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Integrated multitrophic aquaculture (IMTA) maximises the nitrogen cycle between system components, including bacteria. In
order to maximise the bacterial role in nitrogen elimination in an IMTA system, we investigated the efect of bivalve culture on
water quality and bacterial community structure in overlying water and sediment in the “shrimp-crab-bivalve-fsh” IMTA system.
Te bacterial composition in overlying water and sediment was measured by Illumina -MiSeq high-throughput sequencing
technology. Te results show that dissolved oxygen was higher in the bivalve culture area. Ammonia and nitrite in the bivalve
culture area were lower than those in the nonbivalve culture area; however, the nitrate and phosphate in the bivalve culture area
were higher than those in the nonbivalve culture area.Te Chao1, Shannon, and Ace indexes were higher in the bivalve area. More
bacteria with nitrifcation and denitrifcation functions were detected in bivalve culture areas, such as Ruegeria (1.05%–4.79%),
Talassobius (0.11%–0.69%), Limibaculum (0.07%–0.69%),HIMB11 (0.13%–0.21%), and Rubellimicrobium (0.01%–0.16%). More
Cyanobacteria were detected in bivalve culture areas with higher phosphate concentrations. To sum up, bivalves can release
phosphorus through bioturbation, increasing the abundance of Cyanobacteria, which release dissolved oxygen into overlying
water through photosynthesis, enhance nitrifcation (mainly ammonia oxidation), and improve the ammonia nitrogen removal
capacity of the system. Meanwhile, bivalves can increase bacterial diversity and abundance by regulating dissolved oxygen. Tis
study provided insight into bivalve interaction with bacterial activity in the IMTA system.

1. Introduction

Aquaculture activity generates massive water drainage with
a signifcant load of nutrients, including nitrogen and
phosphorus [1]. A eutrophication phenomenon due to el-
evated nutrient levels afected the productivity of cultured
aquatic organisms and the surrounding water environment
[2, 3].

Te integrated multitrophic aquaculture (IMTA) system
is an eco-friendly and sustainable aquaculture system [3]
regarding the nutrient cycle; it causes less water drainage to
the natural resources and avoids severe degradation of the
ecosystem [4]. IMTA models, which consist of diferent
species [4] that feed at diferent trophic levels [5, 6], can

induce a nitrogen cycle between cultured species; for in-
stance, feed species, such as fsh and shrimp, are integrated
with extractive species such as autotrophs, flters, and de-
posit feeders [1]. Te feed waste of fed species turns into
a nutrient source for extractive species [1]. Bivalves can be
used as preferred species for IMTA because they promote
the removal of excess nutrients and nitrogen in sediments
through bioturbation with remarkable fltration capabilities
[7–9]. Besides, bivalves can bury nitrogen in sediments and
enhance the denitrifcation process by increasing microbial
activity in bivalve sediments [10–12].

Importantly, a signifcant nitrogen mass afects the
bacterial activity in water bodies and sediments, highlighting
the major role of bacteria in the nitrogen cycle [13–16] and
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refecting the water quality to a certain extent [17, 18]. Some
heterotrophic bacteria with nitrifcation and denitrifcation
abilities can assimilate and oxidize nitrogenous waste [19] in
water and sediment [20]. By bioturbation, bivalves are not
only involved in the nitrogen cycle but also interact with
bacterial abundances. Meanwhile, they can remove excess
nutrients in sediments by flter feeding and altering bacterial
activity [7, 8] and bury nitrogen compounds in sediments,
ultimately enhancing the relative abundance of denitrifying
bacteria [10–12]. Research work has shown that bivalve
farming signifcantly alters the community in local estuarine
habitats, including water and sediment [21].

Bivalves, as an important cultured species in the IMTA
system, can change the bacterial community in the envi-
ronment; however, how they afect the bacterial community
structure in the IMTA system and improve water quality
need to be studied. In this study, we hypothesised that bi-
valves could enhance water quality by afecting bacterial
abundances in water and sediment through their physical
movements in the IMTA system. In this study, we analysed
the water chemical indexes and bacteria community
structures in overlying water and sediment, performing
heatmap analysis between nitrogenous compound levels and
bacterial abundances. Our study provides a theoretical basis
for maximising the elimination of nitrogenous compounds
and improving water quality in the IMTA system.

2. Materials and Methods

2.1. Ethics Statement. Tis study did not need ethical ap-
proval because the experimental materials were water and
sediment samples not animals.

2.2. Experimental System. Te integrated multitrophic
aquaculture (IMTA) system used in this experiment con-
tained Penaeus chinensis (shrimp), Portunus trituberculatus
(crab), Sinonovacula constricta (bivalve), and Cynoglossus
semilaevis (fsh). Te experiment was conducted in Rizhao
Kaihang Fisheries Co., Ltd. (35°31′48″N; 119°41′35″E) in
Taoluo Town, Rizhao City, Shandong Province, along the
Yellow Sea. Te aquaculture pond covered an area of
5333.36m2 with two meters of depth. On March 26th, 25 kg
Sinonovacula constricta (mean weight 5.7 g) were added to
the pond. After 15 days, 40,000 Penaeus chinensis (mean
length≈1 cm) were cultured in the pond. After 20 days,
0.75 kg seeds of Portunus trituberculatus (0.05 g per crab)
were added. After 34 days, 40 Cynoglossus semilaevis (400 g
per fsh) were added to the pond. Te feed quantity of bait
was increased by 4 kg per day. Oxygen was provided through
nanotubules at the bottom of the pond. After 210 days, the
fnal weight was 22.37± 1.58 g for Penaeus chinensis,
356.23± 22.73 g for Portunus trituberculatus, 10.82± 0.51 g
for Sinonovacula constricta, and 270.61± 50.28 g for Cyn-
oglossus semilaevis.

2.3. Sample Collection. Te experimental samples were
collected from four sites, including the water inlet, the water
outlet, and the areas with and without bivalves (Figure 1).

Te three samples were collected monthly (September,
October, and November) from each location and fully mixed
as one sample, where the samples were collected from
overlying water and sediment. A water volume of 1000ml
was collected through a plexiglass water collector. A volume
of 200ml of water was fltered through a 0.22 μm acetate
fbre membrane, and then the residues on the membranes
were used for the microbial community analysis. Te
remaining 800ml water was fltered through a 0.45 μm
microporous membrane and used to analyse water chemical
indexes. Using a plexiglass mud picker, sediment samples
were collected at 0–8 cm below the water surface. Te
sediment sample size was 5 g for the microbial community
analysis. Te flter membranes and sediment samples were
fash-frozen and stored at −80°C until analysis.

2.4. Chemical Indexes in Water. Water temperature, dis-
solved oxygen (DO), salinity, and pH were measured with
a YSI incorporated device (Yellow Springs, OH, USA).
Ammonia-N, nitrate-N, and nitrite-N were measured using
a QuAAtro nutrient autoanalyser (Seal Analytical Ltd.,
Germany). Te concentrations of three dissolved inorganic
nitrogen (DIN) were measured using a water-quality nu-
trient analyser (SINOHLK-NutriS, Xiamen, China).

2.5. High-Troughput Sequencing of Bacteria and Bio-
informatic Analysis. Te total DNA of all water and sedi-
ment samples was extracted using the TIANamp Bacteria
DNA Kit (Tiangen Biotech, Beijing, China), and DNA in-
tegrity was confrmed by agarose gel electrophoresis. Using
the NanoDrop spectrophotometer (Termo Scientifc,
USA), the bacterial DNA concentration was measured. Te
V3-V4 region of 16SrRNA gene, a specifc conserved se-
quence region of bacterial DNA, with primers 338F (5′-ACT
CCTACGGGAGGCAGCAG-3′) and 806R (5′-GGAC-
TACHVGGGTWTCTAAT-3′) [22], was amplifed by po-
lymerase chain reaction using MyCycler™ thermal cycler
(BIO-RAD, USA). Te bacterial DNA was purifed and
sequenced by Illumina Miseq by Majorbio. Raw reads were
deposited into the NCBI sequence read archive (SRA) da-
tabase (accession number: PRJNA756424).

2.6. Data Analysis. Te statistical analysis of water quality
was performed using SPSS programme version 22.0 (SPSS,
Chicago, IL, USA), and one-way ANOVA was conducted to
compare signifcant diferences between diferent sampling
points on water quality.

Paired-end (PE) reads were spliced by FLASH software
[23] according to the overlapping relationship, and Fastp
[24] software was used for quality control and to flter
original sequencing sequences. After data optimisation,
UPARSE [25] software was used for OTU clustering and
statistical analysis of biological information for the sequence
according to the similarity of 97% [25, 26]. Te RDP clas-
sifer [27] software package was used for species classifca-
tion analysis for each sequence. According to the results of
the taxonomic analysis, the community structure of the
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samples at diferent classifcation levels was measured by
statistical analysis. Te alpha diversity was calculated using
MOTHUR [28]. Te SPSS Statistics 22 was used to analyse
data diferences; a P value <0.05 was considered statistically
signifcant, and P < 0.01 was considered extremely
signifcant [29].

3. Results

3.1. Overlying Water Characteristics

3.1.1. Environmental Conditions. Te IMTA system’s en-
vironmental conditions are summarised in Table 1. Tem-
perature decreased gradually over the experimental time
from September to November. Dissolved oxygen (DO) in-
creased over time and was more abundant in aquaculture
areas with bivalves than without bivalves. Salinity increased
over time. Te pH value frst decreased and then increased.

3.1.2. Nutrient Contents. Nutrients, including ammonia,
nitrite, nitrate, and phosphate in overlying water, are
summarised in Table 1. Ammonia and nitrate decreased over
time. Nitrite frst decreased and then increased over time.
Ammonia and nitrite levels were lower in the culture area
with bivalves compared to the culture area without bivalves;
however, nitrate was higher in the culture area with bivalves.
In September, there were signifcant diferences (P < 0.05)
between ammonia and nitrate in the area with and without
bivalves. Phosphate showed a decreased pattern in aqua-
culture areas over time. Te phosphate level showed a lower
level in the culture area with bivalves compared to the
culture area without bivalves.

3.2. Microbiota Composition and Diversity in the Overlying
Water. Among all sampling locations, the microbial com-
position was similar, but the proportions difered with
sampling time; for example, the dominant phylum abun-
dance range was as follows: Cyanobacteria, Proteobacteria,
Bacteroidota, and Actinobacteriota. Tese bacteria accoun-
ted for about 84% of the total bacteria (Figure 2(a)). Te frst
dominant bacterial groups are shown in Table 2 and

Figure 3. Alpha-diversity indexes are shown in Table 3, and
the Sobs, Shannon, Ace, and Chao1 values were the highest
in November. Te indexes representing diversity and
abundance were higher in the area with bivalves than
without bivalves. In October, the Shannon index in the
bivalve area was signifcantly higher than in the area without
bivalves (P < 0.05).

Te frst dominant bacterial composition at the three
classifcation levels was similar between September and
October; it was mainly Cyanobacteria. Tese bacteria
showed the highest level in September (Inlet) and October
(culture with bivalves). In November, the Proteobacteria
phylum (Figures 2(a) and 3(a)), Rhodobacteraceae family
(heterotrophic nitrifers; Figures 2(b) and 3(b)), and Mar-
ivita genus (photoautotrophic bacteria; Table 2) were the
dominant bacteria. Some members of the Rhodobacteraceae
family and Marivita genus are heterotrophic nitrifers and
photoautotrophic bacteria, respectively. Tese bacteria were
the highest in the area with bivalves. Generally, the area with
bivalves showed the highest bacterial content of two ni-
trogen removal pathways, including heterotrophic and
phototrophic bacteria.

3.3. Microbiota Composition and Diversity in Sediment.
Among all sampling locations, the phyla of Proteobacteria,
Bacteroidota, Desulfobacterota, Chlorofexi, Firmicutes,
Actinobacteriota, and Acidobacteriota were dominant bac-
teria, accounting for more than 84% of the total bacterial
content (Figure 4(a)). Of note, some members of Proteo-
bacteria, Bacteroidota, Desulfobacterota, Chlorofexi, and
Firmicutes are heterotrophic.Te area with cultured bivalves
was characterised by the highest level of Desulfobacterota
(heterotrophic denitrifers; Figure 4(a)) compared to the
area without cultured bivalves. Te family of Flavobacter-
iaceae,Woeseiaceae,Desulfocapsaceae, norank_o__SBR1031,
Rhodobacteraceae, norank_o__SBR1033, and Desulfosarci-
naceae were dominant bacteria, accounting for about 37% of
the total bacterial content (Figure 4(b)). Te frst dominant
bacterial groups are shown in Table 4 and Figure 5. Alpha-
diversity indexes are shown in Table 5, and the Sobs and
Shannon values increased over time. Ace and Chao1 indexes

Sinonovacula constricta
(Bivalves)

Penaeus chinensis
(Shrimps)

Portunus trituberculatus
(Crabs)

Cynoglossus semilaevis
(Fishes)

Figure 1: Satellite images of the integrated multitrophic aquaculture (IMTA) ponds, including aquaculture species and sampling sites.
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increased frst and then decreased. All indexes in the area
with bivalves were higher than that without bivalves.

Regarding the frst bacterial dominant groups, Proteo-
bacteria were detected in all locations except for the inlet
location in September and October. Woeseia (chemo-
heterotrophic) was detected in the area without bivalves and
undetected in the outlet area. In November, these bacteria
were detected in all locations except for the outlet. In fact,
although the abundance was diferent, the bacterial com-
position was similar between the area with bivalves (Sep-
tember) and that without bivalves (September and October).
Generally, areas with cultured bivalves showed increased
bacterial abundance.

3.4. Correlation Analysis between Microbiota and Overlying
WaterCharacteristics. Spearman correlation analysis shown
in Figure 6 was conducted betweenmicrobiota and overlying
water characteristics, including temperature (T), dissolved
oxygen (DO), salinity, pH, ammonia (NH4

+), nitrite (NO2
−),

nitrate (NO3
−), and phosphate (PO4

3−

) on phylum and
family levels.

Cyanobacteria were positively correlated with NH4
+

(P � 0.02), NO2
− (P � 0.016), NO3

- (P � 0.007), and
(PO4

3−

) (P � 0.012). Some bacteria were signifcantly pos-
itively correlated with pH and DO, such as Flavobacteriaceae
(P � 0.002) and Cryomorphaceae (P � 0.0002). Actino-
bacteriota was signifcantly positively correlated with NH4

+
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Figure 2: Microbiota composition in overlying water at phylum (a) and family (b) levels. I: water inlet,O: water outlet, B: area with bivalves,
N: area without bivalves, Sep: September, Oct: October, and Nov: November.
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(P � 0.02). Some heterotrophic bacteria, such as Firmicutes
(P � 0.003) and Chlorofexi (P � 0.006), were signifcantly
positively correlated with the NO2

− level, revealing their
possible activity on the nitrifcation and aerobic de-
nitrifcation bacterial processes. In this context, bivalves
increased nutrient (NH4

+, NO2
−, NO3

−, and PO4
3−

) ab-
sorption by Cyanobacteria in water, as well as aerobic and
heterotrophic bacterial activities (Flavobacteriaceae).

4. Discussion

In this study, the overlying water quality assessment results
showed that some water quality factors, such as ammonia
and nitrite, which are not conducive to the growth of
aquaculture organisms in the bivalve culture area, were
lower than those in the nonbivalve culture area. However,
the nitrate in the bivalve culture area was higher than in the
nonbivalve culture area. Meanwhile, the dissolved oxygen
(DO) in the bivalve culture area was higher than in the
nonbivalve culture area.

Dissolved oxygen is an essential molecule for ammonia
oxidation [30] to promote the growth of nitrifying bacteria.
Besides, bivalves can create anoxic microzones through
bioprecipitation, eventually promoting the abundance of
denitrifying bacteria [7, 31, 32]. In this study, more bacteria
could be detected at the genus level in the bivalve culture
area than in the area without bivalves in sediment, such as
Ruegeria (1.05%–4.79%), Talassobius (0.11%–0.69%),
Limibaculum (0.07%–0.69%), HIMB11 (0.1%3−0.21%),
Rubellimicrobium (0.01%–0.16%), and Ascidiaceihabitan
(0.00%–0.14%), which are aerobic bacteria belonging to the
Rhodobacteraceae family. Some members of the Ruegeria
genus have functional denitrifcation genes, such as the nosZ
and nirS genes [33, 34]. Talassobius, a strictly aerobic,
chemo-organotrophic bacterium [35], can reduce nitrate to
nitrite [36]. Limibaculum [37] and Rubellimicrobium [38]
are important denitrifying bacteria. HIMB11 can utilise
ammonia, as well as inorganic and organic forms of
phosphorus [39]. In addition, some bacteria which can
participate in the nitrogen cycle, such as Nitrosomonas,
Nitrococcus, and Nitrosococcus, could be detected in the

sediment of the bivalve culture area; however, the pro-
portion of each was less than 0.01%. Research has shown that
bivalves modulate oxic-anoxic zonation through bio-
turbation [40] and accelerate the combined process of ni-
trifcation and denitrifcation [41]. Tus, bivalves can
enhance nitrifcation and denitrifcation to improve water
quality. However, in future studies, the abundance of
functional genes involved in the nitrogen cycle should be
identifed to more accurately describe the process and main
pathways of the nitrogen cycle.

Te reason why dissolved oxygen in the bivalve culture
area in overlying water was higher is that Cyanobacteria,
which are oxygenic photoautotrophs [42], were the domi-
nant bacteria in the area with bivalves. However, the benthic
flter-feeding bivalves absorb suspended organic particles in
the overlying water, which are released by their physical
movement over the sediment surface [43] and increased
phosphorus release to the overlying water [21, 44], which are
essential for the photosynthesis activity in Cyanobacteria
[45] to infuence their growth [46]. Besides, some cyano-
bacterial species are involved in the nitrogen cycle [47]
because Cyanobacteria can utilise inorganic nitrogen, at-
mospheric nitrogen, and some amino acids as nitrogen
sources [42]. What is noteworthy is that although dissolved
inorganic nutrients are released into the overlying water
through bivalve bioturbation, this does not result in an
additional nutrient loading due to the rapid nutrient cycling
and a net removal of a portion of those nutrients when
bivalves are harvested [21].

In general, Proteobacteria, Bacteroidota, Firmicutes, and
Actinobacteriota are the dominant bacterial phyla in water
in IMTA systems [48–51]. In addition, some IMTA systems
with diferent species showed diferent bacterial abundances;
for instance, Actinobacteriota was the predominant phylum
in a system containing shrimps, crabs, and bivalves, and
Firmicutes was the predominant phylum in a system con-
taining shrimps and crabs. Te predominated bacterial
communities of sediment were Proteobacteria, Acid-
obacteriota, Chlorofexi, Bacteroidota, Planctomycetota, and
Alphaproteobacteria in a bioremediation system with
macrobenthos (bivalves and polychaetes) [20]. However, in

Table 3: Alpha-diversity indexes of the bacterial community in the overlying water.

Time Site Sobs Shannon Ace Chao1

September

Inlet 492.33± 22b 3.04± 0.11b 813.71± 7.24b 689.35± 12.99b
Outlet 593± 34.39a 3.78± 0.17a 814.31± 6.39b 869.62± 17.62a
Bivalve 546± 24.83a 3.49± 0.15a 955.18± 14.88a 789.25± 17.62ab

Nonbivalve 530± 16.74a 3.46± 0.19a 719.78± 17.27b 741.67± 11.29b

October

Inlet 545.33± 14.45a 3.52± 0.17ab 866.95± 9.03a 815.02± 17.04a
Outlet 527.33± 15.3a 3.81± 0.11ab 694.62± 17.62b 735.56± 17.62ab
Bivalve 542.33± 17.65a 4.16± 0.08a 706.39± 14.19b 709.20± 17.35b

Nonbivalve 535.33± 19.64a 3.37± 0.12b 683.41± 9.84b 707.78± 17.36b

November

Inlet 630± 17.04a 4.67± 0.19a 1185.20± 23.39a 946.99± 17.62ab
Outlet 615± 17.06a 4.44± 0.12a 1235.89± 13.87a 1086.12± 105.83a
Bivalve 618.67± 12.77a 4.55± 0.17a 1163.09± 17.62a 1010.74± 37.57ab

Nonbivalve 584± 17.62a 4.38± 0.12a 975.34± 14.9b 850.23± 14.73b

One-way ANOVA was used to test the signifcant diferences among sampling locations at the same sampling time. a, b: Samples without letters in common
indicate signifcant diferences (P < 0.05).
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this study, Cyanobacteria, Proteobacteria, Bacteroidota, and
Acidobacteriota were dominant bacteria in overlying water,
whereas Proteobacteria, Desulfobacterota, Chlorofexi, Bac-
teroidota, Actinobacteriota, Firmicutes, Acidobacteriota, and
Cyanobacteria were the dominant bacterial phyla in sedi-
ment. Some members of Proteobacteria and Bacteroidota,
which have a highly stable ability to remove ammonia under
aerobic conditions [52], showed a higher proportion in the
bivalve area. Rhodobacteraceae, which showed higher pro-
portions in the area with bivalves, can use various unstable
organic matters [53] to obtain their energy through diferent
energy acquisition mechanisms, including the heterotrophic
oxidation of organic matter, photoheterotrophy, and non-
obligate chemolithotrophy [54]. In addition, the analysis of
species diference among each group was analyzed by one-

way ANOVA. Te results show that comparing with other
sampling locations, the bivalve can signifcantly increase the
Tiotrichaceae family and norank_f__Tiotrichaceae genus
in overlying water and signifcantly increase Clostridiaceae
family, Oceanirhabdus genus, and unclassifed_f__ Clos-
tridiaceae genus in sediments, and they have a small pro-
portion of the total bacteria. Tere was no signifcant
diference (P > 0.05) in the dominant bacteria among four
groups. Tese bacteria could explain the efect of bivalves on
a bacterial structure through bioturbation, and, sub-
sequently, their role in water quality control, such as ni-
trogen removal.

In this study, the Shannon and Ace indexes were higher
in the water area with bivalves, with signifcant diferences in
October and September, respectively. In sediment during the
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Figure 3: Heatmap analysis between bacterial groups, locations, and time in overlying water at phylum (a) and family (b) levels. I: water
inlet, O: water outlet, B: area with bivalves, N: area without bivalves, Sep: September, Oct: October, and Nov: November.
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whole experiment period, the Ace index was signifcantly
higher in the area with bivalves. Te results demonstrated
that bivalves could increase the diversity and abundance of

bacteria in the system. Te possible reason is that bivalves
can bioturbate the sediment by moving and feeding, thereby
increasing oxygen penetration into the sediment [55],
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Figure 4: Microbiota composition in sediment at phylum (a) and family (b) levels. I: water inlet, O: water outlet, B: area with bivalves,
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Table 5: Alpha-diversity indexes of the bacterial community in sediment.

Time Site Sobs Shannon Ace Chao1

September

Inlet 2786.33± 109.45a 6.47± 0.07a 5470.67± 178.65a 4361± 118.03a
Outlet 2105.33± 118.67a 6.14± 0.07a 3938± 115.76c 3249± 108.04b
Bivalve 2664± 127.31a 6.34± 0.04a 5351.33± 188.57a 4285.33± 107.63a

Nonbivalve 2302± 115.76a 6.17± 0.07a 4744± 158.03b 3679± 109.76ab

October

Inlet 2960.33± 179.29a 6.56± 0.12a 5767± 121.76a 4577± 115.98a
Outlet 2622.67± 118.65a 5.98± 0.12a 5139± 115.18ab 4084± 113.97a
Bivalve 2629± 173.49a 6.63± 0.14a 5798± 123.76a 4680± 117.34a

Nonbivalve 2471± 133.42a 6.32± 0.13a 4752± 115.76b 4014± 108.95a

November

Inlet 3136.67± 63.91a 6.84± 0.06a 5704± 121.18a 4641± 116.98a
Outlet 2614± 115.76a 6.47± 0.12b 4784± 115.76b 3858.67± 109.99b
Bivalve 2756± 116.35a 6.67± 0.13ab 4850± 116.94b 4002± 109.32ab

Nonbivalve 2540± 113.85a 6.43± 0.12b 3893± 114.97c 3865± 109.66b

One-way ANOVA was used to test the signifcant diferences among sampling locations at the same sampling time. a, b, c: Samples without letters in common
indicate signifcant diferences (P < 0.05).
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stimulating microbial metabolism [56], and ultimately af-
fecting bacterial community structure, especially increasing
the abundance of aerobic bacteria.

However, in sediment, the predominant bacteria in the
area with bivalves belonged to the Planococcaceae and Fla-
vobacteriaceae families, whereas the Woeseia genus was
predominant in the area without bivalves during the middle
and late period of aquaculture. Diferent bacterial dominance

among diferent studies could be attributed to environmental
factors, including nutrient availability, light intensity, tem-
perature, and dietary composition [57, 58], in addition to the
aquatic organisms in the IMTA system. Overall, our results
suggest that bivalves can change the bacterial community
structure of IMTA systems (especially sediments) by releasing
nutrients and increasing dissolved oxygen through
bioturbation.
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5. Conclusions

Bivalves can release phosphorus through bioturbation to
increase the abundance of Cyanobacteria, which release
dissolved oxygen into overlying water through photosyn-
thesis, enhance nitrifcation (mainly ammonia oxidation),
and improve the ammonia nitrogen removal capacity of the
system. Furthermore, bivalves can increase bacterial di-
versity and abundance by regulating dissolved oxygen,
especially the abundance of heterotrophic bacteria, which
are important for water quality control. Tis implied the
efective role of bivalves in water quality control as an
essential aquatic organism in the IMTA system. Tis study
provided insight into the interaction between bivalves and
bacterial composition on nitrogen removal in the IMTA
system.
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Figure 6: Heatmap analysis between bacterial groups and overlying water chemical characteristics at phylum (a) and family (b) levels. I:
water inlet, O: water outlet, B: area with bivalves, N: area without bivalves, Sep: September, Oct: October, and Nov: November. ∗P< 0.05;
∗∗P< 0.01; ∗∗∗P< 0.001; red means positive correlation, and blue means negative correlation.
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