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Automatic detection of fabric defects is important in textile quality control, particularly in detecting fabrics with multifarious
patterns and colors. This study proposes a fabric defect detection system for fabrics with complex patterns and colors. The
proposed system comprises five convolutional layers designed to extract features from the original images effectively. In addition,
three fully connected layers are designed to classify the fabric defects into four categories. Using this system, the detection accuracy
is improved, and the depth of the model is shortened simultaneously. Optimal detection rates for testing dirty marks, clip marks,
broken yams, and defect-free were 88.01%, 90.15%, 98.01%, and 97.73%, respectively. The experimental results show that the
proposed method is effective, feasible, and has significant potential for fabric defect detection.

1. Introduction

Image classification is the foundation of defect classification
using computer vision and plays a significant role in
manufacturing product quality control. Defects on the fabric
is one of the most important factors that affect the quality and
price of textiles. Most defects on the fabric are caused by textile
machine failures and problems in production. To the best of
our knowledge, the detection of fabric defects remains primar-
ily manual, which has low efficiency, high labor cost, and low
accuracy. In addition, fabric defects are becoming increasingly
difficult to detect because of the wide variety of fabrics and
increasingly complex patterns and colors. With the advance-
ment of science and technology, computer vision with higher
detection accuracy and lower cost has gained widespread inter-
est in fabric defect classification applications.

In recent years, several techniques have been proposed to
improve the accuracy of fabric defect detection [1–4]. Kumar
[5] presented a method for segmenting local textile defects
based on a feed-forward neural network. This effective
method offers a low-cost and single-PC-based solution for
fabric defect classification. Pourkaramdel et al. [6] proposed
a novel approach based on one dimensional local binary

patterns. The experimental results have showed that the pro-
posed approach has a high detection rate for different sur-
faces such as stone, paper, and textile. Seçkin and Seçkin [7]
proposed a new feature extraction method called intertwined
frame vector feature extraction for defect detection. These
features are used in machine learning classification algo-
rithms. The experimental results have shown that the proposed
method is faster and provides higher accuracy. Li and Zhang
[8] proposed a novel automatic inspection scheme using smart
visual sensors for warp knitting machines. The proposed
scheme was effective, and its classification rate reached 98%.
Çelik et al. [9] proposed a method adaptable to different fabric
types based on a machine vision system. The system could
detect defective areas in a denim sample with an average
true classification rate of 91.7% and a false classification rate
of 6.5%. These methods consist of two processes: First, they
describe the image characters extracted from the original
images and then use them as input to the classifier. This
method typically relies on human feature selection, which
significantly affects the classification results if the selected
features are incomplete.

Many studies have demonstrated that deep learning per-
forms excellently in feature learning and classification tasks.
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Convolutional neural networks (CNNs) exhibit excellent
performance in image recognition and classification [10, 11].
Usually, the accuracy of a CNN can be improved through
various aspects, such as network architecture, nonlinear activa-
tion functions, supervision components, regularization
mechanisms, and optimization techniques [12]. These
improvements have led to further research on image classifica-
tion using deep convolutional neural networks (DCNNs).
DCNN has shown advantages and potential in various areas
of classification tasks, such as traffic density measurement [13],
medical diagnosis [14], visual recognition [15], and facial rec-
ognition [16, 17]. Recently, Jing et al. [18] proposed a modified
AlexNet using CNN for the classification of yarn–dye fabric
defects. The experimental results showed a promising perfor-
mance with an acceptable average classification rate and strong
robustness for yarn–dyed fabrics. Yao et al. [19] builds a deep
learning defect detection network incorporating an attention
mechanism. The number of samples of each defective type were
enriched by the data augmentation strategy. The experimental
results show that this algorithm can effectively detect 39 cate-
gories of fabric defects. Zhang et al. [20] proposed a lightweight
network for defect detection in resource-constrained scenarios,
the network improving small defect detection accuracy by
applying the channel attention mechanism to extract more
refined defect features under the complex background distur-
bance. Alruwais et al. [21] developed a novel hybrid mutation
moth flame optimization with deep learning-based smart fabric
defect detection technique for sustainable manufacturing. The
experimental values demonstrate that the accuracy of the pro-
posed method is 95.47%. However, it is difficult for these exist-
ing methods to achieve better adaptability, owing to the wide
range of fabrics with complicated patterns and colors. The
existing deep learning techniques are usually too complex to
be run and trained on an industrial computer with limited
computing resources.

This study aims to accurately detect microdefects in fab-
ric with multifarious patterns and colors. To classify the
defects, a model for feature extraction is proposed. These
features are solely used for fabric defect classification without
any other processing. The model uses batch normalization
(BN) and inception to decrease the depth of the network with
the same precision and enhance the training speed. The pro-
posed model effectively detects microdefects in fabrics with
various patterns and colors and can be used for automatic
detection in fabric production lines.

2. Detection Algorithm for Fabric Defects

Inspired by the traditional AlexNet [22] and the application
of other typical models [23, 24], the proposed model for
fabric defect detection consists of BN and inception. BN
has recently proven its effectiveness and importance in
deep learning [25]. Each time a SGD is executed, the corre-
sponding activation is normalized using a minibatch to make
the mean of the computed result zero. Using x as the training
sample, the BN formula is as follows:

bx kð Þ ¼ x kð Þ
− E xk

Â Ã
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var xk

Â Ãq ; ð1Þ

where k represents the kth dimension of the data. E½xk� : andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½xk�

p
: are the expectation and variance of training sam-

ple x, respectively.
The absolute value of bxðkÞ is significantly small, and the

overall data are located in the nonsaturation zone of the
sigmoid. To solve this problem, an inverse transformation
is performed to ensure the recovery of the original data using
the following formula:

y kð Þ ¼ γkbxk þ βk; ð2Þ

where γ and β are trainable parameters.
The accuracy of DCNN can be improved by adding

nodes or layers. However, this leads to model overfitting
and increases the computational cost. The inception model
adds nodes to a DCNN while increasing the layers [26].

Figure 1 shows the architecture of the inception model.
To eliminate the influence of the filter size on the recognition
results, multiple features were extracted using filters of dif-
ferent sizes. The inception model uses 1× 1 convolutions,
3 × 3 convolutions, 5 × 5 convolutions, and max pooling
of size 3 × 3 convolutions in paper. Figure 1(a) shows a naive
version of the inception model. However, the paper indicated
that the parameters of the inception model filters are the sum
of all branches, leading to a computational blowup within a
few stages.

1× 1 convolutions can reduce the dimensionality of the
output matrix and combine information in different chan-
nels. That is, 1× 1 convolutions can be used to compute
reductions before the expensive 3× 3 convolutions, 5× 5
convolutions, and after max-pooling layers. Figure 1(b)
shows the final inception model.

Based on our experience, the size of the input images is set
to 224 × 224 with three color channels. Next, the inception
layer, which is stacked by 1× 1 convolution kernels, 3 × 3
convolution kernels, 5 × 5 convolution kernels, and max
pooling with a filter size of 3 × 3 follows, as shown in Figure 2.
Then, average pooling with a filter size of 3 × 3 is performed,
which can reduce the estimator of variance caused by the
limits of neighborhood size. Next, there are two fully con-
nected layers of 256 neurons. A dropout follows the two fully
connected layers to avoid overfitting. In the training proce-
dures, the last fully connected layer has the same number of
neurons as the number of output classes, which is the
obtained output matrix. Subsequently, the defect type is then
obtained using the SoftMax activation function. After the
DCNN is trained, the SVM classifier replaces the SoftMax
classifier and the last fully connected layer for the final classi-
fication. In this case, the size of the output feature map of the
last fully connected layer is 1× 1× 256.
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The loss between the predicted and actual labels is calcu-
lated using sigmoid cross-entropy. The next step is to train
the model and optimize the loss. Gradient descent is a typical
practice for solving optimization problems. A gradient
update is performed each time all database data are required.
However, the update speed is slow, and the model cannot be
updated online. Therefore, Bottou [27, 28] proposed a SGD,
which can converge to the global minimum of the convex
function and local minima of the nonconvex function. Using
SGD, the update speed is fast, and the model can be updated
online. Despite the extensive use of gradient-based optimi-
zation techniques for DCNN and image classification, the
method remains a challenge because of its substantial limita-
tions. Therefore, improved optimization techniques have
been proposed, including Momentum [29], Adagrad [30],

Adadelta [31], RMSprop [32], and adaptive moment estima-
tion (Adam) [33]. The advantage of Adam is that the learning
rate is restricted to a limited scope in each iteration by the bias
correctionmethod to enable comparatively stable parameters.
Hence, the loss function is f ðθÞ: and its gradient is gt ¼
rθt−1f ðθt−1Þ :. θ is a parameter. Based on the concept of
momentum in physics, the gradient is replaced by accumu-
lated momentum, resulting in the following formula:

mt ¼ β1 ×mt−1 þ 1 − β1ð Þ × gt; ð3Þ

nt ¼ β2 × nt−1 þ 1 − β2ð Þ × g2t ; ð4Þ

bmt ¼
mt

1 − β1
t ; ð5Þ

Filter
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1 × 1 Convolutions 3 × 3 Convolutions 5 × 5 Convolutions 3 × 3 Max pooling

Previous layer

ðaÞ

Filter
concatenation

1 × 1 Convolutions 1 × 1 Convolutions 1 × 1 Convolutions 3 × 3 Max pooling

5 × 5 Convolutions 1 × 1 Convolutions3 × 3 Convolutions

Previous layer

ðbÞ
FIGURE 1: Inception module architecture. (a) Naive version of the inception model. (b) Inception module with dimensionality reduction.
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bnt ¼
nt

1 − β2
t : ð6Þ

mt and nt denote the mean and variance of the gradient,
respectively. bmt and bnt modifymt and nt , respectively. When
β1 is 0.9 and β2 is 0.9999, the parameter update formula is as
follows:

θt−1 ¼ θt −
bmtffiffiffiffiffiffiffiffiffiffiffiffiffibnt þ ϵ

p : ð7Þ

It was found that the gradient estimate does not require
additional memory and is dynamically adjusted by the gradi-
ent. In addition, the learning rate is dynamically constrained

by −
bmtffiffiffiffiffiffiffiffibntþϵ

p . ϵ is used to ensure that the denominator is a

nonzero value.

3. Experiment

3.1. Image Dataset and Evaluation Criteria. Samples with
fabric defects were obtained from an umbrella factory.

Generally, there are four types of fabric defects: dirty marks,
clip marks, broken yams, and defect-free defects. A fabric
dataset, including large and small datasets, was created.
The large dataset contained 4,000 fabric images, including
four defect types: dirty marks, clip marks, broken yams, and
defect-free. The images were randomly divided into training
and validation sets in a 5 : 1 ratio. A small dataset containing
2,000 fabric images was selected for the testing sets, and it
included four classes: dirty marks, clip marks, broken yams,
and defect-free. Typical defect samples in the fabric datasets
are shown in Figure 3.

The improved defect inspection equipment is shown in
Figure 4. The fabric images were captured using a line-scan
digital camera. Furthermore, the line light source is behind
the fabric. Image storage and inspection are performed by a
computer.

To evaluate the performance of the fabric defect detec-
tion system, accuracy (ACC), false positive rate (FPR), and
recall rate are adopted. ACC, FPR, and recall rate are defined
as Equations (8), (9), and (10), respectively. A high FPR
repeatedly stops the machine because of a false alarm,
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FIGURE 2: Architecture of proposed DCNN.
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significantly affecting the generation efficiency. A low recall
rate can result in defective products going to market. Fur-
thermore, a low recall rate affects product quality.

ACC¼ TPþ TN
TPþ TNþ FPþ FN

× 100%; ð8Þ

FPR ¼ FP
FPþ TN

× 100%; ð9Þ

Recall¼ TP
TPþ FN

× 100%: ð10Þ

where TP is the number of defective samples classified cor-
rectly, TN is the number of nondefective samples classified
correctly, and FN and FP are the numbers of defective and
nondefective samples falsely detected, respectively.

3.2. Training and Testing. The training set was used to train
the proposed DCNN model. The choice of training parame-
ters was as follows: (1) An optimization algorithm was used

to optimize the parameters of the model, and four gradient
descent variants were used as optimizers to compare the
performance of the proposed method. (2) The learning rate
controls the training speed of the network weights and must
be set to a value within a range to ensure that the model has
good performance. Learning rates of 0.01, 0.001, and 0.0001
were used to train the model. (3) A batch size of 32 was set
based on the sample size of fabric defects. (4) The epoch is a
cycle period that includes one forward and one backward
transmission for training all samples. The following formula
was used: epoch¼ðTotal sample=batch sizeÞ:=iteration¼ 1.
We expected to achieve the required results by training the
model through multiple iterations.

4. Results and Discussion

The performance of the proposed DCNN model was evaluated
using the training, validation, and testing sets. The input samples
of fabric defects were resized to 224×224, and the evaluation
was conducted with learning rates of 0.01, 0.001, and 0.0001; the
number of iterations was set to 2,000. Table 1 shows the recog-
nition performance using different learning rates. The learning
rate of 0.001 yielded the highest performance.

To demonstrate the effectiveness of the proposed DCNN
model, BN and inception were removed from the model. The
learning rate of the models is 0.001. The performances are
presented in Table 2. As shown in Figure 5, removing either
BN or inception did not yield better accuracy.

ðaÞ ðbÞ

ðcÞ ðdÞ
FIGURE 3: Fabric defect types: (a) dirty marks; (b) broken yams; (c) clip mark; and (d) defect-free.

FIGURE 4: Defect inspection equipment.

TABLE 1: Performance of proposed DCNN for 2,000 iterations.

Learning rate ACC (%)

0.01 86.9
0.001 92.7
0.0001 87.3
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Table 3 lists the detection and false detection rates of the
proposed model with different optimizers. The detection
accuracy of the proposed model using different optimizers
is shown in Figure 6. When SGD and Momentum were used
as optimizers, the proposed DCNN model exhibited low
classification accuracy. When Adam and RMSProp were
used as optimizers, the detection accuracy and recall rate
of the proposed model were high and similar; however,
RMSProp exhibited a higher FPR.

In addition, AlexNet is a traditional DCNN with good
performance in classification tasks, whereas YOLOv8 is a
state-of-the-art image recognition method. Therefore, the
performance of the proposed model was compared with
AlexNet and YOLOv8 and evaluated. The hyperparameters
of the models are listed in Table 4, and the results are listed in
Table 5. Our proposed model exhibited a lower accuracy and
recall rate than that of YOLOv8; however, in practical appli-
cations, real-time detection is a key index, which directly

TABLE 2: Comparison of the performance of models without BN or inception.

Model ACC (%) FPR (%) Recall (%)

Removed BN 87.5 1.3 90.5
Removed inception 52.3 5.2 68.2
Proposed DCNN model 92.7 0.6 99.7
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FIGURE 5: Performance of models without BN or inception.

TABLE 3: Classification accuracy using different optimizers.

Optimizer ACC (%) FPR (%) Recall (%)

SGD 62.7 2.3 85.6
Momentum 84.5 1.3 86.2
RMSProp 90.4 1.2 99.2
Adam 92.7 0.6 99.7

6 Advances in Polymer Technology



affects production efficiency. Therefore, the network structure
proposed in this paper is relatively simple, so the running time
of the proposed method can meet the real-time requirements
of application scenarios. The experiments in this work
are based on the GeForce GTX 1080Ti, and the runtime is
135ms, which meets the real-time demand.

In the above experiments, the proposed DCNN model
exhibited excellent performance using a batch size of 32 and

a learning rate of 0.001. To generalize our experiment and
results, we repeated our experiments 10 times using the vali-
dation and testing sets and calculated the average of all times
as the final classification accuracy. Table 6 presents the results.

We calculated the number of false detections for different
types of fabric defects in the testing set, as shown in Figure 7,
and the false detection rates for different types of fabric
defects are listed in Table 7.
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FIGURE 6: Detection performance using different optimizers.

TABLE 4: Hyperparameters of the models.

Parameters AlexNet YOLOv8 Proposed DCNN model

Training option Adam SGD Adam
Batch size 135 64 32
Learning rate 0.001 0.01 0.001
Epoch 15 160 20
Weight decay — 0.0005 —

TABLE 5: Performance of the proposed model compared with AlexNet.

Model ACC (%) FPR (%) Recall (%) Runtime (ms)

AlexNet 80.9 6.6 87.5 120
YoLoV8 95.3 0.3 99.7 580
Proposed DCNN model 92.7 0.6 99.7 135
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In the experiments, better results were achieved in terms
of the detection rates of the datasets. This proves that the
proposed DCNN model performs well regarding detection
rate. However, a low detection rate was still obtained for dirty
and clip marks, which is possible because the characteristics
of dirty and clip marks are similar.

5. Conclusion

Deep learning is an effective image-classification method.
This study proposed a fabric defect detection model based
on a DCNN to ensure the quality of fabrics with multifarious
patterns and colors. The application to fabrics with multifar-
ious patterns and colors showed that the proposed DCNN
model achieves good accuracy for fabric defect detection.
The experimental results showed that the proposed model
can achieve a detection accuracy of 92.7%.

Although the proposed DCNN model exhibited good
performance, it still requires further improvement that can
be covered in future studies. (1) The number of samples is
not sufficient; hence, a database of other defects, such as
hanging threads and buttonhole selvage, is required. (2)
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Clip mark
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FIGURE 7: Number of each defect misclassification.

TABLE 7: Misclassification rate for each fabric defect.

Fabric defect ACC (%)

Dirty marks 91.8
Clip mark 93.6
Broken yam 98.9
Defect-free 98.4

TABLE 6: Detection rates on validation samples and test samples.

Run ID 1 2 3 4 5 6 7 8 9 10 ACC

Validation accuracy (%) 91.66 92.11 92.84 93.15 92.58 92.70 92.75 93.23 92.68 92.93 92.66

Test accuracy (%)

Dirty marks 86.91 87.22 86.73 87.12 87.54 88.01 86.45 87.26 87.51 86.73 87.15
Clip mark 86.52 88.71 87.38 85.82 89.07 89.15 89.46 90.05 85.75 90.15 88.21
Broken yam 97.35 98.44 98.12 98.32 97.96 98.02 98.73 98.16 98.01 97.79 98.09
Defect-free 96.44 97.58 97.36 97.48 96.62 96.49 96.94 97.70 97.01 97.73 97.14
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Increase the speed of the training process and improve accu-
racy by optimizing the network. (3) The network is opti-
mized using optimization techniques such as initialization
schemes and skip connections.
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