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Ultrahigh molecular weight polyethylene (UHMWPE) fiber is widely recognized for its exceptional properties, including high
strength-to-weight ratio, toughness, and chemical resistance, making it a preferred material for reinforcement in various applica-
tions. However, its low melting point, surface inertness, and weak adhesion to polymer matrices have limited its potential use in
some fields. Researchers have addressed these shortcomings by focusing on surface modifications through physical treatment or
chemical coating, thereby enhancing the versatility of materials in numerous UHMWPE fiber composites. By improving the
tribological and interfacial properties of UHMWPE, various applications can be explored, including prosthetic joints, energy-
absorbing road safety systems, microelectromechanical system devices, and protective materials for defense and personal thermal
management. This review provides a comprehensive overview of the remarkable performance of UHMWPE and its composites,
providing insights into its wide array of applications.

1. Introduction

The materials age has progressed in tandem with the rapid
development of contemporary science and technology. People
are placing increasingly high demands on materials as their
applications grow more nuanced. Fiber-based composite
materials have garnered significant interest due to their low
weight, high energy, corrosion resistance, and exceptional
durability. Fiber-based composite materials may retain or
even improve upon their original qualities by functionally
changing the fiber components while overcoming the limita-
tions of any individual material. Because of their improved
mechanical qualities, impact resistance, wear resistance, and
fire resistance, composites based onmodified fibers are widely
used in various industries, such as aerospace, high-rise build-
ings, bridge and toll road development, and maritime infra-
structure [1–3].

Ultrahigh molecular weight polyethylene (UHMWPE) is
a thermoplastic fiber belonging to the polyolefin family. It
was initially manufactured by DSM® (Netherlands) in the
late 1970s using a gel-spinning technique. UHMWPE pos-
sesses a high degree of crystallinity and an exceptionally high
percentage of parallel orientation. In the 1980s, Allied Indi-
cators (now Honeywell) obtained cost-effective UHMWPE
fiber. To date, DSM® (Greenville, North Carolina) under the
Dyneema® brand and Honeywell under the Spectra® brand
are famous and competitive manufacturers of UHMWPE
fiber. Due to the strong C–C bond within the longitudinal
region and van der Waals interactions in the radial portion,
the fiber is highly anisotropic with an exceptionally long
lifetime and high-impact energy [4]. It is considered an engi-
neering polymer with outstanding tribological properties,
including a minimal coefficient of friction (0.08−0.12), great
wear/abrasion resistance, strong impact resistance, excellent
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toughness, high corrosive resistance, moderate water pene-
tration resistance, and biocompatibility. The impact strength
and volume loss are compared to technical polymers, and the
values are shown in Figure 1.

UHMWPE is a hydrocarbon and carbon-based linear
homopolymer that exhibits thermoplasticity and a semicrys-
talline structure. The structure and a few key features of
UHMWPE are summarized in Table 1. Limited thermal sta-
bility and low load-bearing capacity are two of the issues that
plague UHMWPE despite its excellent mechanical and tri-
bological qualities. The benefits and drawbacks of employing
UHMWPE as a tribomaterial, either in bulk form or as a
tribological protective layer, are summarized in Figure 2.

Numerous researchers have dedicated their efforts to
improving the mechanical, thermal, tribological, and surface
properties of UHMWPE. Many different routes, such as
improving cross-linking [6, 7], improving crystallinity per-
centage [8, 9], irradiation [10], surface modification through
plasma treatment [11, 12], the introduction of effective tex-
tures [13, 14], and reinforcement with different fillers
[15–18], have been used to enhance the properties of bulk
UHMWPE. Several review papers have been published, sum-
marizing the recent developments in enhancing the mechan-
ical, tribological, and thermal characteristics of UHMWPE
for diverse uses [19–22]. However, there is still a need to
consolidate this progress and provide a comprehensive over-
view of the research conducted on UHMWPE and its specific
uses. In this review, we aim to bridge this knowledge gap by
presenting a detailed summary of the research undertaken on
UHMWPE and its applications in various fields.

2. Brief Discussion of Different UHMWPE
Application Fields

2.1. UHMWPE for Biomedical Applications. There is a signif-
icant worldwide population of elderly people with sudden

and severe hip or knee pain as a result of aging, clinical con-
sequences, or unexpected falls and injuries. The International
Osteoarthritis Research Society predicts that by 2050, approx-
imately 130 million individuals throughout the world will
have osteoarthritis [23]. To address this challenge, numerous
scientists and researchers have explored different approaches
using various materials. Medical grade UHMWPE is the most
popular polymer utilized in the production of medical
implants [24, 25]. However, other categories of polymers
[26–29], metals [30, 31], and ceramics [32–34] have also
been utilized in this context.

UHMWPE was initially developed as an implant material
for total hip arthroplasty (THA) in the 1950s. Initially,
UHMWPE was used for miniature bushings and gears; it
was later verified as an articulating material for THA due
to its favorable wear and biocompatibility results [35–37].
Many polytetrafluoroethylene implants failed prematurely
due to wear and biocompatibility concerns [35], despite their
initial promise. Later, UHMWPE was verified as an articu-
lating material because of the encouraging results from wear
and biocompatibility experiments [35, 38]. While there have
been many advancements in joint replacement surgery since
then, THA using UHMWPE implants represents the pinna-
cle of surgical innovation [39, 40]. However, the application
of UHMWPE in total hip replacement (THR) prostheses is
still restricted by difficulties related to certain performance-
limiting clinically significant characteristics. These limita-
tions prevent it from functioning as a natural joint in a
healthy human. The femoral head is usually constructed of
metal or ceramic, whereas the acetabular liner might be a
metal, polymer, or ceramic. Figure 3 illustrates an instance of
UHMWPE implementation in biomedical applications.

UHMWPE products play a crucial role in the biomedical
industry, especially in applications such as acetabular liners/
sockets for THR, tibial inserts for total knee replacement,
acetabular liners/sockets for total elbow arthroplasty, tarsal
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FIGURE 1: (a) Volume losses in most popular polymers relative to UHMWPE, (b) impact resistance of UHMWPE relative to other polymers
[5]. (Copyright 2021 by the author.).
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TABLE 1: Structural, mechanical, and thermal properties of UHMWPE [5]. (Copyright 2021 by the author.)

Properties Value

Structure

n

CC
H

C
H

H

H

H
C

H

H H

PolyethyleneEthylene

Strength under tension 38.6–43.8MPa
Modulus of elasticity 0.69GPa
Expansion rate as a function of temperature 234–360× 10−6 (°C)
Melting point 138−142°C
Range of useful temperatures −169–90°C
Glass transition temperature −110°C

High wear resistance

High-corrosion resistance

High-impact resistance

High toughness

Biocampatible

Low absorption of water

Low coefficient of friction

Low strength/low load
carrying capacity

Low thermal stability

Micro/nano composites

Micro/nano hybrid composites

Advantages Limitations

UHMWPE

Solutions

Tribologist’s polymer

FIGURE 2: UHMWPE as a tribomaterial: advantages, limitations, and solutions [5]. (Copyright 2021 by the author.).
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FIGURE 3: Schematic diagram showing total hip replacement (THR) and total knee replacement (TKR) procedures [41]. (Copyright 2022 by
the author.).
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liners/inserts for total ankle replacement, and tarsal liners/inserts
for total disc replacement. The review aims to summarize the key
aspects of the processing property connection of UHMWPE and
its derivatives. However, there is a lack of studies exploring the
clinically relevant features of UHMWPE blends or strongly
cross-linked variations in biomedical applications [42]. Several
researchers have endeavored to enhance the wear resistance and
weight-bearing capabilities of UHMWPE fiber materials
through various techniques and material combinations. This
review takes into account certain noteworthy findings from these
researchers.

As a result of its great wear resistance and high load-
bearing ability, UHMWPE is suggested for use in orthopedic
applications, such as the femur and humerus bone fractures
and complete hip and knee replacements. When subjected to
light loads, cross-linked polyethylene (XLPE) maintains its
wear resistance, making it suitable for use as a support for
internal fixation devices, including screws, plates, and pins.
As reported by Bhoi et al. [41], UMHWPE and XLPE under-
went abrasive wear resistance testing using three paper grades
of increasing abrasiveness (grade 100 (190 µm), grade 220
(50 µm), and grade 400 (40µm)), under low (10N) and high
(15N) loading conditions. The testing results demonstrated

that XLPE was more wear-resistant under moderate loads
and fine grit sandpaper, while UHMWPE performed better
under heavy loads and coarse grit sandpaper. This is likely
due to the increase in brittleness and decrease in toughness
of XLPE with increasing cross-linking. In pin-on-disc wear
tests, UHMWPE showed a 34% reduction in wear under
mild loading and a 53% reduction under high loading. Figure 4
shows a picture of an expanded version of the pin-on-disc
contact used in the examination of wear experiments shown
in the accompanying schematic designs. During the in vivo
tests, the medical outcomes of XLPE were closely monitored,
and it was observed that it exhibited a remarkable 81% reduc-
tion in clinical volume wear compared to conventional poly-
ethylene (PE) [43, 44]. UHMWPE and XLPE have been
suggested for use as bearing materials in orthopedics based
on these findings.

Shi et al. [45] detailed the widespread use of acetabular cups
made of hydroxyapatite (HA) reinforced with UHMWPE to
strengthen the wear resistance of hip prostheses and decrease the
surface friction of the femoral head. The composites were hot
molded at a temperature range of 145−153°C.The study focused
on varying the proportion of HAmixed with UHMWPE using a
sol–gel technique. Four different concentrations (0%, 13.3%,

Data acquisition and processing unit

Fulcrum bar
Sensor unit

Specimen holder

Pin

Rotating disk

FIGURE 4: Experimental setup and an enlarged picture of the pin-on-disc contact used to measure wear [41]. (Copyright 2022 by the author.).

4 Advances in Polymer Technology



23.5%, and 31.5 vol%) of UHMWPE/HA composites were
investigated. To create a homogeneous dispersion of HA in
paraffin oil solution, researchers followed the procedure formul-
tiwalled carbon nanotubes and implemented ultrasonication and
stirring for 12hr [46]. The mixture was heated to 145°C and
stirred for 30min. The UHMWPE/HA agglomerates were then
extracted using hexane and dried at 60°C.

Compression molding was used to mold the agglomer-
ates at a temperature range of 145–153°C and a pressure of
3MPa [47]. Figure 5 shows that using 31.5 vol% HA as the
inner layer of a biomedical implant reduces the coefficient of
friction. However, higher concentrations ofHA increase the wear
rate of UHMWPE. Another study discusses the nontoxic nature
of the wear debris produced byHA-reinforcedUHMWPE. Scan-
ning electronmicroscope (SEM) data showedmore agglomerates
on the surface of treated UHMWPE at 150°C compared to
180°C. The gelation process produces composites with bet-
ter tribological characteristics than the kneading technique.
HA-reinforced composites are used in total joint arthro-
plasty and artificial joints due to their improved tribological
qualities and the facilitation of production through the
sol–gel method [45].

UHMWPE coatings were created by Panjwani et al. [48]
for use in medical purposes. The researchers used a dip
coating process to apply a pure UHMWPE coating of
approximately 19.6 μm thickness on plasma pretreated tita-
nium alloy (Ti6Al4V) samples. To test the wear resistance
levels of the created coatings, a ball-on-disk arrangement is
employed under varying loads (0.5, 1, 2, and 4N) at rota-
tional speeds (200 and 400 rpm). When tested at 4N and
0.08m/s, the immaculate UHMWPE coating has a friction
coefficient of 0.1 and a wear life of more than 175,000 cycles
under sliding test conditions. This result occurred because of
the superior tribological qualities of the UHMWPE coating and
its great adherence to the titanium substrate. To further
improve the wear resistance of the UHMWPE coating, a
very thin layer of perfluoropolyether (PFPE) lubricant, which
was a biocompatible lubricant, was placed on top of the
UHMWPE coating. This dual coating outlasts the single
UHMWPE coating and increased the wear life from approxi-
mately 28,000 cycles to 60,000 cycles (track radius= 2mm,
normal load= 4N, spindle speed= 1,000 rpm). A cytotoxicity
test on the created UHMWPE coating was conducted in
accordance with ISO 10,993-5, and it was found that it is
nontoxic. Tribological experiments were conducted utilizing
a ball-on-disk tribometer with a counter face of a 4mm diam-
eter Si3N4 ball under varying stress situations and rotating
speeds. The researchers concluded that the thin layer of
UHMWPE, with or without a PFPE topcoat, has numerous
uses in biomedical devices due to its hydrophobicity, wear
endurance, and noncytotoxicity.

Currently, there is a growing trend in the medical device
industry towards smaller devices and implants. UHMWPE
fiber is expected to play a vital role in the development of
innovative and efficient applications, thereby driving the
growth of the medical device market. Nevertheless, the appli-
cation of UHMWPE is still limited due to its low surface
hardness, which results in the generation of wear debris

that can trigger adverse biological reactions within the
body. As a consequence, the longevity of UHMWPE joints
is compromised. In the future, it is essential to develop and
improve techniques that enhance the mechanical properties
and durability of UHMWPE coatings used in artificial joints.

2.2. Application of UHMWPE in Energy-Absorbing Road
Safety Systems. Increases in traffic volume, vehicle mass,
average speed, and road length have all contributed to
increases in serious and often fatal accidents and their atten-
dant costs and risks in recent years. In particular, it draws
attention to the issue of improving road safety and decreas-
ing road fatalities. Some dangerous accidents occurred due to
unsafe roadside barriers, as shown in Figure 6. This high
body count has arisen mostly because many stretches of
roadways lack multifaceted protection mechanisms.

To date, steel has been predominantly used for construct-
ing various types of barriers on roads, such as side road
barriers, wire rope barriers, front road barriers, and parapet
barriers. However, with the advancements in the chemical
industry, new polymer materials have emerged as promising
alternatives for road barrier construction, offering several
advantages. These advantages include high energy absorp-
tion capacities, corrosion resistance capabilities, chemical
inertia characteristics, and lightweight properties. Incorpo-
rating cutting-edge polymer materials into the road-building
process has the potential to greatly enhance the standard of
already existing infrastructure. In this review, we have dis-
cussed some recent progress on road safety systems devel-
oped from UHMWPE polymers by different researchers.
Some roadside safety materials produced by UHMWPE are
shown in Figure 7.

Gruzdev et al. [49] conducted a study comparing the
energy absorption properties of UHMWPE and steel and
found that UHMWPE was a superior material in this regard.
The mechanical and strength properties were determined
using load test equipment with a maximum loading ratio
of 1,000mm/min−1 and a force limit of 100 kN. The applica-
tion of tensile stress loading at varying rates (from 20 to
500mm/min). The results of the experiment showed that
the elongation of the sample and the resistance to that elon-
gation remained constant. Furthermore, after 3 days, the
residual deformations of the UHMWPE sample were less
than 10%, indicating that the UHMWPE energy-absorbing
element may be reused after severe deformations. This phe-
nomenon was not the case for steel energy-absorbing ele-
ments. Interactive simulations were conducted using a
finite element method with an LS-Dyna multipurpose com-
puter environment. A cylinder-shaped UHMWPE absorber
is considered one example of a possible energy absorber
design. For this reason, they developed a model of energy-
absorbing components in the form of metal honeycomb
sections.

The study described the energy absorption capacities and
weight of structures made from UHMWPE with exterior
diameters of 90mm, which showed similar values to those
of steel across different thicknesses. For example, UHMWPE
with a 10mm thickness exhibited energy absorption values

Advances in Polymer Technology 5
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FIGURE 5: (a) and (b) Highlight the coefficient of friction at 150 and 180°C, respectively; (c) and (d) display the wear rates at 150 and 180°C,
respectively; (d) displays the wear measurement leading to the formation of shallow dent shapes; (e) and (f ) display the relationship regarding
the coefficient of friction against the distance traveled; all of these data are collected from a wear test [45]. (Copyright 2013, American
Chemical Society.).
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of 7.73× 107 J, while weighing 46.92 kg. On the other hand,
steel with a 2mm wall thickness showed energy absorption
values of 6.52× 107 J, with a weight of 64.72 kg. These results
indicated that UHMWPE was comparable to steel in terms of
energy absorption. These findings provide initial support for
utilizing UHMWPE in energy-absorbing parts for safety
modular absorbers, with optimal energy absorption achieved
using 90mm outside diameter and 8–11mm thick walls [47].

Xiao et al. [50] conducted a study on porous UHMWPE,
which exhibited molecular weights ranging from 3× 106

to 5× 106 g/mol. The researchers utilized this material to
develop a roadside safety device that could be attached to
standard metal or concrete guardrails along highways.
Despite its relatively small size, the porous UHMWPE dem-
onstrated the ability to absorb a significant amount of energy
when subjected to shocks. The impact ductility of the mate-
rial under investigation was investigated by a series of impact

tests. First, there was elastic deformation due to stress, and then
there was plastic deformation that converts kinetic energy into
deformation energy. Inducing pores in UHMWPE increases its
cushioning ability. In this manner, when the cars bounced, they
were not severely damaged (Figure 8). However, roadside safety
devices are more easily installed on traditional metal or con-
crete road highway guardrails, and the price must be cheaper
than that for replacing full guardrails. Based on the tests con-
ducted, UHMWPE has a high capacity for absorbing stress and
is applicable for improving roadside safety.

2.3. UHMWPE Composites for Microelectromechanical
System (MEMS) Applications. There is a growing demand
for lightweight and high-energy storage capacity materials,
driven by the increasing reliance on portable electronics,
small aerial vehicles, and hybrid energy cars. In response to
this demand, polymer matrix composites with magnetic

ðaÞ ðbÞ
FIGURE 6: Crashes involving vehicles and lane-diving barriers that caused rapid road accidental deaths (a and b).

ðaÞ ðbÞ

ðcÞ ðdÞ
FIGURE 7: Elements of road infrastructure and safety replacements. (a) Plastic water-filled barriers, (b) flexi traffic cone, (c) water-filled
expansion fence, and (d) anti-collision barriers.
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elements have gained significant interest for energy storage
applications [51–56]. Such composites feature the magnetic,
optical, and electrical capabilities of magnetic materials com-
bined with the machine ability, low weight, and high
manufacturing capacity of polymer materials. This synergy
of characteristics makes the formed composites useful for sev-
eral applications, such as polymer-bound magnets [57, 58],
microwave shielding [59], radar shielding [59], embedded
capacitors [60, 61], and photolithographic structures [62, 63].
To create a mesh-like structure, UHMWPE serves as a
polymer substrate because of its high viscosity when
combined with barium hexaferrite (BaM) powder.

Aljarrah et al. [64] tried to create a composite of BaM
and UHMWPE (GUR 4120, average molecular weight
5× 106 g/mol) to achieve unprecedentedly high electrical
charge storage capacities. Chemical coprecipitation proce-
dures were used to produce the BaM particles, which were
then sintered at high temperatures. The composites were made
by dry compounding and high-pressure molding. The result-
ing composite matrix exhibited a honeycomb-like mesh struc-
ture due to the localization of BaM nanoparticles on the
surfaces of the UHMWPE microparticles. According to the
results of the impedance study, the composite containing
2wt% BaM had a dielectric constant and dissipation factor
of 116 and 0.01, respectively, making it a promising candidate
for use in energy storage applications. The BaM concentration
and frequency affect the BaM/UHMWPE composite dielectric
characteristics. UHMWPE was chosen as a polymer matrix
because of its high viscosity, which facilitated the localization
of BaM particles on the polymer powder surface, creating a
mesh-like structure. With a dielectric constant of 116 and a
dissipation factor of 0.01 at 102−104Hz, BaM was shown to
store charge well. Unfilled UHMWPE has a 5.8 dielectric con-
stant and 0.022 dielectric loss across the same frequency range.
BaMhas substantially increased dielectric performance. Finally,
scholars have proposed more research to determine how net-
work topology affects dielectric performance to improve quali-
ties for future applications.

Habumugisha et al. [65] demonstrated that employing a
sequential biaxial stretching approach can yield an appropri-
ate microporous structure of a UHMWPE/poly(4-methyl-1-
pentene) (PMP) blend film. Different processing steps are
shown in Figure 9. By tuning the PMP content, the films
exhibited a flawless uniform microporous structure, as con-
firmed by SEM, air permeability, and porosity tests. PMP
improves air permeability, wettability with liquid electrolytes,
electrolyte absorption, and Li-ion conductivity, resulting in
superior electrochemical performance in cells manufactured
with UHMWPE/PMP membranes. After exposing PM2 (the
film containing 7.5wt% PMP) at 120°C for 1 hr, the trans-
verse shrinkage was 0.7%, and the machine shrinkage was
1.6%, suggesting strong thermal stability. Most critically,
PM2-containing cells operate well from an electrochemical
viewpoint. At 0.1 and 1C rates, the discharge capacity was
172.8mAh/g, and the efficiency of stable cycling was 99.89%
after 100 cycles. UHMWPE/PMP membrane cells perform
well in cycling performance testing. This study offers an alter-
native for blending separators that employ UHMWPE/PMP
mixed films and improves the knowledge of the significance of
the porous structure in Li-ion battery design.

UHMWPE used for MEMS have strict requirements on
particle size, consistency of micropore structure, etc., which
necessitates high demands on the material’s molecular struc-
ture and processing processes. In addition to considering the
electroseepage characteristics, surface modifiability, and seal-
ability of the material, composite materials used in MEMS
applications require excellent processability, good biocom-
patibility, chemical inertia, heat dissipation, and insulation.
UHMWPE possesses all these advantages, making its appli-
cation in MEMS more promising.

2.4. UHMWPE Composite for Defense Applications. For sev-
eral decades, aramid fibers were the only option for making
cutting-edge ballistic helmets [66–69]. The development of
ballistic composites made from UHMWPE, polypropylene,
and carbon fibers is still in progress [70–72]. However, body
armor is a vital piece of personal protective equipment that

UHMWPE

Highway road
gurdrails

1 2 3

4

5

1. Shocking
2. Compressing
3. Bouncing
4. Amorphous region
5. Crystalline region

FIGURE 8: Schematic representation of the structure and material of roadside safety devices.
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shields the wearer fromharm in the event of a terrorist attack or
another violent act. In recent years, there has been much
academic and industrial interest in developing high-
performance soft body armors. Fabrics with great strengths,
great flexibilities, and low weights are often utilized in body
armor. There will always be a need for advancements in the
protective efficacy, comfort, and lightness of body armor.
Different methods, such as the use of shear thickening fluid
and structural optimization, have been suggested to enhance
the effectiveness of body armor. Additionally, the use of a
ballistic panel that combines multiple fabrics or materials is
another approach being explored [73].

The ballistic responses of fiber-reinforced composite
armors have been studied by Bandaru et al. [74–76]. Carbon
fiber, glass fiber, and Kevlar fiber are a few examples of the
fibers that have been explored for use in composite armor.
The total ballistic resistance of Kevlar fiber laminate may be
increased by putting a layer of carbon fiber textiles on top.
UHMWPE fiber composites are now used more often in the
construction of high-performance protective structures
because of their minimum density, large specific tensile
strength, and especially outstanding penetration resistance
[77]. The adhesion, stiffness, and strength of UHMWPE
fibers are crucial to their ballistic performance. Several meth-
ods, including plasma treatments [78–82], resin enhance-
ments [83], and fiber coatings [84], have been investigated
for their potential to modify the surface of UHMWPE and
enhance the adherence of the matrix.

Fejdyś et al. [85] created a hybrid bulletproof and
fragment-proof helmet that protects the wearer from small

arm fire and mechanical impacts. The shell was made of
advanced ballistic materials, para-amide fabric covered
with phenolic resin modified with polyvinyl butyral. Addi-
tionally, unwoven UHMWPE was also incorporated into the
construction. A hybrid helmet was made by making an exte-
rior layer of carbon fiber and PE material and by using
polyester resin to bond the outside layers to the inside layers
of the aramid [86]. Manufacturers used cutting-edge con-
struction techniques and materials to minimize helmet
weight while preserving safety and performance. Based on
the research performed, the helmet provides ballistic resis-
tance defined by class K2 according to the PN-V-87001:2011
standard and by level IIIA according to the National Institute
of Justice (NIJ) Standard 0108.01. Moreover, the hybrid bal-
listic helmet satisfies the requirements of NIJ Standard
0106.01 concerning its bulletproof capabilities:

n level II (9mm Parabellum full metal jacket (FMJ) 8 g
bullet at a hit velocity of V= 358Æ 15m/s),
n level IIIA (9mm Parabellum FMJ 8 g bullet at a hit
velocity of V= 426Æ 15m/s, according to NIJ Standard
0108.01).

Roy et al. [87] investigated the impact performance levels
of natural rubber (NR)-coated textiles that were robust with
high moduli. P-aramid (Kevlar 129) and UHMWPE fabric
were treated with 20% and 30% NR solutions, respectively.
Different add-on percentages of NR solutions were applied
to the fabrics, with 4% and 6% doses for p-aramid fabric and
6% and 9% doses for UHMWPE fabric, using NR solutions
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with solid contents of 20% and 30%. NR-coated p-aramid
and UHMWPE textiles had 480% and 360% higher pull-out
forces, respectively, compared to non-NR-coated textiles.
Single-layer NR-coated textiles had lower impact energy
absorptions than plain fabrics, whereas multilayered
p-aramid and UHMWPE rubber-coated fabrics had much
higher absorptions than untreated two-layer fabrics. Kevlar
increased by 44%, and UHMWPE increased by 81%. The
tensile strength of the fabrics was assessed after NR latex
treatment. The yarn pull-out force and impact resistance of
both clean and NR latex-coated single-layer p-aramid and
UHMWPE textiles were examined. The three additive fabrics
were used: p-aramid with 0%, 4%, and 6% NR and
UHMWPE with 0%, 6%, and 9% NR. Relative to pristine
fabric, the NR-coated p-aramid fabric exhibits a greater
yarn pull-out force. However, peak force and energy absorp-
tion are lower in single-layer NR-coated p-aramid fabric
compared to the clean one. This could be attributed to lower
metal-to-yarn friction. NR-coated samples outperform two-
layered stitched samples in impact performance. NR-coated
p-aramid samples show improved performance due to
increased layer bonding. NR-coated UHMWPE textiles
also demonstrated excellent performance. As demonstrated
in Figure 10, two-layer samples became so robust, preventing
penetration by the impacting object in most cases.

However, the molecular chain structure of UHMWPE
fibers, which has a low side chain content and weak intermo-
lecular forces, makes them chemically inert, resulting in poor
bonding with reinforced polymers or adhesives. This limita-
tion significantly hampers the application of UHMWPE fibers
in fiber-reinforced polymer and ballistic composites. To over-
come this issue, various methods, such as strong oxidant
treatment, radiation grafting treatment, and corona discharge
treatment, have been used to activate and modify the fiber
surface. However, these methods also have drawbacks. For
example, strong oxidant treatment can damage the fiber’s
crystalline structure and reduce its mechanical properties.
Therefore, it is crucial to explore more gentle and effective
techniques for UHMWPE surface modification.

2.5. UHMWPE on Personal Thermal Management (PTM)
Application. The complex system that includes the environ-
ment, clothes, and the human body is frequently discussed in
relation to clothing comfort. Where one feels comfortable
when the energy metabolism of the human body is equal
to the heat loss from the body to the surrounding environ-
ment, a dynamic thermal balance state arrives between the
human body and its surrounding environment [88, 89]. The
transfer of heat from a person to their environment via tex-
tile materials is mostly based on the following four separate
processes: conduction, convection, radiation, and evapora-
tion, as seen in Figure 11(a) [90–92].

In reality, human parameters, garment insulation, and
thermal environment characteristics are needed to determine
human thermal balance (Figure 11(b)) [93]. Clothing regu-
lates temperature by generating a temperate microclimate
without heating or air conditioning [94–97]. Much effort
has been made to enhance garment thermal management.
PTM is a promising technology that directs thermal control
to an individual for localized thermal comfort. Extra-active
and passive thermal-regulating fabrics are used to create
PTM apparel. Liquid cooling, air cooling, semiconductor
refrigeration, and Joule electric heating clothing are active
thermal controlled textiles [98–101]. Phase change material
clothing [102], radiant cooling clothing [103], radiant heat-
ing clothing [104], and evaporative cooling clothing [105] are
four textiles that have adopted passive thermal control.
Advanced textile materials for personal thermal control
have been reviewed [97, 106–108]. Here, some of their works
have highlighted my review regarding application techniques
and results related to the PTM of clothing.

By using the infrared transmission of PE to enable pas-
sive individual cooling, Cui and coworkers at Stanford Uni-
versity [109] developed a breathable and cooling fabric for
use in air-conditioned interior spaces (Figure 12). PE, which
contains only C–C and C–H bonds, has limited absorption
peaks in the IR radiation spectra of the human body [110].
Polyamide (PA) and polyvinylidene fluoride are infrared
transparent materials that may be utilized in passive cooling

ðaÞ ðbÞ
FIGURE 10: Samples after impact testing: (a) two-layer stitched p-aramid fabric, and (b) two-layer NR-treated p-aramid fabric with 10%
reinforcement [87]. (Copyright 2017, Society of Plastics Engineers.).
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apparel. PA fibers are used to make sun-proof apparel and
skin coats because they are more comfortable than PE [103].
To generate a soft and breathable PE fabric, Cui and cow-
orkers sprayed a nanofilm of PE with a hydrophilic chemical
called polydopamine (PDA). However, resonant scattering
from linked pores in the 50−1,000 nm region, which was
equivalent to the wavelength of visible light (400−700 nm),
makes the PE film translucent [111]. Due to the Rayleigh
scattering effect caused by the small sizes of its pores, the
PE film was impermeable to infrared radiation from the
human body [112]. By using PE material in radiative cool
clothing, researchers have studied PE nanofibermorphologies
[113], colored infrared-transparent PE fabrics with inorganic
pigment nanoparticles [114], and the thermal ergonomics of
nano-PE shirts [115]. However, nano-PE membranes may
not be comfortable enough to be utilized as fabrics.

Therefore, by using temperature-dependent phase sepa-
ration technology, Liu et al. [116] generated a permeable
infrared-transparent visible-opaque fabric by combining
polyester woven textiles with a diluent of liquid paraffin

containing UHMWPE. To improve the spontaneous strength
and breath ability of the fabric, a polyester mesh with a loose
warp and weft structure was selected as the intermediate
material. The UHMWPE phase of the composite fabric
includes both interconnected pores (diameter: 25−100 nm)
and unconnected honeycomb pores (diameter: 1,000 nm).
By including PDA particles in the coating melt, the
moisture-wicking rate of the composite fabric was signifi-
cantly increased. High infrared transparency and ultravio-
let/visible opacity were two of the optical benefits that this
composite fabric offers.

Gao at el. [117] created a unique UHMWPE-based con-
ductive fabric via surface graft polymerization, postmodifica-
tion, and electroless deposition (ELD). In their investigation,
poly(γ-methacryloxypropyl trimethoxysilane) chains were
grafted onto the surface of UHMWPE fabric through the
radiation-induced graft polymerization method and cohy-
drolyzed with N-(2-aminoethyl)-3-aminopropyltriethoxysi-
lane, generating an organic–inorganic hybrid coating and
introducing amino groups to coordinate catalytic ions.

Normal textile Nanoporous PE Normal PE

Pore size:
100–1000 nm

Human body radiation (max = 9.5 m)

Visible light ( = 400–700 nm)
Air convection

FIGURE 12: Radiative heat transmission mechanisms in conventional textiles, nano-PE, and conventional PE film-based materials [109].
(Copyright 2016, American Association for the Advancement of Science.).
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Palladium ions adsorbed by amine on the surface of
UHMWPE fabric are a suitable seeding and adhesive layer
for the subsequent ELD of copper to produce conductive
textiles with outstanding electrical characteristics and an
intact shape. The heat resistance of the UHMWPE fabric
may be improved by the cross-linked organic–inorganic
hybrid layer. To validate grafting and postmodification, the
chemical structure and content of transformed UHMWPE
textiles were detected. UHMWPE and Cu@UHMWPE-g-
PAAc (abbreviated for acrylic acid grafted on UHMWPE)
have poorer thermal resistance levels than Cu-deposited
UHMWPE fabric. To increase the oxidation resistance of
the Cu-deposited fabric, nickel was added to the Cu-coated
UHMWPE fabric to preserve the copper layer. An electro-
magnetic shielding effect test indicates that Ni/Cu-coated
UHMWPE fabric shields 94.5% of electromagnetic waves
in the frequency range of 8−12GHz. Due to the low melting
point of organic supports, the heat resistance of metal-coated
polymeric materials was often inadequate. To address this
problem, a method to enhance the heat resistance of these
materials was proposed and shown in Figure 13.

3. Conclusion and Prospects

In this review, we synthesized the latest research on how vari-
ous modifications of UHMWPE composites have impacted
their practical applications. UHMWPE have found various
practical applications due to their exceptional properties,
including low-friction coefficient, high-impact strength, and
excellent wear endurance. These include joint arthroplasties,
road construction, energy storage, defense applications, and
clothing, among others. It has been particularly groundbreak-
ing in joint arthroplasties, with various experimental techni-
ques employed to achieve desired characteristics for biomedical
applications. Due to their lightweight, affordability, chemical
stability, corrosion resistance, and high energy absorption
capacity, the use of advanced UHMWPE polymer materials
in road construction can significantly improve existing infra-
structure. Additionally, UHMWPE exhibits magnetic, optical,
and electrical properties, making it suitable for applications like
energy storage and lithium-ion battery separators in MEM
applications. In the defense fields, such as ballistic helmets
and textiles for soft body armor, the properties of UHMWPE
fibers, including adhesion and high specific stiffness/strength,
are crucial for the performance of composites made from these

fibers. Consequently, surface modification techniques like
plasma treatments, resin enhancements, and fiber coatings
have been investigated to enhance the matrix adherence of
UHMWPE. The utilization of UHMWPE in ballistic appli-
cations depends on the processing methods used, whether it
be woven, nonwoven, or composite forms. Moreover,
UHMWPE is highly demanded for thermal comfort in
indoor and outdoor clothing due to its ability to provide
good mechanical strength and breathability while maintain-
ing garment comfort.

The unique properties of UHMWPE composites make
them ideal for a myriad of innovative applications, from
biomedical to military applications. Although extensive
research has been done to improve the material properties,
some challenges still persist, such as the need to reduce the
thickness of UHMWPE coatings for biomedical implants
without compromising their tribological performance.
Most of the existing modification methods can effectively
improve the interfacial adhesion between UHMWPE and
polymer matrices, but often at the cost of sacrificing the
inherent strength of the fibers. Bulletproof clothing and hel-
mets still struggle to maintain both high ballistic protection
and superior comfort, making them unsuitable for prolonged
wearing and use by soldiers.

Future work should focus on further developing material
processing techniques in order to address the aforemen-
tioned challenges. The creep resistance and dyeing properties
of UHMWPE fibers require further enhancement. Because
the interfacial strengthening performance of UHMWPE
fiber-reinforced composite materials depends on fiber sur-
face reactivity, it is crucial to explore more efficient and
practical surface modification techniques. In addition, the
development of three-dimensional weaving techniques for
UHMWPE fibers is also crucial to improve the impact resis-
tance and strength properties of materials used for road pro-
tection and bulletproof applications. UHMWPE composites
are highly versatile materials with remarkable performance,
leading to their rapid popularity and innovative applications
in various fields.

Data Availability
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