO is respon-
sible for the significant reinforcement impact on the mechan-
ical properties of the PCF. However, it was observed that
incorporation of GO nanomaterials into PCF increased not
only the tensile strength but also the percentage of elongation,
whichmakes the fabricated films strong and flexible andmake
it preferable for the packaging industries.

3.9. Mechanical Properties of Various Composite Materials.
The comparison of mechanical properties of fabricated com-
posite along with other previous studies is shown in Table 3.
The data obtained from this research represented better results
in comparison with other studies. Almost similar type of tensile
strength (148.70MPa) and elongation (62.90%) were found for
polyacrylonitrile with rGO [29]. Besides, the mechanical prop-
erties of fabricated composite film were found better than the
previous studies with industrial flax linens incorporated gra-
phene [56]. Incorporation of graphene in composite fabrication
creates strong interfacial interaction with the collagen matrix of
leatherfiber. Bettermechanical properties of the fabricated com-
posite were found because of the large surface area as well as
high interfacial contact area of graphene nanosized particles
[14]. In respect of fiber, the strength of the prepared composite
depends on the difference of fiber, length of the fiber, and the
ratio of fiber used. The elongation percentage of the composite
also depends on the matrix and compatibilizer/binder used for
the preparation of the composite. The elongation percentage of
the composite prepared from rice straw with GO confirmed
better elongation percentage than this study. There were differ-
ences in matrix and fiber–matrix ratio between this investiga-
tion and the studywith rice straw-GO composite [52]. Variation
of mechanical properties depends on different types of rein-
forcement and matrix, composition ratio, and the method of
fabrication [48]. According to the discussion, incorporation of
graphene with leather fiber in fabricating composites confirmed
better mechanical properties to utilize in future applications.

4. Conclusions

High-performance biocomposite films were prepared by
blending PCF incorporated with GO by simple solution mix-
ing method. The PCF and GO were effortlessly mixed in
water solution with the assistance of PVP compatibilizer.
Tensile strength and elongation of composite films with
10% GO were increased by 216% and 164.64%, respectively.
In addition, surface morphology and bonding of PCF/GO
composite films were ensured through SEM and FTIR. Con-
sequently, the thermal stability of PCF/GO composite films
was improved, which was confirmed by TGA. Subsequently,
64% of gas barrier properties and 60% of biodegradable
properties were improved for PCF/GO biocomposite films
compared to PCF alone. Therefore, the as-prepared biocom-
posite films with features of high strength and good flexibility
will have potential applications as a promising packaging
material. This study advocates a unique application of post-
consumption waste leather fiber in producing cost-effective,
biodegradable, and environmental friendly packaging materials
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exemplifying a waste-to-products approach. As well as this
research will be a future motivation for investigating the impact
of various compatibilizers and additives on improvements of
film properties such as flexibility, strength, and biodegradability.

Data Availability

The data are not publicly available due to privacy or ethnic
restrictions. The datasets used and/or analyzed during this
study are available from the corresponding author on rea-
sonable request.

Additional Points

Highlights. (i) Recycling of postconsumed footwear leather
waste to diminish pollution load. (ii) Uniform distribution
and the interfacial bonding between GO layers and the host
matrix increase physicochemical properties. (iii) GO blocks the
gas molecules diffusion, which results in improved gas barrier
properties. (iv) The use of fossil materials can be reduced by
utilizing PCF/GO-based biocomposites as packaging material.
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