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Melanoma diferentiation-associated gene 5 (MDA5) and the laboratory of genetics and physiology 2 (LGP2) are family
members of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), which play important roles in the immune
response against pathogens invasion. In the present study, MDA5 and LGP2 genes were identifed in largemouth bass
(Micropterus salmoides), a fsh species with a great economic value. Te two proteins contained similar conserved domains
and motifs as their counterparts of other vertebrates, including the DExDc domain (the DEAD/DEAH box helicases
domain), HELICc domain (helicases superfamily domain), and regulatory domain (RD). Real-time qPCR revealed that the
two genes were constitutively expressed in tissues of healthy fsh and could be induced in the spleen by polyinosinic and
polycytidylic acid (polyI:C) challenge in vivo. Also, selective pressure analysis revealed that the negative selection had roles
in the evolutions of the two genes. Furthermore, the dsRNA binding mechanism of msLGP2 and msMDA5 were analyzed by
the molecular docking strategy. Te amino acids of msLGP2 involved in dsRNA binding were V604, N663, L682, and L684,
which were located in the regulatory domain (RD) of msLGP2. Te amino acids of msMDA5 involved in dsRNA binding
were G429, H434, L842, and L845, which were located in the DExDc domain and the RD domain of msMDA5. Tese results
indicated that fsh LGP2 and MDA5 might share similar functions and ligand binding mechanism as their mammalian
counterparts.

1. Introduction

Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs)
are important host pattern recognition receptors (PRRs)
which are involved in sensing RNA of a replicating virus in
the cytoplasm [1]. Mammalian RLR family consists of three
members, namely, RIG-I, melanoma diferentiation-
associated gene 5 (MDA5), and laboratory of genetics and
physiology 2 (LGP2) [2]. RIG-I and MDA5 share similar
structures. Both of them contain two N-terminal caspase
activation and recruitment domains (CARDs) that act as
signaling domains, a central DExD/H RNA helicase domain,
also known as “Walker motif,” that is involved in ATP

hydrolysis and RNA binding, and a C-terminal domain
(CTD) that aids in ligands recognition [3]. LGP2 lacks the
two CARDs but possesses the DExD/H RNA helicase
domain [4].

It has been found that mammalian RIG-I can recog-
nize ssRNA with 5′-phosphates (5′ ppp-ssRNA), short
dsRNA (<1 kb) and poly (dA-dT) DNA [5, 6]. MDA5 is
a sensor of long dsRNA (>3 kb) including synthetic an-
alogs (e.g., polyinosinic: polycytidylic acid (polyI:C)) [7].
After binding their ligands, RIG-I or MDA5 will bind the
adaptor molecule, mitochondrial antiviral signaling
adaptor (MAVS), and trigger the expressions of in-
terferons (IFNs) and other proinfammatory cytokines to
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eliminate the virus [8]. LGP2 can also recognize dsRNAs
and 5′ ppp-ssRNA but is unable to interact with MAVS
due to the lack of the CARD domain [9]. LGP2 was
initially identifed as a feedback inhibitor of RIG-I/
MDA5-trigged IFN signaling [10]. Recent report found
that fsh and human LGP2s switched regulatory roles from
a positive one to a negative one in increasing concen-
trations of poly (I: C)-triggered IFN response [11].

Until now, RLRs had been characterized in several fsh
species [1, 12], with surprisingly fnding that RIG-I was
absent in some fsh species, such as large yellow croaker,
mandarin fsh [13], and snakehead [12]. Fish RLRs shared
similar structures and functions as mammalian RLRs, which
could be induced by dsRNA, polyI:C, or viruses (e.g., grass
carp reovirus (GCRV) and viral hemorrhagic septicemia
virus (VHSV)) [14–16]. It had been confrmed that dsRNA
was the ligand of fsh RIG-I and MDA5 [17], whilst the
ligand of fsh LGP2 remains unclear. In addition, teleost
RLRs could be induced by LPS or bacterial infections.
Edwardsiella ictaluri induced the expressions of RIG-1,
MDA5, and LGP2 in the liver of channel catfsh (Ictalurus
punctatus) [18]. LPS exposure upregulated the expressions of
RIG-1, MDA5, and LGP2 in primary trunk kidney cells of
grass carp (Ctenopharyngodon idella) [14]. Tese results
indicate that fsh RLRs were involved in the immune defense
against bacterial and viruses.

Largemouth black bass (Micropterus salmoides)
(Lacepède, 1802) has become an economically important
fsh species due to its fast growth and favor [19]. However,
studies on largemouth bass RLRs have not been reported. In
the present study, the sequences and structures of large-
mouth bass LGP2 andMDA5 (msLGP2 andmsMDA5) were
analyzed, and their expressions in normal tissues and the
spleen following polyI:C challenge were detected. Further-
more, the polyI:C binding ability of msLGP2 and msMDA5
were evaluated. Also, the evolutionary process of LGP2 and
MDA5 was analyzed based on selective pressure. Our results
provide the basis for understanding the immune functions of
fsh RLRs.

2. Materials and Methods

2.1. Fish. Tis study was strictly carried out in accordance
with the regulations for the Administration of Laboratory
Animals in Jiangsu Province, P. R. China. Fish was anaes-
thetized with ethyl-3-amino-benzoate methanesulfonic acid
(50mg/L, MS-222) (Sigma, USA) for tissue collection [20].

Largemouth black bass (50.0± 5.0 g; 17.5± 1.2 cm) were
provided by Sheyang Kangyu Aquatic Technology Co. Ltd.
(Yancheng, Jiangsu Province, China). Te fsh were accli-
matized to the experimental conditions for at least two
weeks. Te fsh were reared in the indoor circular plastic
tanks (volume: 100 L) and fed with a commercial diet
(45.97% crude protein, 10.42% crude lipid, and 7.79% fber)
twice daily (8:00 and 17:00). During the experimental period,
water temperature and pH were measured daily and the
values were, respectively, controlled as 22± 1°C, 7.0–7.5.
Dissolved oxygen (DO) was controlled over 5mg/L and total
ammonia nitrogen was below 0.5mg/L.

2.2. RNA Extraction, cDNA Synthesis, and Gene Cloning.
Te total RNA of each tissue was extracted using the Trizol
reagent (Sangon Biotech, China) according to the manu-
facturer’s instruction. Ten, the frst strand cDNA was
synthesized using SMART™ RACE cDNA amplication kit
(Clontech, USA), following the manufacturer’s protocol.

Te partial sequences of msLGP2 and msMDA5 were
obtained by searching the splenic transcriptome database
that we constructed previously using local BLAST software
[21]. Te reverse transcription polymerase chain reaction
(RT-PCR) was performed on T100Termal Cycler (Bio-Rad,
USA) with the spleen cDNA as a template and specifc
primers (MDA5-F1/MDA5R1; LGP2-F1/LGP2-R1) that
were designed according to the obtained sequences to val-
idate the correction of the sequences. PCR was carried out in
the 25 μL reaction system as follows: 12.5 μL of 2×EasyTaq®PCR SuperMix (TransGen Biotech, China), 0.1 μM of each
primer, 1 μL of cDNA template, and 11.3 μL of nuclear-free
water. PCR amplifcation was conducted under the condi-
tions of an initial denaturation step at 94°C for 5min, fol-
lowed 35 cycles of 30 s at 94°C, 30 s at 55°C, and 1min at
72°C, and fnally, an extension step at 72°C for 10min. Te
PCR products with the expected size of 893 bp of msMDA5
and 886 bp of msLGP2were ligated into the pMD18-Tvector
(TaKaRa, Japan) and were verifed by sequencing. Next, the
full cDNA sequences of largemouth bass LGP2 and MDA5
were obtained using SMART™ RACE cDNA amplication kit
(TaKaRa, Japan), following the manufacturer’s instructions.
Te amplifed cDNA fragments were assembled to get the
full cDNA sequences of msLGP2 and msMDA5 by using the
SeqMan program in the DNASTAR software (Madison, WI,
USA) [22]. All primers used for gene clone are listed in
Table S1.

2.3. Tissue Distributions of msLGP2 and msMDA5. Seven
tissues including the brain, gill, head kidney (HK), intestine,
liver, skin, and spleen were, respectively, sampled from three
healthy largemouth bass (50.0± 5.0 g; 17.5± 1.2 cm) that
were fasted for 3 days. Te total RNA of each tissue was
extracted using the Trizol regent (Sangon Biotech, China).
Te cDNA used for quantitative real-time PCR (qPCR) were
synthesized using the PrimeScript™ RT reagent kit with
gDNA Eraser (TaKaRa, Japan), following the manufacturer’s
instruction. Expression levels of msLGP2 and msMDA5 in
each tissue were detected using the qPCR method. All
primers used for gene expression analysis are listed in
Table S1.

2.4. Expressions of msLGP2 and msMDA5 in the Spleen fol-
lowing PolyI:C Challenge. A total number of 60 largemouth
bass (50.0± 5.0 g; 17.5± 1.2 cm) were randomly divided into
two groups (30 fsh per group): the polyI:C challenge group
in which fsh were intraperitoneally (i.p.) injected with 1mg/
mL polyI:C (Sigma-Aldrich, USA) (100 μg per 100 g fsh)
[23] and the control group in which fsh were i.p. injected
with the same amount of sterilized phosphate-bufered sa-
line (PBS). During the challenge period, fsh were fed twice
daily. At 0, 6, 12, 24, 48, and 72 h postinjection (HPI), the
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spleen of three fsh in each group was sampled. Te tran-
script changes of msLGP2 and msMDA5 were detected
using the qPCR method. All primers used for gene ex-
pression analysis are listed in Table S1.

2.5. qPCR. Te qPCR was performed on the CFX96 Touch™
real-time PCR detection system (Bio-Rad, USA) using TB
Green™ Premix Ex Taq™ II (Tli RNaseH Plus) (TaKaRa,
Japan). Te reaction volume and reaction conditions were
done as in the previous study [23]. Te relative expressions
of msLGP2 and msMDA5 in normal tissues and spleens
following polyI:C challenge were analyzed using the 2−ΔΔCT

method [24] with β-actin as the reference gene. Te primers
for qPCR were LGP2-F/LGP2-R, MDA5-F/MDA5-R, and
β-actin-F/β-actin-R (Table S1). All data were presented as
the mean± standard error (SE) and analyzed using SPSS
statistics package 24 (SPSS, USA) as described in the pre-
vious studies [23, 25].

2.6. Evolutionary Analysis of LGP2 and MDA5. A total
number of 24 LGP2 sequences and 23 MDA5 sequences
from diferent vertebrate species were obtained from the
NCBI database (https://www.ncbi.nlm.nih.gov) and used for
evolutionary analysis. Te sequence alignment was analyzed
using Clustal O [26].Te phylogenic analysis was carried out
using MEGA 11 software using the neighbor-joining
method and the Jones–Taylor–Tornton (JTT) model, and
the bootstrap value was set as 10,000 replicates [27]. Te
selective pressure analysis was performed using Datamonkey
2.0 program [28]. In brief, the nonsynonymous to synon-
ymous nucleotide substitution rate (ω) was calculated for all
selected nucleotide acid sequences. Te site-wise synony-
mous was estimated using the FEL (fxed efects likelihood)
and SLAC (single likelihood ancestor counting) models. Te
nonsynonymous/synonymous (dN/dS) rate ratio >1 or <1
represents positive selection or negative selection from the
abovementioned two models, respectively. Positive and
negative selected sites were detected and selected from both
two analyzed models according to P value <0.05.

2.7.MolecularDockingofmsLGP2andmsMDA5withPolyI:C.
Te 3D structures of msLGP2 and msMDA5 were con-
structed using the SWISS-MODEL server [29]. Te quality
and quantity of 3D structures were verifed using PRO-
CHECK [30], ProQ [31], ProSA [32], and MolProbity [33].
Te molecular docking of msLGP2 and msMDA5 with
polyI:C was carried out using AutoDock software [34]. In
brief, the PDB fles of msLGP2 andmsMDA5, obtained from
SWISS-MODEL server, were imported and set as receptor
proteins, whereas the PDB fle of PolyI:C was set as ligand
molecule for molecular docking. Te number of GA runs
was set to 50 to obtain the optimal conformation and assess
the docking binding energy and binding sites. Te optimal
conformation result fle was exported and imported into
PyMOL software [35], and the root mean square deviation
(RMSD) value was calculated to see if the docking result was
stable [36]. Te 2D structure of polyI:C (CID: 135478809)

was obtained from the PubChem database [37], and its 3D
coordinates were generated subjecting to chirality, full
charge, and energy minimization in the PRODRG2
server [38].

3. Results and Discussion

LGP2 andMDA5, belonging to the RLRs family, play crucial
roles in the immune response against virus invasion. In the
present study, LGP2 and MDA5 were frst identifed in
largemouth black bass. Ten, their expressions in normal
tissues and the spleen following polyI:C stimulation were
investigated. Our results provided the basis for studying the
function and mechanism of the RLRs signaling pathway.

3.1. Sequence Features of msLGP2 and msMDA5. Te full
cDNA sequences of msLGP2 and msMDA5 were obtained by
RT-PCR and RACE-PCR. Te sequence features of the two
genes are listed in Table S2. In brief, the cDNA sequence of
msLGP2 was 2,326 bp in length, containing 45 bp of the 5′-
untranslated region (UTR), 151 bp of 3′-UTR, and 2,130 bp of
the open reading frame (ORF) which encodes 709 amino acids.
Te cDNA sequence of msMDA5 was 3,368 bp in length,
containing 50 bp of 5′- UTR, 351 bp of 3′-UTR, and 2,967 bp
of ORF encoding 988 amino acids. Both proteins shared
similar amino acids length as their fsh counterparts [12, 13].
Also, the two proteins shared higher sequence identities with
their counterparts of other fsh species than with mammalian
homologous (Tables S3 and S4). msLGP2 had 61.4%–83.4%
sequence identities with fsh LGP2, and whist had 44.7%–
49.5% sequence identities with LGP2 of other vertebrates
(Table S3). Similar to their mammalian counterparts, the two
proteins contained some conserved domains, including the
DExDc domain (the DEAD/DEAH box helicases domain),
HELICc domain (helicases superfamily domain), and regu-
latory domain (RD) (Figures S1 and S2). Among these do-
mains, the DExDc domain contained an ATP-binding site, an
RNA unwinding motif, and a putative Mg2+ binding motif,
which are involved in dsRNA binding and unwinding [39].
TeHELICc domain took part in the cleavage of unmethylated
double-stranded foreign DNA and the self-DNA defense from
damage [40]. Te RD domain was involved in detecting and
binding both ssRNA and dsRNA with 5′-triphosphate con-
taining RNA [41]. Tese domains were important for the
antiviral functions of the two proteins. In addition, these
conserved domains, six conserved helicases motifs (motif
I–VI), were found in the two proteins, with motif I–III located
in the DExDc domain andmotif IV–VI located in the HELICc
domain, which are involved in interacting with dsRNA [42].
Besides, twomore caspase activation and recruitment domains
(CARDs) were identifed in msMDA5 (Figure S2), which are
involved in MAVS activation [43]. Tese conserved domains
or motifs found in msLGP2 and msMDA5 indicated that the
two proteins had similar functions as their counterparts in
other animals. Furthermore, phylogenetic tree analysis showed
that the two proteins of the largemouth black bass were well
clustered with their fsh counterparts, supported by high
bootstrap values (100%) (Figure 1). Tese analyses confrmed
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that the two genes we cloned were exactly the homologous of
other animals.

3.2. Expressions of msLGP2 and msMDA5 in Normal Tissues.
Te expressions of msLGP2 and msMDA5 in normal tissues
of the largemouth black bass were detected using qPCR.
Results showed that the two genes were constitutively
expressed in all selected tissues, including the brain, gill,
head kidney, intestine, liver, skin, and spleen (Figure 2(a)).
Similar results were also observed in Japanese founder [1],
snakehead (Channa argus) [12], mandarin fsh [13],
zebrafsh [15], and grass carp [14, 16], indicating that many
tissues were involved in the LGP2- or MDA5-mediated
immune reactions. However, their expressions in diferent
tissues were varied. MsLGP2 was highly expressed in the gill,
intestine, liver, and spleen and lowly in the brain, HK, and
skin (Figure 2(a)). In contrast, msMDA5 was highly
expressed in the brain, liver, and skin, moderately in the gill,
intestine, and spleen, and lowly in the HK (Figure 2(a)). Te
spleen is important lymphoid organs of fsh [44], and high
expressions of msLGP2 and msMDA5 in the spleen in-
dicated that both genes had important roles in the immune
reaction of largemouth black bass. Among these tissues, the
gill, intestine, and skin are important mucosal immune
organs of fsh [45]. Te high expression of msLGP2 and
msMDA5 in these tissues indicates their roles in the mucosal
immunity of largemouth black bass. Also, expressions of the
same gene from diferent fsh species were distinct.
Snakehead LGP2 was mainly expressed in the intestine, liver,
stomach, heart, and blood [12], and miiuy croaker
(Miichthys miiuy) LGP2 was highly expressed in the kidney
[46], whilst Indian major carp (Labeo rohita) LGP2 was
highly expressed in the blood and liver [47]. Similarly,
common carp (Cyprinus carpio) MDA5 was highly
expressed in gills and the spleen [48], while snakehead
MDA5 was mainly found in the intestine, liver, stomach,
heart, and blood [12].Tus, the expressions of fsh LGP2 and
MDA5 might be species specifc and tissue specifc.

3.3. Expressions of msLGP2 and msMDA5 in the Spleen fol-
lowing PolyI:C Challenge. PolyI:C is a synthetic analog of
dsRNA virus which can induce the fsh RLRs signaling
pathway [11]. Te spleen is an important immune organ of
fsh [49]. As we found that msLGP2 and msMDA5 were
highly expressed in the spleen of healthy fsh (Figure 2(a)),
we further analyzed the expressions of msLGP2 and
msMDA5 in the spleen following polyI:C challenge to study
the potential antiviral functions of these genes. Results
showed that the expressions of the two genes were similar in
the spleen following polyI:C challenge. Te expression of
msLGP2 in the spleen was upregulated from 6h to 48 h post
polyI:C challenge (Figure 2(b)) and that of msMDA5 was
signifcantly induced by polyI:C from 6h to 72 h, when
compared with that with PBS injection (Figure 2(c)). Our
results were in line with the previous studies. Snakehead
LGP2 and MDA5 were induced in the primary cells isolated
from the spleen at 3 h and 6 h post polyI:C challenge [12].
Common carp MDA5 was induced in the spleen from 3 h to

120 h post polyI:C challenge [48]. Also, the Indian major
carp LGP2 was induced in L. rohita gill (LRG) cell at 4 h after
polyI:C stimulation [3]. Similarly, Japanese founder LGP2
was upregulated in leukocytes from 6 h to 48 h post polyI:C
stimulation [1]. In addition, virus infection could regulate
the expressions of LGP2 and MDA5. For example, Japanese
founder LGP2 could be induced from 3 h to 6 h after viral
hemorrhagic septicemia virus (VHSV) infection [1]. Tese
results indicated that fsh LGP2 andMDA5 could be induced
by virus, similar to mammalian LG2 and MDA5.

3.4. Selective Pressure Analysis of msLGP2 and msMDA5.
To better understand the evolution of LGP2 andMDA5 genes,
the selective pressure analysis of the two genes were analyzed
with two site models, the FEL and SLACmodels.Te values of
dN/dS for the two genes were lower than 1, indicating that
both of them were under negative selection pressure. Fur-
thermore, amino acids under positive and negative selection
pressures were obtained (Table 1). Only one positive selection
site was identifed inmsLGP2 (Table 1), which is located in the
RD domain of msLGP2 (Figure S1). Similarly, a previous
study also identifed one positive selection site in miiuy
croaker LGP2 [46]. Four positive selection sites were found in
msMD5 (Table 1), among which two sites (W73 and V572)
were, respectively, located in the CARD1 and DExDc do-
mains of msMDA5 (Figure S2). Te positive pressure se-
lection in those sites may have signifcant efects on the
functions msLGP2 and msMDA5 [50].

3.5.MolecularDockingofmsLGP2andmsMDA5withPolyI:C.
We further analyzed the potential binding mechanism of
msLGP2 and msMDA5 with polyI:C using the molecular
docking strategy. Results showed that both msLGP2 and
msMDA5 could bind with polyI:C (Figures 2(a) and 2(b)).
Te amino acids of msLGP2 involved in binding with polyI:
C were V604, N663, L682, and L684 (Figures 3(a) and 3(c)).
All these four binding sites were located in the RD domain of
msLGP2 (Figure S1). Te amino acids of msMDA5 involved
in binding with polyI:C were G429, H434, L842, and L845
(Figures 3(b) and 3(d)), among which G429 and H434 were
located in the DExDc domain, and L842 and L845 were
located in the RD domain of msMDA5 (Figure S2). It had
been found that both the RD domain and the DExDc do-
main of mammalian LGP2 and MDA5 play roles in dsRNA
binding [31, 39]. Our molecular docking results confrmed
that these domains in fsh LGP2 andMDA5 are also involved
in dsRNA binding, indicating that fsh LGP2 and MDA5
may share similar ligand binding mechanism as their
mammalian counterparts.

In conclusion, two RLRs, LGP2 and MDA5, were
identifed in largemouth black bass. Tese two RLRs were
constitutively expressed in all selected tissues and could be
induced in the spleen by polyI:C challenge. Also, the
negative selection had important roles in the evolutions of
the two genes. Furthermore, the molecular docking strategy
revealed that msLGP2 and msMDA5 might share similar
ligand binding mechanism as their mammalian counter-
parts. Tese results provided the basis for understanding
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the immune functions and mechanism of the two RLRs
in fsh.
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