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The equibiaxial planar tension test is an important method for determining the mechanical properties of hyperplastic membranes,
and it is also critical to designing an effective equibiaxial tension test rig to meet experimental accuracy requirements. However,
any analysis addressing the accuracy of this test is not reported in the literature. In this paper, an equibiaxial planar tension
apparatus is proposed for conducting single-corner-point tension tests on hyperelastic electroactive polymer (EAP)
membranes. The experimental data were compared with those obtained from two-corner-point-fixed tension tests and fitted
with nonlinear material models, and the model’s parameters were also evaluated. Finally, the widely-used finite element
software ABAQUS was employed to simulate equibiaxial planar tension methods and investigate the impact of clamping mode
and point number on test accuracy as well as the uniformity of overall deformation. The test results indicate that the stress-
strain curves for the two tensions remain consistent across small stretch ratios. However, as the stretch ratio increases (about λ
> 2:25) in two-corner-point-fixed tension, stress shielding may lead to a degradation of strain uniformity and result in greater
stresses than single-corner-point tension. Additionally, both the three-parameter Yeoh model and the four-parameter Ogden
model can provide an accurate description of the EAP membrane material. The simulation results indicate that the axial strain
variation amplitudes remain below 5% within a region spanning approximately 80% of the specimen’s overall length from its
center to edge and even below 1% within a region spanning 85% in the single-corner-point tension; stress inaccuracies increase
with stretch ratio, while the calculated error is about 2.1% when λ = 4 in the single-corner-point tension test, which has the
smallest stress error among the tests; when the number of tension points is increased, the overall deformation becomes more
sufficient, and the test accuracy improves as well. The conclusions drawn from this paper will be beneficial in designing
equibiaxial planar tension test rigs and analyzing their accuracy and uniformity of deformation.

1. Introduction

The hyperelastic membrane material represented by EAPs
possesses the characteristics of large elasticity and high
strain energy density. It has a wide application prospect in
high-tech fields such as soft robots [1–3], flexible actuators,
and transducers [4, 5]. Because the uniaxial tension test can-
not accurately describe such material characterization and
because friction between the contact surfaces occurs during
uniaxial compression, resulting in complex stress states such
as compression and shear, which results in inaccurate test
results, the equibiaxial tension test of a hyperelastic mem-
brane has become the primary method for determining its

mechanical properties. [6–8]. Typical equibiaxial tension test
methods include a square specimen equibiaxial planar tension
test (Figure 1(a)), a radial tension test (Figure 1(b)), and a cir-
cular specimen expansion test (Figure 1(c)) [9–13]. Figure 1
depicts the ideal tensile principle. Among these, equibiaxial
planar tension is widely used for hyperelasticmembranemate-
rial tests due to its ease of use and controllability.

Equibiaxial planar tension first appeared in the mechan-
ical property test of soft tissue materials such as rabbit skin
[14, 15]. Such kind of materials have little strain, and the
samples generally need to be pretreated. Another application
field of the equibiaxial planar tension test involves hyperelas-
tic polymer membrane materials such as rubber [9, 15–17].
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In the equibiaxial planar tension test, nonuniformity deforma-
tion near the corner will affect the accuracy of the test [18].
Therefore, Obata et al. modified the clamping condition of
the corner chucks to minimize the nonuniform deformation
of the specimen [19]. Blatz et al. added clips at four corner
points of the square membrane specimen for clamping and
stretching [20, 21]. In some simple test rigs, the fixture blocks
are also used for clamping in tension tests, but there will exist
serious stress concentration and stress shielding [22, 23].
Despite the widespread use of various equibiaxial planar ten-
sion test methods, no comparative analysis of these test
methods as well as their accuracy has been published.

The finite element method (FEM) has become exten-
sively used to design and optimize products or complex pro-
cesses because it reduces the number of physical prototypes
and experiments required during the design cycle. Experi-
mental modal analysis (EMA) for rubber supports [24] and
modeling a skin-pass rolling process to predict experimen-
tally difficult-to-measure variables [25] are two examples.
There is no doubt that the FEM is a viable approach to eval-
uating the equibiaxial tension test method [26].

It is assumed that the energy stored in hyperelastic mate-
rials depends solely on their initial and final states of defor-
mation, which are independent of the path of deformation
or load. Therefore, strain energy density functions (SEDFs)
are commonly used to characterize hyperelastic materials
such as rubber-like materials [9, 10, 19, 20], various hydro-
gels, and their composite [27, 28]. EAP is a kind of high-
molecular polymer with viscoelasticity, and its nonlinear
behavior can also be better described by SEDFs [17].

This work developed a multifunctional equibiaxial pla-
nar tension test rig coupling with a machine vision system
to conduct a single-corner-point equibiaxial planar tension
test to study the nonlinear stress-strain behavior of hypere-
lastic EAP materials. The experimental results were also
compared with those from the two-corner-point-fixed ten-
sion method. Through the finite element software ABA-
QUS, the two equibiaxial planar tension methods were
modeled, the simulation for the multipoint tension with
two-corner-point-fixed was also carried out, and their
results were compared with that from the theoretical calcu-
lation. Finally, to understand the overall non-uniform defor-
mation of equibiaxial planar tension, tensile efficiency was
also analyzed. The findings of this paper will be useful in
designing test rigs and analyzing the accuracy of equibiaxial
planar tension.

2. Experimental Section

2.1. Constitutive Model of Hyperelastic Membrane Based on
Equibiaxial Tension. For hyperelastic materials, various
types of SEDFs can be utilized to characterize their proper-
ties. This paper investigates three typical constitutive
models: Mooney-Rivlin [29, 30], Yeoh [31], and Ogden [32].

2.1.1. Mooney-Rivlin Model. For incompressible materials,
the SEDF can also be considered as a function of two strain
invariants

W= 〠
N

k+l=1
Ckl I1 − 3ð Þk I2 − 3ð Þl, ð1Þ

where Ckl is the Mooney-Rivlin material parameter and N is
the model order. In practical application, the first order with
two terms of its power series is usually taken, i.e.,

W=C10 I1 − 3ð Þ + C01 I2 − 3ð Þ: ð2Þ

Here, I1 and I2 are the strain invariants of the Cauchy-
Green deformation tensor, determined by the stretch ratios
λi (i = 1, 2, and 3) in three principal directions, and the
stretch ratio is the ratio of the geometric dimension after
stretching to the original one of the specimen in principal
directions:

I1 = λ21 + λ22 + λ23,
I2 = λ21λ

2
2 + λ22λ

2
3 + λ23λ

2
1:

ð3Þ

2.1.2. Yeoh Model. In the formula of Mooney-Rivlin, if only
term I1 is partially expanded, the typical third-order Yeoh
SEDF can be obtained

W = C10 I1 − 3ð Þ + C20 I1 − 3ð Þ2 + C30 I1 − 3ð Þ3 ð4Þ

2.1.3. Ogden Model. Ogden removed the restriction that the
function is an even power of the stretch ratio and proposed
an SEDF in the series form

W= 〠
N

k=1

μk
αk

λαk1 + λαk2 + λαk3 − 3
À Á

, ð5Þ

(a) (b)

p

(c)

Figure 1: Typical equibiaxial tension tests: (a) equibiaxial planar tension, (b) radial tension, and (c) bulge test.
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where μk and αk are the material parameters. In some works
of literature [10, 17], the above-mentioned Ogden SEDF
usually takes another form

W= 〠
N

k=1

2μk
α2k

λαk1 + λαk2 + λαk3 − 3
À Á

: ð6Þ

This formula is also used in the finite element analysis
software ABAQUS. It is the same as the original formula
with only a formal difference. For incompressible materials,
with the relation λ1λ2λ3 = 1, SEDFs can be simplified.

According to SEDFs, the principal Cauchy stress σi (i=1,
2, and 3) can be derived:

σi = λi
∂W
∂λi

− Ph, ð7Þ

where Ph is the hydrostatic pressure, which is determined by
the dynamic boundary condition. According to σ3 = 0, the
expressions of the stress in two principal directions under
the condition of equibiaxial tension can be deduced

σ = σ1 = σ2 = λ1
∂W
∂λ1

− λ3
∂W
∂λ3

: ð8Þ

Under the assumption of incompressibility and isotropy,
λ1 = λ2 = λ and λ3 = 1/λ2, the equibiaxial tension stress σ
can be derived. When the SEDF of Yeoh or Mooney-Rivlin
is used, Equation (8) can also be rewritten directly in terms
of I1 and I2 as

σ = 2 λ2 − λ−4
À Á ∂W

∂I1
+ λ2

∂W
∂I2

� �
: ð9Þ

Substituting the above-mentioned SEDFs into Equation
(8) or Equation (9), the stress formula for different models
of equibiaxial tension can be obtained. In general, the rela-
tionship between engineering stress S and stretch ratio λ is
used to express the stress-strain relationship of hyperelastic
materials where S equals Cauchy stress (also known as real
stress) divided by λ:

S = σ

λ
: ð10Þ

The EAP membrane material analyzed in this paper is
VHB4910 from 3M™, a commercial double-sided adhesive
tape that belongs to the acrylic polymer family and is widely
used to manufacture flexible actuators and transducers due
to its good deformation capacity when subjected to the
action of an electric field.

2.2. Equibiaxial Planar Tension Test. Equibiaxial planar ten-
sion is a method that generates equibiaxial planar deformation
by applying uniform tensile force (or displacement) to the
periphery of a square membrane specimen (Figure 1(a)). In
practical applications, there are various methods that can be
used to secure the square specimen. These include using small

staples hooked along its edges [14], inserting silk threads into
uniformly spaced holes on each side of the specimen [9], and
utilizing clamping clips [15] or self-tightening chucks of a spe-
cial tensile tester [19]. This study involves EAP square mem-
brane specimens, and a uniformly distributed multipoint
tension method (Figure 2) was designed to reduce stress con-
centration and stress shielding phenomena [22, 23]. The clips
were chosen to secure the four edges of the specimen while
minimizing the clamping area as much as possible.

2.2.1. Test Method. In an ideal condition, uniformly distrib-
uted loads are applied by the clips along the four edges of the
specimen to conduct equibiaxial free tension, where the tan-
gential displacements of the tensile points are not con-
strained. Due to the resistance friction that exists when the
clips move and the tensile points near the corner cannot
provide enough tension to realize lateral “fast” movement
of other points, the specimen can easily be torn when the
stretch ratio becomes large enough. Therefore, the two-cor-
ner-point-fixed tension method is employed, wherein the
distance between two clamping points on mutually perpen-
dicular edges adjacent to the corner remains constant during
the extension process [18], as depicted in Figure 2(a).

If only the two adjacent points to the corner are fixed
during extension, the strain between the points of the
specimen remains constant, resulting in stress shielding.
Meanwhile, excessive deformation will occur near the
membrane specimen’s corner, resulting in the membrane
being torn and the loss of experimental accuracy. A single-
corner-point tension method may be employed to improve
deformation uniformity in the corner area, in which the con-
necting bar between the two points near the corner in
Figure 2(a) is removed and four additional clips are added
at each corner (Figure 2(b)) of the specimen, and concen-
trated forces (or displacements) at 45° to the tensile direction
are exerted at the corner points (clips) when equibiaxial pla-
nar tension is conducted.

It is simple to calculate the stress and strain of equibiax-
ial planar tension. Measuring and recording the total tensile
force F in the principal direction, then divided by the origi-
nal sectional area A0 of the square membrane, the nominal
stress S can be obtained, i.e.,

S = F
A0

= F
Lst0ð Þ , ð11Þ

where Ls is the initial length of the square membrane speci-
men and t0 is the original thickness. According to the manu-
facturer’s instructions, the thickness of membrane VHB4910
is 1mm. The strain can be calculated or detected based on
their measured displacement or deformation of the testing
marks in Figure 2. To collect deformation data continuously,
the machine vision system is adopted to measure the defor-
mation of the rectangular mark in Figure 2(b).

2.2.2. Test Rig. Due to the uneven deformation near the cor-
ners that exist in the two-corner-point-fixed equibiaxial pla-
nar tension [18], a multifunctional equibiaxial planar
tension test rig based on single-corner-point tension was
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specially developed (Figure 3). The rig mainly consists of a
workbench, inner slide, outer slide, slide tables, angle-
adjusting modules, and force transducer. Two slide tables
are symmetrically mounted on the workbench. Two stepper
motors on the tables drive the lead screws, leading the inner
and outer slides to reciprocate, respectively, along the axial
direction to conduct the tension test of hyperelastic mem-
brane materials.

The designed key structure of the test rig lies in a pair of
90° V-shaped inner and outer slides that can adjust the angle
along the tensile direction, and two arms of the slide cross
each other at 90°. The arms of the inner slide are inserted
into the rectangular holes of the outer slide which provide
guidance and support. Up to twenty clips equipped with rol-
lers at each rear end clamp the specimen edges and can
move along the slide grooves. Two clips are fixed at the cor-
ner of the slide, and the other two clips located at the inter-

section of the two slides can move along the two grooves
simultaneously. The angle-adjusting module (Figure 3(a))
mainly consists of a worm gear mechanism, arranged at
the end of the slide, which can adjust the swing angle to ful-
fill biaxial tension. The test rig is characterized by a compact
uniaxial structure to realize biaxial tension.

The membrane specimen is clamped by the clips along
each edge, including four corners. The clamping points are
uniformly distributed, and the tensile force is measured by
a force transducer installed at the rear end of the slide
(Figure 3(a)). The stepper motors are controlled by a PLC
(programmable logic controller) installed inside the electri-
cal cabinet. The analog signal module of the PLC is respon-
sible for collecting the tensile data from the force transducer
and the human-machine interaction realized by the touch
screen. The strain is obtained by measuring the deformation
of the rectangular testing mark on the surface of the

Ls

Testing marks

(a)

Ls

Testing mark

(b)

Figure 2: Equibiaxial planar tension tests: (a) two-corner-point-fixed tension and (b) single-corner-point tension. Testing mark(s) are
preprinted on the specimens, and the strain can be calculated or detected based on their measured displacement or deformation.

Workbench

Slide table

Outer slide

Inner slideAngle-adjusting module

Force transducer

Specimen

Testing mark

Clip

(a)

Electrical cabinet

Touch screen

Industrial camera

Light regulator

Backlight source

Computer

(b)

Figure 3: A multifunctional equibiaxial tension test rig: (a) schematic drawing of the main structure and (b) picture of the test rig.
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specimen with the help of the machine vision system, which
mainly consists of an industrial camera, backlight source,
light source regulator, and computer. The computer collects
the deformation data of the mark and the tensile forces
simultaneously for calculation and analysis (Figure 3(b)).

2.3. Simulation Analysis for the Tension Tests. The experi-
mental accuracy and other performances need to be exam-
ined because the results of the tests listed above may differ.
When combined with a relatively limited number of experi-
mental data, FEM can be used to evaluate material models
and adjust their constants that are most appropriate for
modeling the material behavior [33–35] and to vary the
specimen parameters and loading modes to research the fail-
ure mode of material conveniently [36]. This provides a
quick, simpler, and more economical alternative method to
study material characterization. In this paper, ABAQUS
was used to evaluate whether the results of the equibiaxial
planar tension methods are in good agreement with the the-
oretical result of a standard square membrane suffering
equibiaxial planar tension.

The FE model of the hyperelastic membrane has identi-
cal geometry and dimensions to that of the actual specimen.
In order to reduce computational cost, a quarter of the spec-
imen was utilized with symmetry conditions imposed on the
left and lower planes for modeling equibiaxial planar tension

tests on standard square EAP membranes. To facilitate the
convergence of the model for simulating practical equibiax-
ial tension tests, the tension mode was simplified. The ramp
displacements were eventually applied to the uniformly dis-
tributed lines instead of clips after evenly partitioning the
upper and right planes of the specimen into several regions
(Figure 4). The model was meshed using three-dimensional
eight-node hybrid solid elements (C3D8H). The mesh seed-
ing was controlled with an approximate global size and ver-
ified, resulting in a total of 2500 elements. The Ogden model
is used in this work, and the material parameters of the EAP
membrane are taken from the literature [17].

The experimental accuracy will vary depending on the
equibiaxial planar tension method used. Moreover, the
deformation uniformity will fluctuate depending on how
many clamping points are used in the test. Other tension
methods, such as two-corner-point-fixed tension and multi-
point tension of two-corner-point-fixed tension, were also
simulated in addition to the single-corner-point equibiaxial
planar tension method.

Once the boundary conditions for the square specimen
have been defined, displacement loads can be applied to
the tensile points. In the single-corner-point tension (as
illustrated in Figure 4), a 45° displacement direction was
set for the corner’s tensile point relative to the tensile direc-
tion, resulting in two perpendicular and equal displacements

X

Y

Z

(a) (b)

Figure 4: FEM simulation of single-corner-point equibiaxial planar tension on square specimen: (a) scheme of the model and (b) deformed
shape after tension.

X

Y

Z

(a) (b) (c)

Figure 5: FEM simulation of two-corner-point-fixed equibiaxial planar tension: (a) scheme of the model and (b) deformed shape of the
tension with five points along one edge, and (c) deformed shape of the multipoint tension with nine points along one edge.
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being applied to this point. In the two-corner-point-fixed
tension, the distance between two clips clamped on perpen-
dicular edges and close to the corner must remain constant
during stretching. Therefore, two pairs of equal and perpen-
dicular displacements are applied to those points (see
Figure 5). The tensile points were increased in the multi-
point tension (Figure 5(c)) based on the two-corner-point-
fixed tension. Other points in the equibiaxial planar tension
were free of tangential except for the corner point and the
points along the symmetry axis. The axial tensile force F is
calculated in the simulation by adding the tensile forces fn at
each tensile point (n = 1, 2,...,NP, whereNP is the total number
of tensile points along the edge), and the tensile forces near or
at the corner are taken from their force component.

3. Results and Discussion

The equibiaxial tension tests mentioned above were con-
ducted on a horizontal plane. One-layer and two-layer
membranes with identical geometric dimensions were
selected as specimens for the tests to account for experi-
mental inaccuracies resulting from structural bending
moments, manufacturing errors, friction between moving
parts, and other factors. The accuracy of experimental data
can be verified by comparing and analyzing the impact of
system errors in the test rig. The one-layer square mem-
brane has geometric dimensions of 100mm × 100mm × 1
mm, while the two-layer membrane specimen consists of
two laminated one-layer membranes. The specimens were
stretched at an extremely low speed ( _λ≈5×10-4 s-1) to sat-
isfy quasistatic conditions. Because the force transducer is
positioned at the corner of the 90° V-shaped slide, the ten-
sile force F in Equation (11) is equivalent to the measured
tensile force multiplied by the coefficient of 1/

ffiffiffi
2

p
.

3.1. Analysis of Experimental Results. Based on experimental
data, the stress-strain curves (S-λ) were calculated and
presented in Figure 6, which includes both one-layer and
two-layer equibiaxial single-corner-point planar tension
data. Additionally, the stress-strain curve obtained from a
two-corner-point fixed tension test was also included for
comparison [37].

It can be seen from Figure 6 that the behavior curves
obtained from one-layer and two-layer specimens utilizing
the single-corner-point tension method exhibit minimal
deviation, indicating negligible system error during testing.
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Figure 6: Comparison among the results of various equibiaxial planar tension tests.
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Figure 7: Hyperelastic models vs. experimental data of equibiaxial
planar tension.
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Although the stresses of the one-layer specimen abnormally
increased under high tensile ratios, this was mainly caused
by the roller getting stuck behind the tensile point. However,
after processing, the data returned to normal. The stress
fluctuation amplitude in the two-layer experimental data is
smaller and smoother due to a large tensile force.

The stresses from the single-corner-point tension tend to
exceed those from the two-corner-point-fixed tension within
the stretch range of approximately 2.25 (as shown in
Figure 6), but the stresses from the two-corner-point-fixed
tension grow larger as the stretch increases continually. This
is primarily due to the fact that the data from the single-
corner-point tension were only obtained under quasistatic
condition without relaxation, whereas the tensile forces from
the two-corner-point-fixed equibiaxial tension are acquired
after stretching the specimen under quasistatic conditions
( _λ ≈ 5 × 10−4s−1) and relaxing for about 10 minutes. When
the stretch increases in the two-corner-point-fixed tension,
the tensile forces increase abnormally due to significant dis-
tortion occuring near the corner of the specimen.

3.2. Fitting from Experimental Data. The model parameters
can be obtained through fitting the experimental data.
Because the measured tensile force of a two-layer specimen
subjected to single-corner-point tension is more stable, three
typical models were fitted using this data, as depicted in

Figure 7. The residuals obtained from curve fitting were
assessed using the root mean square (RMS) as defined in
Equation (12), where N denotes the number of data points,
Yg represents the generated equibiaxial tensile stress, and
Ym corresponds to the actual measured stress.

RMS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

i=1
Yg ið Þ − Ym ið ÞÀ Á2n ovuut : ð12Þ

The model parameters and RMS are listed in Table 1,
along with the results obtained from the two-corner-point-
fixed tension test for comparison purposes. Generally speak-
ing, a large number of model parameters will lead to higher
accuracy in fitting. According to the RMS, the first-order
Mooney-Rivlin model with only two parameters has limited
applicability within a narrow range of stretch. On the other
hand, models such as Yeoh and Ogden with more parame-
ters exhibit good fitting accuracy over a wider range and
can be employed for larger deformation analyses (about λ
> 2). Among these models, the three-parameter Yeoh model
achieves even higher fitting accuracy than the four-
parameter Ogden model. The overall fitting accuracy of
the model is lower due to the larger fluctuation of experi-
mental data from the two-corner-point-fixed tension,
despite the RMS values being close among all three models.

LE, Max. principal
(Avg: 75%)

+2.479e + 00

+2.275e + 00

+2.070e + 00

+1.866e + 00

+1.662e + 00

+1.457e + 00

+1.253e + 00

+1.049e + 00

+8.441e – 01

+6.397e – 01

+4.354e – 01

+2.310e – 01

+2.658e – 02

(a)

LE, Max. principal
(Avg: 75%)

+2.506e + 00

+2.415e + 00

+2.325e + 00

+2.235e + 00

+2.145e + 00

+2.055e + 00

+1.965e + 00

+1.875e + 00

+1.784e + 00

+1.694e + 00

+1.604e + 00

+1.514e + 00

+1.424e + 00

(b)

LE, Max. principal
(Avg: 75%)

+2.405e + 00

+2.207e + 00

+2.008e + 00

+1.810e + 00

+1.612e + 00

+1.413e + 00

+1.215e + 00

+1.017e + 00

+8.184e – 01

+6.200e – 01

+4.217e – 01

+2.234e – 01

+2.506e – 02

(c)

Figure 8: Strain contour maps in equibiaxial planar tension test: (a) two-corner-point-fixed tension, (b) single-corner-point tension, and (c)
multipoint tension with two- corner-point-fixed.

Table 1: Material parameters in three hyperelastic models.

Model
Parameters RMS/-

Two-corner-point-fixed
tension

Single-corner-point
tension

Two-corner-point-fixed
tension

Single-corner-point
tension

Mooney-Rivlin
C10/MPa 2.19E-2 2.53E-2

3.37E-3 3.42E-3
C01/MPa -3.50E-4 -9.21E-4

Yeoh

C10/MPa 2.16E-2 2.56E-2

3.17E-3 1.76E-3C20/MPa -1.24E-4 -4.58E-4

C30/MPa 1.00E-6 6.85E-6

Ogden

μ1/MPa 4.03E-2 1.43

3.22E-3 1.91E-3
α1 1.81 -1.65

μ2/MPa 7.16E-1 -1.47

α2 1.69E-2 -1.75
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3.3. Analysis of Simulation Results. Figure 8 presents three
strain contour maps, which reveal that the strains are non-
uniform near the tensile points in equibiaxial planar tension.
Moreover, some areas between two corner tensile points
exhibit no deformation in two-corner-point-fixed tension
(Figure 8(a)). Although increasing the number of tensile
points in Figure 8(c) leads to an overall increase in deforma-
tion, it fails to eliminate the stress shielding phenomenon
near the corner. In contrast, the deformation in single-
corner-point tension (Figure 8(b)) is more uniformly dis-
tributed across most rectangular areas around the center,
with the exception of a small region near the tensile points
(including the corner).

3.3.1. Strain along the Symmetry Axis. The nonuniformity of
deformation during equibiaxial tension will have an impact
on the accuracy of the derived strain used to determine
stress-strain behavior, ultimately resulting in lower experi-
mental accuracy. A series of observation points were
assigned along the symmetry axis, and the positions are
expressed as a ratio of their geometry position from the cen-
ter to the length of the unformed specimen (Ls/2). The

stretch ratio λc of the central segment can be selected as a
representative value for calculating the stress-strain relation-
ship of the specimen. The ratio of λc to the external stretch
ratio, λo, calculated from the tensile point can serve as an
indicator of tensile efficiency ηλ. In this paper, a maximum
displacement up to λo = 4:6 (equivalent to 180mm) was uti-
lized for the three tension tests. λc is then taken to normalize
the stretch ratios from observation points, i.e., λ/λc. This
allowed for the derivation of relative axial strains in different
equibiaxial planar tensions, as shown in Figure 9.
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Figure 9: Comparison of the axial deformation in different equibiaxial planar tension tests: (a) two-corner-point-fixed tension, (b) single-
corner-point tension, and (c) multipoint tension with two- corner-point-fixed.

Table 2: Summary of the performance of various equibiaxial
planar tension tests.

Tension method
Two-corner-
point-fixed

Single-corner-
point

Multipoint

Stress error (%)
λ = 4 6.2 2.1 4.6

ηλ (%)

λO = 4:6 93.9 91.4 98.1
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The figure illustrates that the stretch ratios vary at differ-
ent positions along the axis, with a slight decrease in ampli-
tude of no more than 5% from the beginning. However, after
exceeding about 80% of the overall axial length, the stretch
ratios gradually increase due to tensile forces acting on the
tensile point and reach their maximum at the point. The
maximum strain at the tensile point will decrease due to
the increasing number of tensile points (Figure 9(c)), which
is beneficial for improving the tensile efficiency and reducing
rig volume. The tensile efficiencies ηλ (at λO = 4:6) for the
three planar tensions are tabulated in Table 2.

The deformation of the single-corner-point tension
(Figure 9(b)) is overall more uniform, with strain fluctuation
amplitude remaining below 1% for 85% of the axial length.
In contrast, in the two-corner-point-fixed tension and the
multipoint tension (Figures 9(a) and 9(c)), the same ampli-
tude is observed within approximately 40% and 50% of the
axial length, respectively. Therefore, it can be asserted that
a more uniform strain can be achieved by utilizing sampling
data within the aforementioned range of the specimen dur-
ing tension testing. The same conclusions can also be
obtained when the tensile point does not pass through the
symmetry axis, but the variation trend of the strain will be
opposite.

3.3.2. Stress-Strain Relationship. Sum up the tensile forces at
each tensile point, including the force component near or at
the corner point, and then calculate the nominal stress using
Equation (11). By selecting λc as the strains of the specimen,
the stress-strain relationships of the hyperelastic membrane
under different tensions can be derived (see Figure 10).

It is evident that the stress-strain curves obtained from
the three typical equibiaxial planar tension tests agree with
theoretical calculations, and any discrepancies will increase

as the stretch ratio rises due to distortion. Among them,
the simulation results of the stress-strain relationship in
the single-corner-point tension are the closest to the theoret-
ical values due to relatively uniform overall deformation,
with a stress error of approximately 2.1% at λ = 4. The high-
est tensile efficiency (ηλ = 98:1) is achieved through multi-
point tension with two-corner-point-fixed at λO = 4:6, as
this method increases the number of tensile points and
ensures more complete specimen deformation. The stress
errors (at λ = 4) are also listed in Table 2.

4. Conclusion

Equibiaxial planar tension tests are widely used as test
methods for characterizing various hyperelastic membrane
materials, but the accuracy of these methods has never been
discussed. This article presents a multifunctional equibiaxial
planar tension test rig for carrying out the single-corner-
point equibiaxial planar tension test of hyperelastic EAP
membrane material. The experimental results were com-
pared with those of the two-corner-point-fixed planar ten-
sion test. It is found that the stress-strain curve from the
single-corer-point tension is more smooth, especially at large
deformation.

By means of finite element software, namely, ABAQUS,
the two test methods were modeled, and the simulation for
the multipoint tension with two-corner-point-fixed was
carried out. The obtained stress-strain curves were com-
pared with that from the theoretical calculation. The simu-
lation reveals that the single-corner-point tension can
effectively avoid the stress shielding phenomenon near the
corner of the specimen and yield a stress-strain curve that
is closer to the theoretical one and agrees with the experi-
mental result.

Uniformity in deformation is believed to affect the
experimental accuracy. Therefore, the deformation of the
above-mentioned three tension tests was also analyzed. In
this paper, the ratio of the stretch ratio near the center of
the specimen to the external stretch ratio calculated from
the tensile point was defined as tensile efficiency, which also
indicates the overall deformation degree. It was found
through a calculation that increasing the tensile points can
obtain higher tensile efficiency, which also helps reduce the
force error and design a compact test rig.

The conclusions derived in this paper can provide good
guidance for the design of equibiaxial planar tension test rigs
and a reference for the analysis of experimental accuracy.
Although this paper focuses on the three typical equibiaxial
planar tension methods, it can easily be extrapolated to other
types of equibiaxial planar tension tests.
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