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With the increasing level of precision and intelligence in the aquaculture, real-time mastery of the growth status of aquaculture
individuals has become an important means to improve aquaculture efficiency and save resources and the environment. Therefore,
accurate individual recognition of underwater fish has become one of the key technologies for precision aquaculture. In order to
cope with the impact of the complex underwater environment on the recognition accuracy, this paper proposes a coarse and fine-
grained features learning method for individual fish recognition. The method consists of a coarse-grained feature learning network
and two fine-grained feature learning networks. The trunk of the network is responsible for learning coarse-grained features of the
fish, the first branch learns fine-grained features of fish from head, body, and tail, and the second branch learns fine-grained
features of fish from upper and lower fins. we supplemented different levels of noise and attack to the training set of fine-grained
features and enriched the grayscale variation to cope with the complexity and variability of the underwater environment. The
simulation experimental results show that the method achieves more than 96.7% in key indicators such as Rank-1 and Rank-5, and
also performs well in other fish recognition tasks with certain generalization.

1. Introduction

Aquaculture has moved toward a rapid development path
and aquatic product output has increased significantly. The
development of aquaculture not only meets the demand for
aquatic products and expands the export of aquatic products,
but also makes an important contribution to increasing the
income of fishermen. In recent years, new aquaculture tech-
nologies have been continuously introduced. Factory aqua-
culture, intelligent new aquaculture models have developed
rapidly. Traditional aquaculture mode relying on experience,
artificial, and weather has become more and more unsuitable
for the needs of modern agricultural production and manage-
ment. Because of the continuous expansion of aquaculture
scale and categories, it is of great significance to effectively
obtain and analyze some important information generated in
the production process. The information is very important for
reducing the risk of aquaculture, improving the economic

benefits of enterprises, and reducing the labor intensity of
employees. Accurate and real-time mastery of fish health,
population density, and behavior could provide important
data support for making production management decisions.
It also provides analytical data for disease prevention and
control, bait feeding, and feed formulation management.
However, these data are obtained on the basis of fish individ-
ual recognition, which means that on the basis of the identi-
fied fish species, it is necessary to further determine the fish
individual.

With the continuous development of artificial intelli-
gence technology and computer vision technology, deep con-
volutional neural networks have been well applied in target
detection, face recognition, and medical fields, which makes
it possible to apply them to the field of fish individual recog-
nition. However, as our research progressed, we found that
the existing established techniques did not correspond to
the characteristics of underwater fish activity. As shown in
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Figure 1. First, the same fish individual will create significant
color variations under different lighting conditions, which
makes it more challenging to recognize different fish indivi-
duals by macroscopic features. Second, the complex and var-
iable underwater environment may lead to severe mutual
occlusion of fish individuals, which makes it difficult to
extract effective features for the different individuals with
similar appearances. Third, it is challenging to get high-
quality images of fish individuals due to their diverse variety
of swimming trajectories and movements. Finally, it is diffi-
cult for researchers to determine the movement of fish using
reference objects due to the variations in water quality and the
lack of fixed reference objects in the underwater environment.

In order to effectively overcome the difficulties and fur-
ther improve the accuracy and robustness of fish individual
recognition methods. This paper proposes a fish individual
recognitionmethod based on coarse and fine-grained feature-
linked learning, and the main contributions of this paper are:

(1) In order to solve the problem of difficult extraction of
fish visual features due to the mutual occlusion of
underwater fish, this paper proposes the extraction
of fish visual features by using coarse and fine-
grained feature-linked learning methods.

(2) To address the problem of low accuracy of fish indi-
vidual recognition due to uneven illumination and
blurred underwater images, we proposed a method
to assign nonuniform weight to the backbone net-
work to improve the extraction effect of fish features.
The WeightConv block is formed by adding the SE
(Squeeze and Excitation) attention mechanism mod-
ule to the residual side section of the ResNet 50. The
network can compute different weights of different
channels, reduce the network’s attention to the back-
ground environment, and enhance the ability to extract
fish features. Thereby further improving the accuracy of
the network to recognize fish individuals when the
background environment is blurred or similar.

(3) To solve the problem of poor training effect of deep
convolutional neural networks due to small under-
water fish individual datasets and low-image quality,
we proposed a new method applicable to underwater
real-time fish individual recognition. As shown in
Figure 2. This method does not require the advanced
storage of fish characteristic information for retrieval,
in contrast to traditional biometric techniques. The
network can autonomously extract and store the
visual attributes of unknown fish individuals and

ðaÞ ðbÞ ðcÞ ðdÞ
FIGURE 1: Underwater fish individual sample case (a) color variation, (b) posture variation, (c) similar background environment, and (d)
feature occlusion.
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FIGURE 2: Schematic diagram of fish individual recognition process.
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assign them a unique identification number when
performing the individual recognition task. This
method provides real-time feedback on the results
of the similarity calculation and its numbering infor-
mation when fish individual features are extracted
and queried again.

The structure of this paper is as follows: the second part
of the paper mainly introduces the related work of individual
recognition, and the third part mainly introduces our pro-
posed coarse and fine-grained feature linkage learning
method. The fourth part mainly introduces the results of
the simulation experiments, and the fifth part summarizes
the proposed work and prospects for the future work.

2. Related Work

With continuous research in the field of deep learning, bio-
metric technology has been developed significantly, and face
recognition technology has been very widely used. As
research progresses, people gradually realize that biometric
technology also has important significance in the fields of
ecological environmental protection, precise breeding of ani-
mal husbandry, and protection of endangered species.

In order to accomplish individual identification of wild
elephants, Körschens et al. [1] used curvature integration and
two different matching algorithms to accomplish identifica-
tion and data acquisition of wild elephants. Li et al. [2] in
2019 made public a dataset of 92 northeastern tigers with
over 8,000 video clips of northeastern tigers and filled the gap
in northeastern tiger dataset by including key points, identity
information, and other annotations. Boom et al. [3] used 10
underwater cameras for 3 years to extract fish data from live
video and obtained a dataset of 27,370 different fish of 23
species. Recognizing the need for datasets that track fish
individuals over time, Yin et al. [4] created the DlouFish
dataset with labeled images of 384 fish, each with different
individual numbers, totaling 6,950 images.

In the field of underwater species recognition, the noise
of underwater images such as water quality and light inten-
sity are important factors that affect the accuracy of the
model. Therefore, Jian et al. [5] proposed an underwater
image correction method based on photoactive imaging
in image preprocessing to correct and reconstruct distorted
images. Pramunendar et al. [6] used Contrast Adaptive
Color Correction technique (NCACC) for image enhance-
ment and improved the species identification accuracy to
93.73%. Chuang et al. [7] proposed a framework for under-
water fish recognition consisting of a fully unsupervised fea-
ture learning technique and an error resilient classifier that
uses information from fuzzy images to assign coarse labels by
optimizing the benefit of decisions made by the classifier,
introducing the concept of partial classification.

When performing underwater fish individual recognition
tasks, we usually need two stages. First, target detection is
performed to separate the fish from the background environ-
ment, and then individual features are learned to complete
the final recognition. Convolutional neural network (CNN)
has also shown high performance in underwater visual

enhancement [8, 9] and the fish detection [10–12]. Zhao
et al. [13] designed a new composite backbone network
(CBResNet) to learn scene change information and improve
the accuracy of fish detection by improving ResNet. Villon
et al. [14] used GoogLeNet to extract fish body features and
Softmax classification method to detect reef fish. Hong Khai
et al. [15] proposed an improved Mask R-CNN by classifying
image data into three categories of low, medium, and high
density, resulting in an enhanced Mask R-CNN model with
an accuracy of 97.48%. Knausgård et al. [16] proposed a two-
step deep learning method for the detection and classifica-
tion of temperate fish. The fish detection accuracy, on the
pretrained model, reached 99.27%.

In the fish recognition phase, transfer learning [17] has
been commonly used to retrain pretrained networks because
of the limited data. There are many topologies of networks
that have emerged, such as VGG [18], GoogleNet [19],
ResNet [20], and ResNeXt [21]. After training these pre-
trained networks on large datasets, such as ImageNet [22],
they are then trained using fish datasets. Xue and Ju [23]
added a flexible attention layer to AlexNet and used transfer
learning for classification training, which greatly improved
the classification effect of fish. Shafait et al. [24] proposed an
image set classification paradigm for improving the recogni-
tion rate of multiple fish species. Qin et al. [25] first used a
deep architecture to extract features from foreground fish
images and then used a linear support vector machine (SVM)
classifier for classification. An accuracy of 98.64% was obtained
on the real-world fish recognition dataset. Tamou et al. [26] uses
the pretrained AlexNet network to extract features from the
foreground fish images of available underwater dataset, and
then uses SVM classifier to classify. The CNN AlexNet is com-
bined with transfer learning to realize the automatic classifica-
tion of fish species. The accuracy of 99.45% was obtained in the
fish recognition ground truth dataset. Rathi et al. [27] used deep
learning and image processing to obtain higher discrimination
accuracy with an accuracy of 96.29%. Pang et al. [28] uses the
processed fish image and the raw fish image to generate the
distance matrix, respectively, and reduces the impact of inter-
ference on fish classification by reducing the difference between
the two distance matrices and extracting the interference
information at the feature level. Some other works have
been to propose new structures with fewer convolutional
layers [29–31].

However, a lot of the researches on underwater fish rec-
ognition have focused on classifying fish and little on recog-
nizing fish individual. It also does not address the problem of
low-recognition accuracy due to feature occlusion. Therefore,
this paper proposes a fish individual recognition method
based on coarse and fine-grained feature-linked learning.

3. The Proposed Work

Comparing underwater fish individual recognition to the
other biometric methods reveals significant differences. First
of all, due to the characteristics of underwater fish move-
ment, fish are more severely obscured from each other,
which poses a significant obstacle for the efficient extraction
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of fish features. Second, in order to accurately recognize
various fish, feature extraction methods must be able to
detect minute differences between individual animals due
to the significant visual similarity of features between indi-
viduals of the same species of fish. Finally, the complex and
variable underwater environment with uneven illumination
makes the acquired images and video data blurred, which
makes the effective extraction of fish features more difficult.

To address the above characteristics of fish individual
recognition, we proposed a method based on coarse and
fine-grained feature-linked learning to further improve the
accuracy and robustness of fish individual recognition. The
method consists of three parts (Figure 3): a backbone (GT)
that learns coarse-grained features and two branches (P1, P2)
that learn fine-grained features. The input image of GT is a
single fish image obtained by YOLO-V4 [32] target detec-
tion, with a size of 256× 512. The input image of P1 is a head,
body and tail part image divided by key points, each with a
size of 64× 64. The input image of P2 is the upper and lower
fins, each with the same size of 64× 64.

In the training process, two local vectors YGP1 and
YGP2 with global features are obtained by fuzing the two
local feature vectors with the global feature vector, respec-
tively. Then YGP1 and YGP2 are fuzed to obtain a vector
YGP with global features and different local features. Finally,
the triplet loss and cross-entropy loss are calculated by the
normalization layer and the fully connected layer, respec-
tively, so as to achieve the purpose of coarse and fine-grained
feature-linked learning.

The feature fusion method is shown in Equations (1–3).
The TGT represents the global feature vector, TP1 represents
the local feature vector of the head, body, and tail parts, and
TP2 represents the local feature vector of the upper and
lower fins.

YGP1¼ TGTþ TP1; ð1Þ

YGP2¼ TGTþ TP2; ð2Þ

YGP¼ YGP1þ YGP2: ð3Þ

In the testing process, only the coarse and fine-grained
fuzed YGP is used for recognition to reduce the number of
parameters while improving the prediction efficiency.

3.1. Coarse and Fine-Grained Feature-Linked Learning.
Coarse-grained features are low-level intuitive features such
as color, contour, texture, and overall structure of the image
as a whole. They have good invariance and easy computa-
tional characteristics, but high dimensionality and large
computational efforts are its fatal drawbacks. Compared
with coarse-grained features, fine-grained features can better
extract the detailed parts of the image, such as curves, edges,
corner points, and other special regions. They are abundant
and independent in the image and will not affect the learning
and extraction of local features due to the occlusion or
absence of the other regions. As the number of chunked
regions increases, the local information learned from each
region becomes more detailed. The design of coarse and fine
grained feature-linked learning in this method is described
below.

In the process of coarse-grained feature learning, the
input image with a size of 256× 512 extracts the macroscopic
features by the backbone network for computing channel
weights. After the maximum pooling layer, a feature vector
is obtained and is denoted as TGT.

In the process of fine-grained feature learning, we first
preprocess the coarse-grained images and divide the image
into local images by different regions according to the key
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FIGURE 3: Network structure diagram.
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points. After the input image of P1 passes through the maxi-
mum pooling layer, three feature vectors are generated, and
then the three vectors are concatenated along the channel
into a feature vector TP1. After the maximum pooling layer,
the input image of P2 obtains two vectors, and a feature
vector TP2 is obtained after concatenating.

Unlike the 50-layer network used in the coarse-grained
feature learning part, the two fine-grained feature learning
branches use a 101-layer network (Table 1), and the network
structure is the same for both fine-grained features. The
advantage of using different networks with different num-
bers of layers to learn different regions is that the level of
feature abstraction is higher with the appropriate increase in
the number of layers. The network with more layers in the

spatial dimension can learn more detailed and finer-grained
fish features.

3.2. Backbone Network for Computing Channel Weights. To
address the problem of low accuracy of fish individual rec-
ognition due to uneven illumination and blurred underwater
images, in this paper, the SE attention mechanism module
[33] is added to the residual edge part of the ResNet-50
network to form the Weight–Conv block. The backbone
network structure for computing channel weights is shown
in Figure 4. In underwater fish recognition, there are phe-
nomena such as turbid water, overlapping targets, and com-
plex background environments. A backbone network that
computes channel weights enables the model to focus more
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Identity block × 5

Identity block × 2

AveragePooling
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BatchNorm BatchNorm

BatchNorm BatchNorm
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FIGURE 4: SE-ResNet network structure diagram.

TABLE 1: Comparison of accuracy using different teacher models.

Layer name Parameters Output size

Conv1 7× 7,64, stride 2 32× 32

Conv2_x

3× 3, Max pool, stride 2

16× 16
1 × 1; 128

3 × 3; 128; C ¼ 32

1 × 1; 256

2
4

3
5× 3

Conv3_x
1 × 1; 256
3 × 3; 256; C ¼ 32

1 × 1; 512

2
4

3
5× 4 8× 8

Conv4_x
1 × 1; 512
3 × 3; 512; C ¼ 32

1 × 1; 1024

2
4

3
5× 23 4× 4

Conv5_x
1 × 1; 1024
3 × 3; 1024; C ¼ 32

1 × 1; 2048

2
4

3
5× 3 2× 2

Average pool 2× 2 1× 1
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on the fish and less on underwater non-fish species such as
algae and corals, so as to learn more about the texture fea-
tures of the fish. For example, when a person sees a picture,
he will first focus on the outline of the object in the picture as
well as the content, and appropriately ignore the background
information. By assigning different weights to each part region
of the input image, the SE attention mechanism extracts more
crucial and important information, improving resource utili-
zation and model accuracy.

The backbone network for computing channel weights
consists of two basic modules, Weight–Conv block and Iden-
tity block. Weight–Conv blocks are used to change the net-
work dimension and identity blocks to deepen the network.
Weight–Conv block is divided into two parts, the trunk and
the residual side, and the trunk is composed of two convolu-
tions, normalization, activation function, and one convolu-
tion and standardization; the residual edge part consists of
one convolution, normalization, and SE attention mecha-
nism modules. The Weight–Conv block can change the
width, height, and number of channels of the output feature
layer because of the presence of convolution in the residual
edge part.

The identity block is also divided into two parts: trunk and
residual edge. The structure of the backbone part is the same
as that of theWeight–Conv block part; the difference between
the two modules lies in the residual edge part. The residual
edge of the identity block has no convolution and is directly
connected to the output, so the input feature layer of the
identity block has the same size as the output feature layer.

3.3. Loss Function. The loss function measures the accuracy
of the model in prediction and affects the convergence of the
algorithm, and in the field of target recognition, triplet loss
and cross-entropy loss are widely used.

The triplet loss consists of three basic elements, Anchor,
Negative, and Positive [34] as shown in Figure 5.

Anchor is a randomly selected sample from the training
set, Positive is a positive sample of the same class as Anchor,
and Negative is a negative sample of a different class from
Anchor. Initially, the distance between Anchor and Positive
is much larger than the distance between Anchor and Nega-
tive, and the distance between Anchor and Positive is closer
to the same class of samples by learning. The triplet loss
function is shown in Equation (4).

Loss¼ ∑
N

i
f xaið Þ − f xpi

À Á 2
2 − f xaið Þ − f xnið Þk k22 þ α

Â Ã
;

ð4Þ

xa, xp, and xn denote the Anchor sample, the Positive
sample, and the Negative sample. f xaið Þ − f xpi

À Á 2
2 f xaið Þ−k

f xpi
À Ák22 denotes the Euclidean distance measure between
Anchor and Positive. f xaið Þ − f xnið Þk k22 denotes the Euclid-
ean distance measure between Anchor and Negative. The
distance between xa and xp distance and xa and xn distance
is denoted by the α. When the distance between xa and
xn< xa and xp spacing sum α, the expression is greater
than 0, at which point a loss occurs. When the distance
between xa and xn>= xa and xp spacing sum α, the loss is
zero. When the value of α is small, the loss decreases rapidly
and the trained results cannot discriminate images with sim-
ilar features well. When α is large, the loss value will remain
in a relatively large range during the training process and it is
difficult to converge to zero. Therefore, it is important to
choose a suitable α value for the model. In this paper, α is
set to 1.0 in the choice of value.

Apart from triplet loss, the cross-entropy loss function is
widely used in deep learning for classification tasks to evalu-
ate the prediction accuracy of the classification models.
Cross-entropy loss measures the disparity between the pre-
dicted probability distribution of a model and the actual
labels in classification problems. For a problem with multiple
categories, the actual labels of the samples are one-hot
encoded vectors, i.e., p¼ 0;ð 0; :::; 1; :::; 0Þ, where the posi-
tion of the 1 indicates the true class of the sample. Assuming
the predicted probability distribution of the model for the
sample is q= (q1, q2,…, qn), the cross-entropy loss function
is given in Equation (5).A smaller cross-entropy loss value
indicates that the model’s prediction result is closer to the
true label, resulting in a higher classification accuracy of the
model.

Loss¼ −∑
n

i¼1
p xið Þlog q xið Þð Þ: ð5Þ

In this paper, both these loss functions are used to opti-
mize the network concurrently. The cross-entropy loss
enables the model to better match the distribution of the
data, while the triplet loss helps the model to better under-
stand the similarity between different individuals within the
same specie. As the fish individual recognition task is influ-
enced by the unique underwater noise nature, which may
result in noise or incorrect classification labels, utilizing
only the cross-entropy loss function may lead to overfitting
of the model. Thus, incorporating a triplet loss function can
improve the model’s ability to capture the variability between

Negative

Positive Positive

Learning Negative

Anchor Anchor

FIGURE 5: Schematic diagram of triple loss.
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data, thereby enhancing the model’s generalization perfor-
mance. Furthermore, the fish dataset used in this paper
includes images of various fish species, necessitating the
model to precisely differentiate between fish species while
also accounting for the similarity differences among indivi-
duals of the same species to species fish individual. Conse-
quently, both loss functions are employed during training to
achieve better results in underwater fish individual recogni-
tion, as demonstrated in Equation (6). After fusion, the vec-
tor YGP with coarse-fine granularity features is calculated as
triplet loss and cross-entropy loss, respectively, which are
noted as LtripletGP and LcrossGP, and the value of the β
in this paper is 0.6.

Loss¼ β Ltriple tGP þ 1 − βð ÞLcrossGP: ð6Þ

4. Simulation Experiments

4.1. Coarse-Grained Dataset. The coarse-grained dataset of
fish used for the experiments in this paper is shown in
Figure 6, which includes 1,800 colorful koi, 1,550 red and
white koi, 1,850 Takifugu Rubripes, and 1,800 Amphiprio-
ninaes, totaling 7,000 labeled single fish images. The images
are randomly disturbed, and divided into a training set and a
test set in an 8 : 2 ratio with slightly varying background
conditions, lighting, and sharpness. The purpose of ran-
domly placing the images affected by different external
environments into the training and test sets is to improve
the learning ability of the model during training and to verify
the generalization of the model during testing.

4.2. Fine-Grained Dataset. The fine-grained dataset of fish
used for the experiments in this paper is shown in Figure 7.

We manually labeled the fish images in the coarse-
grained dataset by six key points: mouth, gills, belly, tail,
dorsal fin, and ventral fin, as shown in Figure 8.

The fish was chunked according to the key points, and
the chunking method we were inspired by Li. In the
head–body–tail part, we take the distance between the key
points as the length of the rectangle, denoted as L, and 1.2L
as the width of the rectangle, resulting in three fine-grained
blocks. As shown in Figure 9, the three images 9(a)–9(c) are
used as the input of P1.

In the upper and lower fin sections, we use the distance
between the key points as the height of the rectangle, denoted
as H, and 5H as the length of the rectangle, resulting in two
fine-grained blocks. The two images as shown in Figures 10(a)
and 10(b) are used as the input of P2.

It is worth noting that the key points mentioned in this
paper only need to be labeled during the training process,
and do not need to be labeled again when new training
images are added. The model will automatically chunk the
fish according to the optimal weights obtained by training
the already labeled key point positions.

4.3. Experimental Setup. All the experiments in this paper
were done in Pytorch framework under Ubuntu 20.04 envi-
ronment, and the training GPU was configured as GeForce
RTX 3090. The loss function used was triplet loss and cross-
entropy loss, the optimizer used was Adam, and the Batch-
size was 32. We also used a warm-up strategy to bootstrap
the network to get better performance. We increase the
learning rate linearly from 2.5× 10⁻

4 to 2.5× 10⁻
3 using 20

epochs. After 20 epochs, the learning rate decays by 0.5 times
every 80 epochs, and 500 epochs are trained, with algorithm
evaluation metrics of Rank-1 and Rank-5.

5

3

2

1
6

4

FIGURE 8: Fish individual key points.

FIGURE 6: Coarse-grained dataset example diagram.

FIGURE 7: Fine-grained dataset example diagram.
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4.4. Data Preprocessing

4.4.1. Fish Individual Numbering. After video frame extrac-
tion, we manually identify and number the identical fish to
determine which of the single fish are the same fish. The
numbering rule is fish identity number and image number,
for example, 000101 would represent the first fish image with
identity number 1, and 001010 would represent the 10th fish
image with identity number 10. Based on the coherence of
the video, we artificially confirm the fish identity informa-
tion. When getting the prediction results, we compare them
by the identity number to record the accuracy of the predic-
tion. This solves the problem that underwater species recog-
nition cannot judge the target information based on the
background environment.

4.4.2. Data Augmentation. To simulate the actual conditions,
such as the fish’s irregular swimming posture, various under-
water illumination conditions, and blurred water quality, we
add different degrees of random rotation and grayscale
transformation and added Gaussian noise in the range of
0.01–0.2 to the fish images in the coarse-grained dataset.
Considering that different sides of the fish have different
texture features, the data augmentation method of flipping
the images horizontally is not used in this paper. The
coarse-grained dataset after data augmentation is shown
in Figure 11.

4.5. Comparison of the Impact of Fine-Grained Feature
Learning on Network Performance. The fish individual rec-
ognition method proposed in this paper includes one coarse-

1

(a) (b) (c)

2

3

6

5
4 

L

FIGURE 9: Fine-grained images of head, body and tail after being partitioned by key points: (a) head, (b) body, and (c) tail.

1

(a) (b)

3

5
H

6

4

2

FIGURE 10: Fine-grained images of upper and lower fins after being partitioned by key points: (a) upper fin and (b) lower fin.
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grained feature learning and two fine-grained feature learn-
ing, a total of three parts. Fine-grained feature learning was
performed in the head, body, tail, and upper and lower fins.

In this section, we eliminate the coarse-grained feature
fusion for the head, body, and tail parts and the coarse-
grained feature fusion for the upper and lower fin parts.
The effect of different fine-grained feature learning on the
accuracy of the network in recognizing fish individuals was
tested and the results are shown in Table 2.

Taking the colorful koi dataset as an example, the accu-
racy of Rank-1 was improved by 3.8% and 5.2% by fuzing the
fine-grained features of two different parts with the coarse-
grained features, respectively. The accuracy of Rank-1 was
improved by 9.1% by fuzing the two parts with the trunk
features at the same time, and the accuracy of Rank-1
reached 97.4%.

4.6. Model Generalization Capability Analysis. In this section,
we analyze the experimental results when the training dataset
and the test dataset belong to the same and different fish
species, respectively, to verify the performance of the model
in recognizing other species of fish.

4.6.1. Analysis of Experimental Results under the Same Fish
Dataset. Three datasets, colorful koi, red, and white koi and
Amphiprioninaes, were used as examples to analyze the
model performance when the training dataset and the test
dataset belonged to the same species of fish. As shown in
Table 3, and the results are shown in Figure 12.

The fish individual numbers obtained by the experiment are
as follows, where query_id represents the fish individual num-
ber to be queried; ans_ids represents thefish individual numbers
recognized by the network after training as the same fish as the
queried fish. The first of the three digits represents the individual
number, and the last two represent the picture number. Simi-
larly, the first two of the four digits represent the individual
number, and the last two represent the picture number.

All fish numbers provided by the network when recog-
nizing the fish individual with the query number 814 are
different images of the same fish with ID 8; all fish numbers
provided by the network when recognizing the fish individ-
ual with query number 904 are different images of the same
fish with ID 9; all fish numbers provided by the network
when recognizing the fish individual with query number
304 are different images of the same fish with ID 3.

TABLE 3: Comparison of training and experimental data under the same dataset.

Dataset Colorful koi Red and white koi Amphiprioninae

Rank-1 97.4% 96.7% 96.9%
Rank-5 98.6% 97.8% 97.5%

TABLE 2: Comparison of the impact of different fine-grained features on network accuracy in the colorful koi dataset.

Coarse-
grained fea-
ture

Head, body, and tail fine-grained features Upper and lower fins fine-grained features Rank-1

√ 88.3%
√ √ 92.1%
√ √ 93.5%
√ √ √ 97.4%
Bold font indicates the method achieves the best results with the highest accuracy.

FIGURE 11: Coarse-grained dataset after data augmentation.
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The experimental results show that the model performs
over 96.5% on both Rank-1 and Rank-5 indicators when the
training dataset and the test dataset belong to the same spe-
cies of fish.

4.6.2. Analysis of Experimental Results under the Different
Fish Dataset. We used the model trained on the colorful koi
dataset to recognize red and white koi, Takifugu Rubripes,
and Amphiprioninaes. The red and white koi are the same
species as the colorful koi, but with large differences in stripe
characteristics. Takifugu Rubripes and Amphiprioninaes are
different species from colorful koi species. The accuracy is
shown in Table 4, and the experimental effect is shown in
Figure 13.

All fish numbers provided by the network when recog-
nizing the fish individual with the query number 1,705 are
different images of the same fish with ID 17; the first four fish
numbers provided by the network when recognizing the fish
individual with the query number 208 are all different images
of the same fish with ID 2, while the fifth one gives an image
of the fish with ID 6; the first three fish numbers provided by
the network when recognizing the fish individual with the
query number 304 are all different images of the same fish
with ID 3, while the fourth and fifth positions are given to
images of the fish with ID 11.

The experimental results show that the model still per-
forms well under different datasets, with accuracy above
90%. The effect graph shows that the first five fish on the
red and white koi dataset are all hits, the first four hits on the

Takifugu Rubripes dataset are correct, and the first three hits
on the Amphiprioninaes dataset are precise. It is clear that
the model does better at recognizing fish with distinct tex-
tural features and also does well at recognizing fish across
species with high generalization.

4.7. Analysis of Fish Recognition Results in the Complex
Underwater Environments. In order to verify the accuracy
and stability of the model in the complex underwater environ-
ment, we used individual images of different species of fish with
low definition, irregular fish swimming and feature obscuration
as the test set. The experimental results are shown inTables 5–6.
The partial diagram of the test set used is shown in Figure 14.

In this section, Takifugu Rubripes, colorful koi with
irregular swimming postures, and red and white koi with
obscured features are used as test sets for fish individual
recognition. The experimental results show that the model
can still guarantee more than 95% accuracy under different
levels of external environmental interference. Among them,
Rank-1 achieves 97.3% in the case of random fish individual
swimming postures.

The level of image clarity has a larger impact on the
model’s recognition accuracy than swimming position or
feature occlusion, yet Rank-5 accuracy is only decreased by
0.6%. In the experiments simulating the complex underwater
environment, the proposed method can still efficiently and
accurately accomplish the task of individual recognition of
target fish even if there are low clarity, large differences in
fish swimming posture and fish feature occlusion.

TABLE 4: Comparison of training and experimental data under the different datasets.

Dataset Colorful koi Red and white koi Amphiprioninae

Rank-1 97.4% 96.7% 96.9%
Rank-5 98.6% 97.8% 97.5%

Query_id: 304 Ans_ids: 307

Query_id: 814 Ans_ids: 808

Ans_ids: 903 902 905 906

801

901

306 303 305 302

804 810 809

Query_id: 904

FIGURE 12: Experimental effects when the training and test data sets belong to the same species of fish.
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TABLE 6: Comparison of accuracy under the test set of red and white koi with a small amount of occlusion.

Dataset Features complete Feature occlusion Accuracy variation

Rank-1 96.7% 96.4% 0.3%
Rank-5 97.8% 97.5% 0.3%

Bold font indicates the method achieves the best results with the highest accuracy.

Query_id: 1705

Query_id: 208

Query_id: 304

Ans_ids: 1707

Ans_ids: 204

Ans_ids: 307

1706

205

306 303 1105 1102

203 206 601

1704 1703 1701

FIGURE 13: Experimental effect picture under the different datasets.

TABLE 5: Comparison of accuracy under low-definition Takifugu Rubripes test set.

Dataset High definition Low definition Accuracy variation

Rank-1 96.3% 95.5% 0.8%
Rank-5 97.8% 97.2% 0.6%

Bold font indicates the method achieves the best results with the highest accuracy.

FIGURE 14: Lower quality fish individual test set.
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4.8. Experimental Results and Analysis under Different Networks

4.8.1. Experimental Results and Analysis of Backbone Network
for Computing Channel Weights. We take the network as
variables, the number of network layers and the dataset as
constants, compare the performance of ResNet 50 and the
backbone network for computing channel weights proposed
in this paper under the colorful koi dataset from the aspects
of parameter quantity, Rank-1 accuracy and Rank-5 accu-
racy. The experimental results are shown in Table 7. The
results show that the backbone network for computing chan-
nel weights is able to significantly increase the model accuracy
at the cost of a small increase in the number of parameters,
with 2.7% increase in Rank-1 accuracy and 3.3% increase in
Rank-5 accuracy compared to the ResNet-50 network.

4.8.2. Comparison of the Method Proposed in This Paper with
Other Networks. We compare the proposed method with
other networks to analyze the performance of the model in
different underwater environments under the same dataset.
The experimental results are shown in Figure 15, where the

standard environment is fully lit, the fish feature is unob-
structed, and the image resolution is clear.

The experiments are evaluated using Rank-1 as the eval-
uation criterion, and it is clear from the results that our
proposed method has the highest accuracy in four different
external environmental conditions. The accuracy of the model
is affected when there is a change in the underwater environ-
ment. However, our proposed method is less affected by the
environmental changes and still guarantees more than 95.5%
accuracy under insufficient lighting conditions, obscured fish
features, and low-image resolution. This is due to our coarse
and fine-grained linked learning approach, which provides
higher accuracy and greater stability than other networks.

5. Conclusions

In this paper, we proposed a fish individual recognition
method based on coarse and fine-grained feature-linked
learning. By chunking the fish by different positions and
training the part and the whole image simultaneously, the
learned fine-grained features are fuzed with the coarse-
grained features to achieve the purpose of linked learning
of coarse and fine-grained features. Additionally, we improve
the network’s capacity to extract fish features by computing
channel weights, which increases the network’s accuracy in
recognizing fish individuals even when the background envi-
ronment is blurry or similar. The method performs remark-
ably well in various datasets. It is capable of performing
cross-species fish recognition tasks with great generalizability
after data augmentation for underwater environment specific
and fish features. The method can be combined with intelli-
gent devices such as underwater robots and detectors to
accomplish target capture, tracking and observation, and
recording fish information. This has scientific significance
for the development of aquaculture and environmental pro-
tection industries in the current environment.
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FIGURE 15: Comparison of different network experimental results in
the same environment.

TABLE 7: Comparison of training experimental data using computing channel weighting network.

Network ResNet-50 Computing channel weighting network

Parameters 25.6M 25.7M
Rank-1 94.7% 97.4%
Rank-5 95.3% 98.6%
Bold font indicates the method achieves the best results with the highest accuracy.
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