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In addition to being a lipid-lowering medication, atorvastatin (ATV) is an anti-inflammatory agent. When there is a bone defect or
inflammation of adjacent tissues, it aids in bone repair. This study aimed to develop a chitosan–alginate (CS/ALG)–tripolyphosphate
(TPP)–ATV hybrid hydrogel as a drug delivery system, using a tissue engineering scaffold for the first time. For this purpose, a
CS/ALG hydrogel crosslinked with TPP was developed. The delivery profile of ATV and its physicochemical properties such as
particle size and hydrogel swelling percentage were determined. The structure andmorphology of the hydrogels were analyzed using
Fourier transform infrared spectroscopy and scanning electron microscopy. As a result, an alginate–chitosan hydrogel with a TPP
crosslinker was prepared. The results revealed that drug loading was nearly complete, and the first hour revealed a 25% explosive
release. The drug was gradually released over 10 hr at approximately 35%. The amount of crosslinker used significantly influenced the
encapsulation gain and release profiles. Owing to its high porosity and swelling, the CS/ALG hydrogel crosslinked with PPT is an
ideal scaffold for loading drugs, macromolecules, and cells.

1. Introduction

Osteoporosis is a severe medical condition characterized by
low bone mass and deterioration of bone structure, which
increase bone fragility and fracture risk [1]. Patients with
osteoporosis can lose up to 50% of their bone density at
critical skeletal locations [2]. His illness is now treated with
RANK ligand antibodies (denosumab), selective estrogen
receptor modulators (SERMs), teriparatide, and bisphospho-
nates [3]. Most of these drugs prevent bone remodeling by
reducing osteoclast activity and recruiting new osteoclasts.
Although these medications help treat and manage this con-
dition, their long-term use has significant drawbacks. For
example, long-term bisphosphonate therapy has been linked
to atrial fibrillation, jaw osteonecrosis, and severe bone turn-
over inhibition [4]. Long-term SERM (raloxifene) use has
also been linked to venous thromboembolism and fatal

strokes [5]. Therefore, effective therapy is required to
improve bonemineral density and generate new bonewithout
significant side effects associated with long-term medication
[6, 7]. Statins have anti-inflammatory properties, because they
lower the levels of interleukin-6 and interleukin-8. Mundy
demonstrated for the first time an experimental study in
which statins improved bone volume. The trabecular bone
volume increased in rats whose ovaries were removed and
administered 5–10mg simvastatin daily for 35 days [8].

Simvastatin, another statin medication, has been shown to
increase the amount of bone tissue, the rate at which bone tissue
is produced, and the strength of spongy bone tissue [9]. Several
processes involved in statin drugs and bone metabolism are of
particular interest. These substances stimulate osteoblast activity,
which is stimulated by bone morphogenetic protein-2. Statins
also inhibit hydroxymethylglutaryl coenzyme-A reductase and
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lowermevalonate production, thereby interfering with osteoclast
function and increasing apoptosis, which prevents bone resorp-
tion. Statins have an anti-inflammatory effect, causing bone
defects in the affected bone and surrounding tissues. Statin use
may also aid bone healing [10].

The effect of atorvastatin (ATV) on the proliferation,
migration, and invasiveness of primary smooth muscle cells
isolated from human saphenous veins after loading into a hya-
luronic acid hydrogel was studied. The results show that the
hydrogel is a viable substrate for local drug administration
because it allows for the steady release of ATV over hours,
resulting in multiple changes in the vascular smooth muscle
cells phenotype that are similar to those produced by the drug
freely dissolved in the cell environment [11]. Another study
used a crosslinked hyaluronic acid hydrogel/poly(lactic-co-gly-
colic acid) microparticle formulation loaded with ATV to
develop a simple drug delivery system to prevent intimal hyper-
plasia (IH). A carotid artery ligationmodel was used to validate
the in vivo proof of concept. The combination of rapid and
continuous ATV release has a synergistic effect on IH develop-
ment. There was no evidence of harm to the collected tissues
[10]. In another study, Özdoğan et al. [12] discovered that
combining ATV with chitosan improved anti-inflammatory
activity and bone and tissue healing in periodontitis-induced
rats. Therefore, using osteoimmunomodulatory biomaterials to
create a local immunological environment that promotes bone
regeneration and osseointegration may be an appropriate
method for redressing this imbalance [13]. Natural source-
based materials are promising for biomedical applications
[14–19]. Nanobiomaterials are made using biological resources
such as fungi, plants, and algae [20–23]. Chitin, as a fibrous
substance in the cell walls of some fungi, is the source of chit-
osan. The most important characteristics of chitosan are its
nonantigenicity, excellent biodegradability, biocompatibility,
ease of processing under mild conditions, interaction with cell
matrix components and cell surface receptors, reactive and
changeable groups, and chelating capacity. However, its con-
trolled degradation ensured long-term survival of the encap-
sulated cells. In addition, chitosan can create a dynamic
environment for penetration of tissue defects, making it a
suitable option for use in delivery systems or matrices for
the regeneration of different tissues [24]. In this study, we
aim to design a sensitive, fast, and routine method that can
be implemented at a low cost in the shortest time, and on the
other hand, can be used as a platform that can be developed.

2. Materials and Methods

2.1. Materials. Sodium alginate (Catalog no. 501785611),
chitosan (Catalog no. NC0805453), disodium phosphate,
pentasodium tripolyphosphate (TPP; Catalog no. 106999),
and sodium dihydrogen phosphate were purchased from Sig-
ma–Aldrich. Dimethylformamide (Catalog no. 103034) and
acetic acid (Catalog no. 137000) were acquired from Merck
Co., whereas ATV calcium was acquired from Sobhandarou.

2.2. CS/ALG Hydrogel Fabrication. Chitosan (0.2 g) was dis-
solved in 10ml acetic acid (1%) under stirring conditions for
15min, and the alginate solution was then prepared by

dissolving sodium alginate (0.45 g) in deionized water
(10ml, conductivity at 25°C= 0.02 μS/cm) under stirring
conditions with magnetic stirrer (1,000 rpm) at room tem-
perature for 15min. The above solutions were mixed at a
specific ratio and stirred overnight with a magnetic stirrer
(1,200 rpm) at room temperature to obtain chitosan–alginate
(CS/ALG) as the final product.

2.3. CS/ALG/TPP Hydrogel Fabrication. Chitosan (0.2 g) dis-
solved in 10ml acetic acid (1%), sodium alginate (0.45 g)
dissolved in distilled water, and TPP (0.01 g) as a crosslinker
were mixed. The solutions were stirred overnight with a
magnetic stirrer (1,200 rpm) at room temperature [25]
(Figure 1).

2.4. Preparation of Drug-Loaded Hydrogel. To load the drug,
chitosan (0.1 g) was dissolved in 10ml of acetic acid (1%),
sodium alginate (0.0225 g) in 10ml of deionized water, TPP
(0.005 g) in 2ml of deionized water, ATV in 10ml of deionized
water, and dimethyl fumarate (3ml) in 10ml of deionized water.
The solutions were then mixed and stirred using a magnetic
stirrer (1,200 rpm) overnight at room temperature. Finally, the
CS/ALG/TPP hydrogel containing ATV was obtained.

2.5. Release Study in Phosphate-Buffered Saline. Three sam-
ples (average weight=19.66 g) of CS/ALG/TPP loaded with
ART were dispersed in 25ml of phosphate-buffered saline
(PBS) (pH= 7.4). The hydrogels were then placed in a shaker
incubator (80 rpm) at 37°C. At specific times, PBS (3ml) con-
taining ART in the buffer solutionwas removed,measured using
a UV–visible at 241.5 nm, and resupplemented with a fresh 3ml
of PBS. A set of standard solutions was used to calibrate the
amount of ART present at each time point. The actual drug
concentration was determined using Equation (1) [26]:

Cn¼ Cn:measþ Δv
Vt

∑
n−1

s¼1
Cs:measð Þ; ð1Þ

where n, nth concentration measurement; Cn, corrected drug
concentration; Cn:meas, the acquired drug concentration at
the nth measurement; Δv, the withdrawn volume at each
measurement; and Vt, the total volume of solution.

3. Physicochemical Properties of Hydrogels

3.1. Fourier Transform Infrared Spectroscopy. Fourier trans-
form infrared spectroscopy (FTIR) (Equinox 55 LS 101,
Bruker, Germany) was used to assess the chemical character-
istics of the prepared CS/ALG/TPP. We used a wavelength
range of 400–4,000 cm−1, as in our previous work [27]. The
Infrared (IR) spectra of all KBr-pressed samples were
recorded in CO2 nitrogen gas at room temperature [27].

3.2. Scanning Electron Microscopy of CS/ALG/TPP Hydrogel
Loaded with ART. Scanning electron microscope (SEM)
(LEO 1430 VP, Germany) was used to evaluate the surface
morphology and structure of prepared material according to
our previous works [28] at 15 kV acceleration voltage. Mate-
rials were sectioned into thin slices and vacuum-coated with
Au–Pd thin layer by a Polaron SC7620 sputter coater as used
previously [27].
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3.3. Moisture Content and Swelling Ratio. To evaluate the
swelling performance, freeze-dried hydrogel samples were
immersed in PBS (pH 7.4) at 37°C and evaluated immedi-
ately after the liquid was removed from the hydrogel surface
using a wet sponge. This process was repeated until total
hydration was achieved. The swelling ratio (SR, g/g) was
calculated using Equation (2) [25]:

SR %ð Þ ¼Ws −Wd

Wd
× 100; ð2Þ

where Wd, hydrogel weight before floating in buffer (dry
hydrogel) andWs, weight of hydrogel after swelling in buffer
(wet hydrogel).

4. Results and Discussion

4.1. Characterization of Fabricated CS/ALG/TPP Hydrogel.
The hydrogels in this study were created by simply complex-
ing chitosan, alginate, and TPP solutions (Figure 1). FTIR
spectrometry was used to investigate the chemical structures
of Gierszewska et al. [25]. One of the most important anionic
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FIGURE 1: Schematic representation of the fabrication process of the CS/ALG/TPP scaffold.
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crosslinkers is TPP, which is widely used in the synthesis of
scaffolds, membranes, nanoparticles, and various composites
for medical purposes [29].

In addition, because phosphate groups are necessary for
bone mineralization, TPP is widely used as a crosslinker in
the development of biomimetic polymer systems for bone
regeneration.

The degree of crosslinking can affect the homogeneity,
porosity, hydrophilicity, and mechanical properties of scaf-
folds [30]. Consequently, a precise duration of the crosslink-
ing stage is crucial for obtaining systems with exceptional
performance. This negative phosphate crosslinker is fre-
quently used to form positive ammonium chitosan crosslinks.
Because instant gelation results in the formation of precipi-
tates, simple mixing of chitosan and TPP solutions in tissue
engineering applications is not an appropriate method for
regulating the crosslinking reaction. Consequently, numerous
methods for preparing CS-TPP systems with a controlled
degree of crosslinking have been developed, such as those
based on the ionic strength of the CS solvent in the presence
of NaCl or the slow diffusion of TPP in the CS solution. This
was used to create uniform membranes. In this study,
CS/ALG scaffolds were crosslinked by immersion in TPP
solution. To investigate the effects of various experimental
conditions on scaffold performance, scaffolds were prepared
with various concentrations of CS (1% and 2% w/w) and
alginate, as well as two concentrations of TPP (1% and 2%
w/w), and various reaction times (2, 4, and 8 hr). FTIR spec-
tral range: the formation of chitosan crosslinks was confirmed
by the crosslink scaffold composed of CS/ELG/TPP.

Figure 2(a)–2(c) depicts the FTIR spectra of chitosan,
alginate, pentasodium TPP, and their mixtures [31].

Except for TPP, all spectra exhibited a strong and broad
antisymmetric band at approximately 3,430 cm−1, which was
caused by the overlap of O–H and N–H stretching vibrations
of the functional groups involved in hydrogen bonding.
Chitosan possesses characteristic bands at 1,650 cm−1 (asso-
ciated with the stretching vibrations of carbonyl amide 1),
1,598 cm−1 (associated with the bending vibrations of the
first type of nonacetylated aminoglycoside), and 1,560 cm−1

(related to the bending vibrations of the N–H group of amide
type 2).

Chitosan’s saccharide structure is characterized by
absorption bands at 2,253 cm−1 (asymmetric stretching vibra-
tions of C–O–C bonds), 1,083 cm−1, and 1,031 cm−1 (skeletal
vibrations including C–O bonds). When chitosan was cross-
linked with TPP, a new absorption band was observed at
1,635 cm−1, owing to the antisymmetric vibration of N–H
in the NH2 groups. After the ion crosslinking of chitosan
with TPP, additional changes in the IR spectrum were
observed. The absorption at 1,215 cm−1 was due to the
stretching vibrations of the C=O bond of the crossphosphate
linker groups [25].

4.2. Swelling Study of CS/ALG/TPP Hydrogel. The SR was
measured to evaluate the swelling performance of the pre-
pared CS/ALG/TPP hydrogel containing ART and quantify
its water uptake ability. The SR values of the prepared

hydrogels are shown in Figure 3. Swelling is caused by liquid
absorption by the polymer, and can be calculated by measur-
ing the hydrogel mass. The mass SR data revealed that the
Chit/Alg/TPP hydrogels exhibited 700%–800% swelling in
the first few hours and 1,000% swelling after 30 hr, before
decreasing to approximately 800% [32]. The swelling behav-
ior and structural stability of hydrogels are critical for their
practical use in tissue engineering. Most natural polymers,
including chitosan, rapidly swell in biological fluids. Previous
research indicates that early swelling is favorable and that the
resulting increase in pore size promotes cell adhesion and
development in a three-dimensional structure [33]. On the
other hand, persistent swelling may result in loss of mechan-
ical integrity and maceration of the surrounding tissue [32].

4.3. SEM Study of CS/ALG/TPP Hydrogel. SEM was used to
investigate the morphological and surface properties of
CS/ALG/TPP-containing ART hydrogels. Figure 4 shows
the SEM images of the hydrogels. Images captured by SEM
of the CS/ALG/TPP freeze-dried hydrogel containing ART
revealed the morphology of the hydrogel. Examination of the
hydrogel architecture revealed that the scaffold had a highly
porous structure with interconnected pores generated by
phase separation during lyophilization. The hydrogel struc-
ture is completely permeable. The holes are approximately
30 μm in size, which facilitates bone cell adhesion and devel-
opment and is advantageous for cell attachment and migra-
tion [34].

4.4. Porosity Determination of CS/ALG/TPP Hydrogel. SEM
was used to investigate the morphological and surface prop-
erties of CS/ALG/TPP-containing ART hydrogels. Figure 4
shows the SEM images of the hydrogels. Images captured by
SEM of the CS/ALG/TPP freeze-dried hydrogel containing
ART revealed the morphology of the hydrogel. Examination
of the hydrogel architecture revealed that the scaffold had a
highly porous structure with interconnected pores generated
by phase separation during lyophilization. The hydrogel
structure is completely permeable. The holes are approxi-
mately 30 μm in size, which facilitates bone cell adhesion
and development and is advantageous for cell attachment
and migration [35]:

P ¼ V1 − V3ð Þ
V2 − V3ð Þ × 100%; ð3Þ

where V1= 9, V2= 9.05, V3= 8.4, and P= 92%.
After crosslinking, the hydrogel was 92% porous (Fig-

ure 3), and after 24 hr in water, it swelled by a shock of 98.6%.
Numerous studies have reported the amount of water

absorption and swelling of alginate and chitosan hydrogels
crosslinked with TPP. After approximately 24 hr, the maxi-
mum swelling percentage of the crosslinked CS/ALG hydro-
gel was 98.6%, which is greater than the values reported in
the literature [36, 37]. The results showed that using a TPP
crosslinker is beneficial, and because the structure of the
hydrogel is highly porous (92%), the expansion percentage
can be significantly increased.
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4.5. Cumulative Release Study. This study investigated the
release of ART from CS/ALG/TPP hydrogels in PBS (pH
7.4) at 37°C for 10 and 24 hr (Figure 5). Standard deviations
of the samples were calculated. The drug release profile was

examined at 37°C and a pH of 7.4. The results revealed that
the drug was released explosively in the first hour at
approximately 25% (Figures 5(a) and 5(b)) and then grad-
ually for 10 hr, at a rate of approximately 35%. After 24 hr,
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FIGURE 4: Scanning electron microscope images of CS-AlG-TPP freeze-dried hydrogel containing ATV with magnifications of (a) 10 μm, (b)
50 μm, and (c) 100 μm.
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there was no significant increase in the percentage of drug
released (Figure 5(b)). The gradual release of ATV from the
alginate–chitosan microspheres was studied. Because TPP
crosslinking does not occur in this system, the swelling per-
centage and amount of drug loading are lower, and drug
release from these microspheres is slow and complete after
25 hr [38]. This suggests that the drug was retained in the
three-dimensional network formed by TPP, and that the
drug molecules entrapped within the porosity of the hydro-
gel were slowly released. During the first hour, 20% of the
drug attached to the hydrogel is released via surface absorp-
tion. The percentage of crosslinkers significantly influenced
the encapsulation gain and release profiles. Increasing the
proportion of crosslinkers is expected to increase the pro-
portion of drug loading while decreasing and limiting the
proportion of drug release; thus, optimizing the proportion
of crosslinkers is critical.

5. Conclusion

CS/ALG hydrogels were prepared and loaded with ATV at
various ratios and percentages of TPP crosslinker. The
results showed that the drug was loaded with an approxi-
mately 100% gain during crosslinking. The drug release pro-
file from the hydrogel was investigated, and the results
showed that the percentage of drug release was relatively
low owing to drug retention in the three-dimensional TPP
network. The results of this study demonstrated that the
crosslinked CS/ALG hydrogel could be a suitable scaffold
for loading all types of drugs, macromolecules, and cells
because of its swelling percentage and high porosity. The
drug loading and percentage of release are expected to be
controlled by adjusting the ratio of the two polymers and
crosslinker. Future studies should consider scaffold cell com-
patibility tests, such as hemolysis and cytotoxicity. Further-
more, stability studies, biodegradability determination, and
modification of the drug release profile via a change in the
crosslinker ratio will help to improve this study. Finally, the
scaffolds mentioned above can be studied further in cell and
animal studies for bone tissue engineering and stem cell
differentiation in the presence of ATV.
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