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In the emerging modern technology of additive manufacturing, the need for optimization can be found in literature in many
places. Additive manufacturing (AM) is making an object layer by layer directly from digital data. Previous works of literature
have classified additive manufacturing processes into seven types. However, there is a lack of comprehensive review describing
the optimization challenges and opportunities in the material extrusion process (polymer technology) and also the need for
FDM polymer materials application in impeller making. In this review paper, a specific optimization method called
multicriteria decision-making (MCDM) from the mathematical programming technique used in additive manufacturing
polymer technology (AMPT) is discussed. The other topics such as different types of optimization techniques, applications of
different MCDM tools and their applications in different fields including AM, and the optimization challenges and
opportunities in AMPT particularly impeller application are discussed.

1. Introduction

Additive manufacturing (AM) has been used everywhere in
the manufacturing industry in recent decades [1]. AM has
many advantages such as less waste during production,
lower production cost, and direct production from design
data. In this, material extrusion process polymer technology
is attracting more attention due to many features such as
raw material availability, low cost of raw material, and low
cost of production machinery [2]. The polymer raw mate-
rials are used to produce end products for many applications
like automobile, medical, and civil engineering. A lot of
research is being done to improve this technology, and one
of the most important is operational research [3]. Operation
research is a subject from the scientific mathematical tech-
nique used to make decisions in difficult situations [4]. It is
divided into three categories and can be seen in Figure 1.
Vijay et al. used optimization approaches to investigate the

thermal conditions of several polymer composites and then
ranked the composites as a result [5]. Jothibasu et al.
explored the different polymer composite mechanical prop-
erties using optimization techniques, and the result selected
the best composite for making an L-framed flower stand
application [6].

Using the MCDM optimization technique, Singaravelu
et al. performed the research on various polymer composite
brake frictions. Their findings showed that the boron graph-
ite composition is the best among the various compositions
[7]. The natural fibre polymer composite was investigated
by Manoharan et al. using the Taguchi optimization
approach, with the goal of identifying the ideal process
parameter for natural fibre [8]. With the aid of the Taguchi
optimization approach, Binoj et al. examined the areca fruit
natural polymer composite fibre process parameter optimi-
zation and determined the ideal process parameter [9]. Man-
nan et al. did research on natural polymer composite for
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construction applications, and their findings produced a
composition that was suitable for achieving a high level of
mechanical strength [10, 11]. Natrayan et.al investigated
the soybean oil-reinforced polymer composite shear strength
with different compositions using an optimization method
and their result ranked the high-strength composition [12].
Based on the literatures, optimization is the method of
choosing the best and is a part of our daily life. There are
several steps involved in optimization such as describing a
system mathematically, finding the variables and conditions
that are satisfying, describing the properties of the system,
and finding the state of the system.

1.1. Optimization Techniques in Operation Research. De
Leon-Aldaco et.al [13] reviewed the power converters’ meta-
heuristic optimization methods and classified the operation
research optimization techniques as follows.

1.1.1. Mathematical Programming Techniques. In this
method, the decision maker’s opinions are converted into
numerical values and solved with a decision matrix, for
example, MCDM (multicriteria decision-making) and linear
and nonlinear programming.

1.1.2. Stochastic Process Techniques. This method application
is known by previous researchers to give an approximate
solution, for example, queuing theory and renewal theory.

1.1.3. Statistical Method. This method is used to evaluate the
experimental results and select the appropriate one, for
example, DOE and the Taguchi method.

From this, the application of MCDM methods in addi-
tive manufacturing’ material extrusion process (polymer
technology) has very less research only carried out. There-
fore an extensive review of MCDM and also a few DOE
methods are proposed to optimize problems in the additive

manufacturing material extrusion process. In the first step,
MCDM and DOE optimization methods, additive
manufacturing, and, especially, the material extrusion pro-
cess can be seen. Then, the optimization challenges and
opportunities in additive manufacturing polymer technology
are explained in detail. More specifically, the novelty of this
research is focusing on optimization in additive manufactur-
ing polymer technology in impeller applications. Finally, the
summary and conclusion show how well the research pur-
pose was accomplished.

1.2. MCDM (Multicriteria Decision-Making). MCDM is a
method of selecting a suitable alternative from more than
one alternative [14]. Previous researchers have applied this
method to complex decision-making situations in many
fields. The MCDM technique has been used in many names
in previous literature such as multicriteria decision analysis
(MCDA) [15], multiobjective decision analysis (MODA)
[16], and multiattribute decision-making (MADM) [17].
Stojcic et al.’s [18] review explored how the MCDM method
has been widely used in two ways, like qualitative and quan-
titative research, by previous literature. Figure 2 describes
the hierarchy of the MCDM method and more details are
given in Section 3. MCDM tools are AHP (analytical hierar-
chy process) [19], TOPSIS (technique for order of preference
by similarity to ideal solution) [20], ANP (analytical network
process) [21], BWM (best worst method) [22], FAHP (fuzzy
analytical hierarchy process) [23], COPRAS (complex pro-
portional assessment) [24], and PROMETHEE (preference
ranking organization method for enrichment of evaluations)
[25]. In this, a pairwise matrix is created based on the opin-
ions of the decision maker, and it is converted into numeri-
cal values from 0 to 9 (based on the MCDM tool/technique)
[26]. Then, the created pairwise matrix is evaluated by basic
steps like criteria weight, consistency ratio, and random
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Figure 1: Classification of optimization techniques [13].

2 Advances in Polymer Technology



index [27]. Finally, the alternatives are ranked based on the
decision matrix and priority values. On the basis of ranking,
the necessary alternative is selected by the decision-maker.

1.3. DOE (Design of Experiment). The design of the experi-
ment is considered as an optimization technique that helps
to analyze the data by conducting an experiment easily
through knowledge and techniques and to find its correla-
tion [28]. DOE is a structured technique used to find the
relationship between input and output variables [29]. Also,
it is used to find which parameter most influenced the result.
DOE is used in many fields like agriculture [30], engineering
[31], and defense [32]. Three such DOE strategies have been
used by previous researchers like examining multiple factors
simultaneously [33] and examining multiple factors together
[34], and one factor is examined at a time [35]. Anderson
and McLean [36] have classified the DOE as the factorial
design (finding main effects on prices), response surface
design (finding the maximum and minimum response of
various factors), mixture design (finding ideal proportion
in mixture processes), and optimal design (used to find suf-
ficient details).

Factorial design is divided into two categories such as
full factorial design (experiment conducted for all factors
and levels) and fractional factorial design (experiment con-
ducted only for certain combination levels), and the Taguchi
design is also a type of factorial design. It is also believed that
sustainability can be achieved through the use of optimiza-
tion techniques in many fields. Additive manufacturing is
considered to be a growing field in the current manufactur-
ing industry, and also, the optimization needs to find a lot of
processes [37].

1.4. Additive Manufacturing. The contribution of additive
manufacturing in the manufacturing sector has attracted
a bit more attention in recent times as compared to con-
ventional manufacturing [38]. The main reason for this
is many advantages such as lightweight, low material wast-
age of material, low cost, less lead time, low emission, and

facilities that can easily produce hard material [39]. As
proof of this, the use of additive manufacturing in form-
ing, castings, etc. industries has increased gradually [40].
It consists of seven methods as shown in Figure 3 with
its modern technology and raw materials. Liquid polymer,
discrete particle, molten material, and solid shield systems
are several types of AM technology. In this binder jetting,
3D printing, ink jetting, S-print, and M-print technology
are used in which metal polymer and ceramic raw mate-
rials are used. The vat photopolymerization process uses
stereolithography and digital light processing technologies
and uses photo polymer and ceramics raw materials. The
sheet lamination method uses ultrasonic consolidation
and laminated object manufacture technology and hybrid
metallic ceramic raw material. The material extrusion pro-
cess uses FDM technology and polymer raw material.
Material jetting uses polyjet, ink jetting, thermojet technol-
ogy, and wax raw material. The powder bed fusion process
uses SLS, SLM, EBM, and DMLS technologies and raw
materials like polymer, ceramic powders, metal powders,
and ceramic. Finally, in direct energy deposition, technol-
ogies such as LP-DED, LW-DED, AW-DED, and EB-
DED and metal, metal alloy, wire, powder, ceramic, and
polymer raw materials are used. However, the material
extrusion method only has the lowest technical cost and
raw material costs. Although many researchers have
conducted many researches on the material extrusion
method, some research gaps can be seen in the optimiza-
tion area. In particular, this review article describes current
problems such as the selection of production machinery
and supplier selection.

1.4.1. Material Extrusion Process (Polymer Technology). In
the material extrusion process, the filament (polymers) is
passed through a hot extruder to form a final product layer
by layer according to the given (.STL) design [42]. Material
extrusion is a method with very low-cost raw material and
machine costs compared to all other AM processes. The
lower cost of raw materials and machinery gets more
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Figure 2: Hierarchy structure of multicriteria decision-making technique.
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attention in the market for increased producers and users
of AM. Thermoplastic polymers like PLA (polylactic acid)
and ABS (acrylonitrile butadiene styrene) are used as raw
materials in the form of filament and the standard fila-
ment wire diameter used as 1.75mm [43]. FDM machine
and their important components such as filament spoof,
filament, extruder, melting zones, molten filament, and
object in the build platform are shown in Figure 4. Each
polymer raw material has its unique properties, for exam-
ple, PLA is a biodegradable material [44], and ABS is a
toxic material [45]. So, it is used in many applications like
medical [46], pipe making [47], and impeller making [48]
based on the raw material properties. A previous literature
review revealed that the FDM-fabricated impeller of the
rotodynamic hydraulic pump performed similarly to the
original impeller.

Filament spoof is the roll of polymer filament in the wire
format, and it is connected with extruders. The extruders
have heated with the melting zone when the wire filament
passes through the melting zone.

Printing parameters play an important role in the mate-
rial extrusion 3D printing process. One of the most impor-
tant printing parameters is the infill pattern such as
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Figure 3: Different processes/technologies/materials in additive manufacturing [38–41].
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Figure 4: Material extrusion process (software: draw.io-online
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hexagonal, line, and triangle printing in which Figure 5
shows the microstructure of the hexagonal pattern. In this,
the printing shape and distance of the hexagonal pattern
and the average gap between the two layers are calculated
as 454.6μm.

Figure 6 illustrates the microstructure of the line pattern
and the 822.5μm average spacing for two adjacent lines.

Finally, Figure 7 describes the microstructure of the tri-
angle pattern and the 612.7μm average spacing between
the two layers. These three remarkable patterns were pro-
duced by an FDM printer using PLA filament and
described with the help of a FESEM image for this

research. Based on this result, the hexagonal pattern is rec-
ommended for production in the material extrusion
method because it is observed only for a low construction
gap between two layers. Also, the solid infill pattern is hav-
ing more conductivity after the spatter coating. Therefore,
the microstructure of the solid infill pattern is unable to
find with spatter coating. However, the remaining patterns
can be selected according to the infill percentage, user’s
application, etc.

Figure 8 illustrates the entire additive manufacturing
process and some important material extrusion raw mate-
rials and their applications.
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2. Optimization Challenges in Additive
Manufacturing Polymer Technology

Optimization is the process of selecting the desired or suit-
able one from among several alternatives [49]. As illustrated
in Figure 9, resource, weight, cost, and process are chosen

for the optimization ways. The current optimization prob-
lem identified in the material extrusion process is as follows.

2.1. Machine Selection. The sales of similar FDM machines
with slightly different features are increasing day by day in
the market [10, 16, 50, 51]. Also, choosing the most suitable
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machine for the users from the various machines that have
got the same sales rating on the online platforms is consid-
ered to be the current challenge so commercial companies
can use optimization techniques to reduce investment and
end product costs. Figure 10 described the optimization
problems in the material extrusion process and proposed
optimization tools.

2.2. Supplier Selection. FDM machine users suffer a lot
because after purchasing a machine, services such as repair
or replacement of parts are not available properly from sup-
pliers. Therefore, it is considered very important for whole-
salers to choose distributors [10, 17, 52, 53] who provide
proper sales and service. Solving this using any suitable
MCDM method would be a novelty.

2.3. Logistic Selections. 3D printing manufacturers are largely
independent of production. So, logistics is a bit more expen-
sive and takes delivery time [54–58]. Additive manufactur-
ing can solve logistics problems when manufacturers
combine production. Especially in India, known as small
industries development corporations (SIDCO), governments
adopt policies to consolidate clusters of similar industries.
This makes logistics continuous and cost-effective. There-
fore, integrating FDM commercial manufacturers is consid-
ered very important in choosing the right logistic partners.

2.4. Raw Material Selections. Large numbers of smaller mol-
ecules or repeating units, known as monomers, are joined
together chemically to form polymers, which are referred
to as macromolecules.

Within a single polymer molecule, the degree of order,
the relative orientation, and the kind of monomer can all
vary. The benefits of polymers, including their low price,
flexibility of manufacture, water resistance, and suppleness,
have led to their use such as industry. Depending on the
manufacture, various types of polymers can be found as
powders, granolas, filaments, and resins. Polymers called
thermoplastic are used in the material extrusion. It is fusible
when heated [59]. This review article describes the most
important polymers and their properties and applications.
It is a novelty to use MCDMmethods to select the most suit-
able polymer for the user among polymers with similar uses.
The various types of polymers and their applications are
shown in Table 1.

2.4.1. PLA (Polylactic Acid). PLA is made from organic
source sugarcane or corn starch. Its molecules are renewable
so it can also be known as biodegradable material. It is often
used to make medical, scaffolds, and prototypes as shown in
Figure 8. Also, its melting point is calculated to be 195°C to
220°C. It is priced from INR 869 onwards in the Indian mar-
ket. Moreover, PLA is not ideal for high-temperature appli-
cations. According to results from tests on creep behaviour,
PLA’s behaviour resembled that of a weakly cross-linked
elastomer the most, which caused the creep curve to be held
to a constant limit under light loads. Previous literature pre-
sented PLA as a material to consider when looking for long-
term use based on their findings. Comparing this polymer to
other polymers, its fair price, eco-friendly biocompatibility,
and suitable physicomechanical characteristics have made
it an excellent choice. [60–65].

COST

PROCESS OPTIMIZATION WEIGHT

RESOURCES

Figure 9: Different applications of optimization.
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2.4.2. ABS (Acrylonitrile Butadiene Styrene). ABS filament
is styrene and acrylonitrile derived from polybutadiene. It
is a toxic filament and is used for external use only and
is also considered more suitable for higher temperature
applications than PLA. As mentioned in Figure 8, com-
puter hardware, prototypes, and pipe-making purpose
ABS are used. The ABS melting point is calculated to be
210°C to 240°C. Previous research on ABS’s mechanical
characteristics in the manufacture of impeller pumps dem-
onstrated that ABS can be thought of as a good choice for
the manufacture of impellers [65–67].

2.4.3. PETG (Polyethylene Terephthalate Glycol). Chemical
impact resistance hardness, ductility, and transparency are
considered the main properties of PETG. As mentioned in
Figure 5, it is used to make packing, domestic products,
impellers, etc. PETG melting point is used between 220°C
and 240°C. Previous research examined the use of PTEG
impellers in pump-jet modules (PJM). A PTEG impeller
exhibited the necessary characteristics while operating for
this application, taking into account the 1200 rpm rotational
speed that produced a thrust of 14N. [68–71].

2.4.4. PEEK (Polyether Ether Ketone). PEEK is a colourless
organic thermoplastic with excellent fire performance and
excellent mechanical strength. As mentioned in Figure 8,
PEEK is used for bearing, piston parts, pumps, oil, gas, etc.
Moreover, its melting point is calculated at 230°C to 250°C.
Extensive researches have focused on the use of PEEK impel-
lers in centrifugal pumps for medical applications because of
the enhanced strength and durability they provide [72–76].

2.4.5. PC (Polycarbonate). Bisphenol A is a toxic substance in
polycarbonate, so it is used for external use only. However,
PC has slightly higher strength and stiffness than other poly-
mer filaments. As mentioned in Figure 8, it is used for safety
glass production, auto parts, and led light production. PC
melting point is used between 250°C and 285°C in the
FDM printers [2, 77–80].

2.4.6. PP (Polypropylene). PP is lightweight, flexible, chemi-
cal resistant, and tough. Therefore, as mentioned in
Figure 8, it is mostly used for rope, carpet, clothing, and
packing, and its extruder melt temperature is calculated
from 220°C to 250°C. Also, PP is slightly more flexible than
PLA [81–83].
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Figure 10: General optimization problems and methodology in the material extrusion process.

Table 1: Different types of polymers [84–87].

Type of polymer Structure Different polymer

High-performance
polymers

Semicrystalline
Polyether ether ketone, liquid crystal polymer, polyphthalamide, polyphenylene sulfide,

polycyclohexylenedimethylene terephthalate, and polyimide

Amorphous Polyethersulfone, polyethylenimine, and polyphenylsulfone

Engineering
polymers

Semicrystalline
Polybutylene terephthalate, polyvinylidene difluoride, nylon, polyamide, and polyethylene

terephthalate

Amorphous Poly(ADP-ribose), polycarbonate (PC), polysulfone, and modified polyphenylene oxide

General use
polymers

Semicrystalline Polylactic acid, polypropylene, and low-density polyethylene

Amorphous
Polyethylene terephthalate glycol, acrylonitrile styrene acrylate, acrylonitrile butadiene styrene,

poly(methyl methacrylate), polyvinyl chloride, high-impact polystyrene
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2.4.7. Nylon. Nylon filament has high flexibility and high
toughness. Its extruder melting point is calculated at
250°C, and also, nylon is used in clothing, seat belt, and con-
veyor applications as mentioned in Figure 8 [88–90].

In all polymer filament materials, composite filaments
are available in the market with 90% parent polymer and
10% another polymer according to the application, for
example, ABS+, ABS Premium, PLA Pro, PLA+, PLA car-
bon fibre, and PETG carbon fibre [91–94].

2.5. Raw Material Manufacturer Selection. The same poly-
mer raw material or filaments are prepared by many manu-
facturers of different qualities in the Indian market. It is
considered difficult to choose the best polymer raw material
based on online ratings alone. Therefore, it is considered a
novelty to investigate a polymer raw material using the opti-
mization MCDM method based on the experimental result
for different manufacturers same filament [95–97].

3. Opportunities of Optimization
Techniques in AMPT

The purpose of this review article is how to solve all the opti-
mization problems mentioned above using MCDM and the
statistical method which is a common mathematical pro-
gramming technique. Accordingly, Figure 2 illustrates the
general hierarchy of the MCDM method, and the aim/goal
means the problem to be solved. It is considered the first step
in MCDM methods.

Then, the second step is to identify common criteria for
alternatives depending on the objective. Finally, priority
values are determined using any of the MCDM methods
for the alternatives based on each criterion. Through this
ranking, the alternative with the highest value is recom-
mended to the decision-makers. This process is known as
multicriteria decision-making [98–103].

For example, the hierarchy is illustrated in Figure 11,
considering the machine selection problem. In which the
selection of a suitable FDM machine is the aim/objective.
The price of the machine, extruder type, build platform,
safety guards, etc. is common criteria for alternatives.
Finally, alternatives are FDM machines, namely, X (Wan-
hao Duplicator 4S), Y (Flashforge Creator Pro), and Z
(MakerBot Replicator Plus). Moreover, if the MCDM tool
called AHP is used to calculate the priority value for the
alternatives, then the criteria weight, consistency ratio,
random index, and pairwise matrix are found through
the Saaty scale.

Then, it is confirmed whether the nature of the pairwise
matrix is correct. Then, depending on each criterion, separate
priority values are found through another pairwise matrix for
alternatives with the help of the Saaty scale. Finally, by sum-
ming all the identified priority values, the final priority values
are obtained for the alternatives. A high-value alternative is
recommended to the decision maker.

Various important and significant MCDM methods and
their uses in different fields can be seen in Table 2, and this
method can also be done analytically (data collection—col-
lect the opinions based on a numerical scale and solved).
Therefore, in similar problem situations in the material
extrusion process, the decision-maker can ease the use of
the appropriate MCDM tool.

According to the statistical method, based on the exper-
imental result, any optimization tool is applied, and a suit-
able solution is given to the end user. For example, taking
the machine selection problem, innovative research can be
carried out by producing a product on more than one
machine and depending on the results, using an appropriate
statistical tool. What is necessary to use the statistical tool in
this is that the results obtained have distinct characteristics
from each other. Statistical tools are used to make the
decision-makers choose the appropriate option easily. It is
worth noting that experimental optimization has been
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MAKERBOT
REPLICATOR
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Figure 11: Hierarchy structure of machine selection problem [18].
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extensively explored by previous researchers [142–148].
Figure 12 explores the experimental optimization procedure.

4. Material Extrusion Polymers in
Impeller Application

An impeller is considered the main part of turbomachinery.
The work of the impeller is to convert the velocity of the
working fluid into pressure due to the very fast rotation
[149]. Impeller application also plays an important role in
many fields, for example, pumps [150], medical [151], auto-
mobile [152], and aerospace [153]. In injection moulding
and other traditional impeller production techniques, raw
materials such as polymeric, metal glass, stainless steel, tita-
nium, aluminium, and nickel alloy are frequently utilized.
Metal impellers achieve only slightly lower efficiency due
to their heavy weight. Efficiency can be increased when using
thermoplastic polymer impellers with low weight and high
strength. The main kinds of thermoplastics are amorphous
and semicrystalline. Different thermoplastic polymer forms
like powders, granules, and filaments. The benefits of this
class of polymer include its capacity to be recycled, high duc-
tility, and impact resistance when compared to thermosets.
The modulus of the thermoplastic item is typically less than
5GPa, though this might vary based on the object’s chemical
constitution and production process. At present, the AMPT
method is used to produce the final product directly from
the given design in less time and more accurately. Polymer

impellers were first used in the heating ventilation and air
conditioning (HVAC) and microorganic ranking cycle
(mORC) and refrigeration systems. Polymers like PEEK,
PLA, and ABS have been used for the first time for impeller
application. The ABS impeller met the anticipated operating
condition taking into consideration the working environ-
ment and safety factor (FoS), which is the ratio of elastic
modulus to the maximum equivalent stress. One of the key
benefits of employing this polymer was the ability to manufac-
ture the impeller at a lower cost by using ABS, which enables
the mass production of mORC. It is also noteworthy that only
PEEK-GF30 [154] has been used in the composite rotary com-
ponent. Impellers are manufactured using a minimal amount
of polymers when using an additive manufacturing process.

PLA has been utilized in the manufacturing of impellers
for pumps and marine applications. However, since PLA
and ABS are both easily accessible, these two categories of
thermoplastic have been investigated in various experiments
as pump impellers. Pump and compressor applications for a
variety of industries, including the automotive, aerospace,
and medical sectors, place a high value on PEEK impellers.
Pump and mORC applications have both utilized PETG
impellers. For the production of pump blades, this polymer
was chosen because of its excellent water resistance and bio-
degradability. Metals have been replaced by carbon fibre
polymer-matrix composites, one of the most effective fami-
lies of materials. These kinds of composites can be divided
into categories based on the type of fibre condition, such as

Choose the area
Identify the

optimization
problem

Conduct the
experiment

Required test

Data analysis using
statistical tools

Discussion of test
resultsFinal decision

DECISION MAKING

Figure 12: Steps of an experimental optimization tool.

Figure 13: Polymer impeller CAD design into slicing softer image (online free software: Flashforge 5.0).
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short or continuous. Epoxy, which has been frequently uti-
lized as a matrix for these composites, is a thermoset, and
PPS, PEEK, PI, and PEI are thermoplastics. In the case of a
microturbine generator, a PEEK carbon-reinforced impeller
was suggested as a suitable material to replace an aluminium
impeller. However, the time required to make an impeller
using many polymers (directly or compositely blended like
PLACF and PETG-CF) in the market, changing the printing
parameters, making changes in the manufacturing geometry,
etc. will be an optimization challenge and opportunity in
AMPT for impeller application.

Figure 13 shows the flash forge software for slicing the
impeller design. Choosing optimal process parameters using
the MCDM method will be a novelty for future researchers
because each polymer filament has different process param-
eters like different melting temperatures, printing speed,
and infill.

5. Summary and Conclusions

In this review article, mathematical programming MCDM
and statistical method optimization problems in additive
manufacturing material extrusion are presented. In more
than 147AM material extrusion-related 3D printing selec-
tion, supplier selection, logistic selection, raw material selec-
tion, main properties of raw material (polymers), and raw
material manufacturer selection, interesting new novel prob-
lems through this conclusion provide useful information to
the researchers. This review article also describes the optimi-
zation challenges and opportunities in the use of polymers,
especially in impeller applications. Although material extru-
sion polymers have many sectoral applications, only signifi-
cant research has been done on impeller applications.
Likewise, optimization challenges such as selecting the
appropriate FDM and selecting the appropriate raw material
have been highlighted. Moreover, the optimization opportu-
nity is described with an example based on mathematical
programming techniques and statistical techniques. Many
fields like transport, logistics, energy, civil engineering, and
other engineering disciplines have achieved sustainability
by using optimization methods. It describes several applica-
tions of MCDMs so that future researchers can easily find
the appropriate technique to suit their application. Finally,
today’s increasing use of optimization in all fields reflects
its importance and nature of sustainable decision-making.
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