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Pipes are manufactured primarily through the extrusion process. One of the material extrusion processes in recent digital
manufacturing is additive manufacturing’s fusion deposition modeling. Pipes are made from various materials such as metal
and plastic/polymers, and the main challenge has been in selecting the pipe material for the customized application. For the
creation of water-passing tubes, this research has chosen appropriate carbon-reinforced polymers that can be used with
filament made of polyether ether ketone (PEEK) and polyethylene terephthalate glycol (PETG). For this goal, the analytical
hierarchy process, also known as the AHP, is used to choose the best material based on factors such as cost, temperature
resistance, printing speed, and mechanical properties of the material. The results revealed that PEEK-CF is a better material for
the customized impeller application than PETG-CF. The PEEK-CF obtains the higher priority value of 0.6363, and the PETG-
CF obtains 0.2791. This decision-making technique can be used to select other comparable customized applications.

1. Introduction

Researchers are still interested in carbon-fiber reinforced
polymers (CFRPs), which are well-known for having high
specific mechanical characteristics. However, due to the high
degree of skill and substantial equipment expenditures
needed, producing these composite materials is expensive.
Cheaper manufacturing techniques are a crucial enabler
technology for higher commercial acceptance of composites
and quicker product development cycles since these decrease
the growth of composite materials [1–3]. In recent decades,
additive manufacturing methods have emerged, which use

3D printers to manufacture components layer by layer.
Net-shaped parts can now be directly manufactured with
more design freedom. The most common layer-by-layer
technique is fused filament fabrication (FFF), also known
as fused deposition modeling (FDM). Using this method,
an object is constructed by depositing thermoplastic poly-
mer material through a nozzle, a process also known as 3D
printing. A relatively recent field of research [4–8] is the
use of fiber-reinforced filament to produce composite parts
using a completely automated method.

A hollow plastic cylinder or portion is known as a plastic
pipe. It has a circular cross-section and is mostly used to
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move fluids, such as liquids and gases, slurries, powders, and
masses of tiny materials. Polyvinyl chloride (PVC), a combi-
nation of plastic and vinyl, is the most commonly used
material for polymer pipes. There is also CPVC (chlorinated
polyvinyl chloride) piping, PERT (polyethylene-raised tem-
perature) piping, and other options available [9–12].

Previous researchers explored different polymers for
water-passing pipes/tube-based various applications instead
of metals.

Supian et al. [13] wrote a review on the polymer com-
posite materials in the energy absorption tube application.
Based on this review, authors revealed that polymer replaces
the metal application. Zhao et al. [14] investigated the 1D
polymer material for the pipeline application and revealed
that aerogels replace the liquid solvents with air to replace
the solid interlaminar.

An amorphous thermoplastic polymer called ABS has
been used to fabricate the pumps, rotor blades for drones,
and rotary parts for the microorganic Rankine cycle
(mORC) [15]. A semicrystalline thermoplastic polymer
called PLA is made from sustainable resources like sugar-
cane or maize starch. One or more of the characteristics of
this polymer is that it is biodegradable and compassable.
When compared to other polymers, this polymer has a rea-
sonable price, environmentally favorable biocompatibility,
and acceptable physicomechanical properties. Impellers for
pumps, compressors, and maritime applications have been
made using PLA [16].

In order to examine the mechanical impact behavior of
short carbon fiber reinforced PEEK composites and unfilled
PEEK, Garcia-Gonzalez et al. [17] looked into the energy
absorbed. In transverse, longitudinal, and unfilled fiber
PEEK conditions, the tensile elastic modulus was 12.6, 24,
and 3.6GPa, respectively.

According to Alam et al.’s [18] investigation of carbon-
reinforced PEEK for biomedical structural applications, the
material recovers a sizable portion of the mechanical losses
in strength and modulus brought on by sulfonation, in one
instance increasing superior than (nonsulfonated) printed
PEEK in terms of yield and final strengths (graphene nano-
platelets reinforcement).

Siddikali et al. [19] investigated carbon-reinforced
PETG for coating with an electroless metal layer applica-
tion, and their findings show better mechanical properties.
In a Pump-Jet Module application, the PETG impeller was
studied by Odetti et al. [20]. Tests with a PETG impeller
at 1200 rpm and 14N of thrust revealed that it has the
right characteristics for this application. A more advanced
quasithermoplastic polymer is PEEK. This polymer
exhibits exceptional thermal, mechanical, and chemical
resistance qualities. Many academics are interested in the
PEEK impeller found in centrifugal pumps because of its
improved strength and dependability [21, 22]. Pumps have
used PETG impellers. This polymer’s good water resis-
tance and biodegradability are reasons for using it in the
manufacture of pump blades [23, 24]. The various types
of polymers and applications are classified in Figure 1.

The manufacture of rotating components has been done
using a variety of thermoplastic polymers, including ABS,

PLA, polyethylene terephthalate glycol (PETG), PEEK, and
polyphenylene sulfide (PPS) [26–29].

From this, previous literature has not done customized
application material selection-based studies on carbon-
reinforced polymer for water pipe making. Carbon-
reinforced PEEK and PETG filaments are investigated in this
study for use in the fabrication of customized water pipes.
For obtaining this research objective, the detailed literature
review has been carried out with MCDM methodology, par-
ticularly AHP procedures in the material selection problems
as the first phase, and detailed materials and methods (how
to apply) are discussed. The rest of the part elaborates on
the result and discussion, and also, the conclusion shows
research objective obtain or not.

2. Literature Review

2.1. Multicriteria Decision-Making. The act of choosing the
best or appropriate option from a variety of options is
known as decision-making. The primary goal of MCDM is
to select the best alternative for a given situation including
several criteria. The MCDM method makes use of criteria,
options, and decision-makers’ perspectives to determine
the optimum course of action [30]. MCDM is a vital tech-
nique in operation research and can assist decision-makers
when presented with a variety of options and requirements
[31]. The MCDM contains a number of tools for making
decisions, including AHP, FAHP, TOPSIS, and COPRAS,
among others [32]. The FAHP, TOPSIS, and DEMATEL
algorithms are frequently employed in the AM sector [33].
SCM [34], management science system engineering [35],
sustainability [36], planning and product development
assessment [37], and strategic management [38] all benefit
from the application of MCDM. FTOPSIS and FMEA risk
assessment have both been enhanced by MCDM [39].

2.2. Analytical Hierarchy Process (AHP). In this study, the
AHP technique is covered first. The three primary tech-
niques that make up the AHP approach’s foundation are
the hierarchy structure, priority examination, and consis-
tency confirmation. This methodology was created to help
with complex decision-making. The rational hierarchy is
designed to enable a decision-maker or group of decision-
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Figure 1: Various thermoplastic polymers and applications (open
access article—Nader Zirak et al. [25]).
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makers to pairwise compare criteria and the related alterna-
tives, resulting in global weight syncing, and then use the
results to decide on alternative priority. Additionally, one
of the main contributions of AHP and what sets it apart
from other MCDA methodologies is that it permits the eval-
uation of judgement consistency [40].

The top level of the AHP hierarchy structure may be the
aim or objective, with criteria and/or subcriteria appearing at
the intermediate level. Then, the possibilities that correlate
can be pursued at the most basic level. To create numerical
weights, all pairwise comparison matrices will be collected,
assessed, and then normalized. However, given the existence
of uncertain situations in the decision-making process, this
work suggests the integrative AHP and fuzzy logic (i.e.,
FAHP), which can be further researched [41].

3. Methodology

The research flow of the manuscript is shown in Figure 2.
The research objective is to select a suitable carbon-
reinforced material for pipe application. For this, the physi-
cal properties of material analysis such as price, mechanical
property, printing time, and temperature withstand. Then,
the third criteria of time have been calculated during the
printing.

Then, the printed samples were involved in the tensile
test, and based on all the criteria results, the pairwise matrix
formed. In this paper’s research, the AHP is used for finding
suitable materials from the selected carbon-reinforced mate-
rials. The AHP processes have the Saaty scale as shown in
Table 1. The Saaty scale is used to evaluate the criteria and
alternatives. Figure 3 expresses the methodology of the man-
uscript. The objective of the research is the selection of suit-
able materials based on criteria such as price, temperature,
printing time, and mechanical property.

4. Fabrication and Testing

4.1. Physical Properties of Material Analysis. The physical
properties of PEEK and PETG are analyzed using criteria
such as price and temperature. As a consequence, the cost
and temperature of both materials are as follows.

PEEK is a liquid crystalline thermoplastic with high-
temperature chemical and mechanical resistance properties.
PEEK CF is one of the most advanced thermoplastics ever
created. It is employed in some of the most demanding
applications in industries such as automobiles, aerospace,
defense, semiconductors, and oil and gas. PEEK is used by
engineers in applications where failure is not an option.
With tensile strengths between 90 and 100MPa and a
Young’s modulus of 3.6GPa, PEEK is both stiff and power-
ful. Polyether ether ketone is also referred to as PEEK. It is a
colorless organic thermoplastic polymer that produces some
of the best results of any thermoplastic on the market. It
belongs to the polyether ether ketone (PEEK) family of com-
pounds. PEEK filament has a variety of distinct properties.
PETG filament is a quasi-industrial strength material with
excellent UV and impact resistance and a slightly softer sur-
face. It is simple to postprocess to achieve the desired surface
finish [42–45].

Their main distinctions are their properties, applications,
and material costs. PETG is more durable and stronger than
PLA. PLA, on the other hand, is commonly used as an FDM/
FFF filament due to its superior melt and cooling properties.
However, comparable materials, PETG and PEEK, have
superior materials compared to PLA. PETG is more expen-
sive than PLA in terms of cost. PETG CF is a material
designed for users that need to create structural elements
that are subjected to significant mechanical pressures. As a
result, many disciplines of engineering, including medicine,
utilize this material to create prototypes and final items.

PETG is mainly remembered for its strength and dura-
bility, and the plastic is resistant to high temperatures, UV
rays, water, chemical solvents, and other environmental fac-
tors. All of this makes PETG an excellent filament material
choice for printing parts that will be exposed to harsh envi-
ronments or will be subjected to a high level of physical
stress [46–49].

The price of PETG carbon fiber filament starts onwards
(Indian rupee) INR.1150 and PEEK carbon fiber filament
price INR 4800 onwards, as shown in Figure 4. PETG has
a significant melting point of 210°C and a fairly low temper-
ature for glass transition of about 85°C. This means that,
while the printing process necessitates hotter temperatures,

Ranking/Decision
making

Decision matrix
formation

Material printing
time calculation

Physical properties
of material analysis

Suitable material
selection

Pairwise matrix
formation

Tensile test

Figure 2: Research flow of the paper.

Table 1: Saaty scale of relative alternative, [4].

Saaty scale

2, 4, 6, and 8 Intermittent values

1/3, 1/5, 1/7, 1/9 Inverted comparison values

1 Equal significance

3 Moderate significance

5 Strong significance

7 Extremely significance

9 Very extremely significance
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PETG components are not well-known for their thermal
properties. PEEK has a roughly 143°C (289°F) transition
temperature and a roughly 250°C (662°F) melting tempera-
ture, and the comparison between the two selected polymers
is shown in Figure 5 [44, 50, 51].

4.2. Printing the Samples. FDM has risen in popularity
among additive manufacturing techniques because of its
accessibility and material adaptability. This technique has
been used over the years to generate a variety of materials

for application in the aerospace [52], medical [53], and
automotive industries, including plastics, powder,
ceramics, and composites [54]. This procedure involves
layering a partially built object with semisolid filament
material that has been extruded through a heated nozzle.
The process uses a build platform, print bed, liquefier
head, and build material spool, as shown in Figure 6.
The geometry development program is used to create the
STL (standard triangular language) file format for the
manufactured part model. It is then entered into the soft-
ware and split into thin, two-dimensional layers.

This two-dimensional contour information is used to
produce the tool path motion. The movement of the lique-
fier head is controlled by a 3-axis mechanism. It moves in
the X-Y plane in accordance with the tool path of the
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Figure 3: Methodology.
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Table 2: Time recorded for printing ASTM D638 samples.

PETG-CF
Time taken
in “min”

PEEK-CF
Time taken
in “min”

Sample 1 9 Sample 1 15

Sample 2 10 Sample 2 15

Sample 3 9 Sample 3 16

Total 28 Total 46

Average 9.33 Average 15.33
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software and deposits the first layer while doing so. The
recently added layer and the recently deposited layer are
joined. Until the entire section is finished, the material will
be deposited in successive layers.

After completion, the structure can be manually or
chemically removed from the print platform by destroying
the support structure [25, 55–57]. Fused deposition model-
ing (FDM) or material extrusion additive manufacturing
are other names for this process that are permissible in
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Figure 7: Geometrical standard of ASTM D638 type V [45].
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Figure 8: Stress and strain diagram for PEEK-CF.
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Figure 9: Stress and strain diagram for PETG-CF.

Table 3: Tensile test results for carbon-reinforced PETG AND PEEK.

PETG-CF UTS in “MPa” PEEK-CF UTS in “MPa”

Sample 1 39.9 Sample 1 79.8

Sample 2 33.9 Sample 2 81.2

Sample 3 33.3 Sample 3 84.5

Total 107.1 Total 245.5

Average 35.7 Average 81.83
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ASTM F42 (additive manufacturing technologies) (AM).
The FDM components and operation are shown in Figure 1.

4.3. Printing Time Calculation. Based on the printing time,
carbon-reinforced PETG had 15 minutes, and PEEK took
19 minutes. Table 2 expresses the time recorded for printing
the tensile samples.

Each tensile sample of PETG carbon fiber takes a mini-
mum of 9 minutes and a maximum of 10min for printing
the ASTM D638. Similarly, the PEEK carbon fiber samples
take a minimum of 15 minutes and a maximum of 16
minutes. The average time of PETG carbon fiber is better
than that of PEEK carbon fiber.

4.4. Tensile Test. The tensile test has been prepared from 3
out of 6 samples for PETG-CF and the rest of 3 out of 6 sam-
ples for PEEK-CF. The polymer tensile specimen standard
ASTMD638 type V has been used for the experiment, and
its geometrical size is shown in Figure 7.

The stress-strain curves of carbon-reinforced PEEK
polymer are depicted in Figure 8, and PETG polymer is
depicted in Figure 9.

Table 3 expresses the ultimate tensile strength values of
carbon-reinforced PETG and PEEK. From the result, the
PEEK carbon-reinforced polymer has a much superior ten-
sile mechanical property.

Based on the tensile strength, the carbon-reinforced
PETG has 35.7MPa, and PEEK has 81.83MPa. The tensile
test was carried out by Instron machine, and the maximum
load of 10000N is applied to the specimen at the strain rate
of 1mm/min.

5. Result and Discussion

According to time, PETG-CF takes 9.33minutes, and PEEK-
CF takes 15.33minutes. PETGCF compare to PEEK-CF
takes less time. Based on tensile test results, PETG-CF has
less strength compared to PEEK-CF. The other parameter
comparison is discussed in detail in section 4.0. The pairwise
matrix shown below has been created based on the discus-
sion of the criteria and the Saaty scale. The pairwise matrixes
formed in the first row indicated that price is considered
equally important for both alternatives. Then, column 3

compares the price versus printing time; it takes 3 which
means moderate importance. Column 4, in the first row,
compares the price versus temperature withstands of mate-
rial; it takes 4 which means intermediate of moderate and
strong importance. Finally, column 5 compares the price
versus mechanical property; it takes 6 which means interme-
diate between strong and very strong importance. Table 4
shows the pairwise matrix for the selected criteria.

Consistency index,

C:I = ʎmax − n
n − 1: ð1Þ

where:ʎmax= (Sum of ratio of weight sum value and cri-
teria weight)/(number of criteria) and n is the number of
criteria.

Based on the consistency ratio verification,

C:R = 0:05 < 0:10 ð2Þ

As a result, the criteria are acceptable, and the consis-
tency ratio is reasonable. If the consistency is less than one,
it means that the created pairwise matrix is acceptable.

Table 5 shows the four criteria with priority values to
form the decision matrix. Table 6 expresses that the PEEK-
CF has been the most suitable material for the pipe-
making customized application. The PEEK-CF material has
the highest priority value of 0.6363, and the PETG-CF mate-
rials have the lowest priority value of 0.2791.

6. Conclusion

The purpose of this research is to select suitable materials
from two different carbon-reinforced materials for
manufacturing customized pipes. For this, a technique called
AHP has been used in the mathematical programming tech-
nique of multicriteria decision-making. In this, both mate-
rials are evaluated based on the common criteria of time,
temperature resistance, printing time, and tensile strength
which are mechanical properties. In terms of price, PETG
carbon fiber is slightly less when compared to PEEK-CF.
And in terms of temperature, PEEK-CF is considered supe-
rior to PETG carbon fiber. Then, in terms of time, it is found

Table 4: Pairwise matrixes for analyzing criteria.

Based on aim Price Printing time Temperature withstand Mechanical property

Price 1 3 4 6

Printing time 1/3 1 1/2 3

Temperature withstand 1/4 2 1 3

Mechanical property 1/6 1/3 1/3 1

Table 5: Decision matrix with criteria.

Criteria weight
0.56 0.18 0.24 0.07028

Priority-1 Priority-2 Priority-3 Priority-4

PEEK-CF 0.613 0.667 0.643 0.641

PETG-CF 0.095 0.107 0.072 0.136

Table 6: Final decision matrix.

Total rows Priority value Rank

PEEK-CF 0:337 + 0:112 + 0:143 + 0:0452 0.6363 I

PETG-CF 0:165 + 0:032 + 0:063 + 0:0158 0.2791 II
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that PETG carbon fiber can produce products in slightly less
time when compared to PEEK-CF. Finally, PEEK carbon
fiber is known to be stronger than PETG carbon fiber in
terms of mechanical properties. Based on these four criteria,
the pairwise matrix is generated with the help of Saaty scale.
And through it, the consistency index is found, and the cri-
teria are evaluated. Accordingly, this research indicates that
PEEK carbon fiber is more suitable for pipe application than
PETG carbon fiber. This research will be useful for future
researchers to choose customized materials and equipment
problems.
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