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Te current study aimed to explore the intestinal fungal community characteristics of grass carp and black carp and their
correlation with cultured water fungi. Grass carp, black carp, and their cultured water samples were collected from the same
reservoir. Based on the Illumina HiSeq 2500 high-throughput sequencing platform, the fungal internal transcribed spacer (ITS)
region sequences of each sample were determined and analyzed. Te results showed that a total of 1,193,261 valid sequences with
an average length of 235–251 bp were detected in the three groups of samples, which included 9 phyla, 27 classes, 65 orders, and
288 genera. Ascomycota, Basidiomycota, Mortierellomycota, and Chytridiomycota were the dominant phyla. Mortierella,
Termoascus, andTermomyceswere the main genera. Compared with cultured water samples, the abundance of major phyla and
genera was signifcantly diferent from grass carp and black carp samples, but there was no signifcant diference between grass
carp and black carp samples. Surprisingly, Ascomycota was enriched in CY and QY samples. In conclusion, the dominant fungi in
grass carp, black carp, and cultured water samples were similar, but the relative abundance was signifcantly diferent compared
with cultured water samples. Te results will provide a basis for the tolerance of fsh with diferent feeding habits to colonize water
and provide a theoretical basis for the regulation and improvement of aquaculture water quality and the realization of healthy and
green aquaculture of fsh.

1. Introduction

Intestinal microbiota plays an important role in host
health and nutrition and has attracted increasing at-
tention recently [1]. As an important source of human
protein, fsh is undoubtedly the focus of research [2]. A
large number of microorganisms are distributed in the
intestinal tract of fsh, which have formed a complex
symbiotic relationship with the host in the long-term
natural evolution process [3, 4]. Fish gut provides a re-
productive environment for intestinal microorganisms,
which in turn play an irreplaceable role in the devel-
opment, nutrition, immune metabolism, and physio-
logical health of the host [5, 6].

Sustainable development of aquaculture requires full
consideration of the interaction between the environment
and aquatic organisms [7–9]. As one of the most important
aquaculture models, pond aquaculture plays an irreplaceable
role in aquaculture. Tere are a large number of microor-
ganisms such as bacteria and fungi in the pond ecosystem.
As an important microorganism, fungi have a large number,
diverse forms, and complex community structure [10, 11].
On the one hand, fungi participate in the decomposition of
organic matter and provide nutrients for aquatic plants and
fsh [12]; on the other hand, many pathogenic fungi afect the
growth and reproduction of plants, thus afecting the health
of fsh [13, 14]. Terefore, comparative studies of fungal
microbial community characteristics in aquaculture waters
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and intestinal tract of aquatic animals are benefcial to the
regulation of aquaculture water quality.

Grass carp (Ctenopharyngodon idella) and black carp
(Mylopharyngodon piceus), both of which belong to the “four
major Chinese carps,” are widely distributed in China and
have been extended to more than 100 countries [15]. Grass
carp is an herbivorous freshwater fsh belonging to Cypri-
nidae (the carp family) and the genus Ctenopharyngodon. It
often lives in the middle water body and mainly feeds on the
stems and leaves of aquatic plants [16]. Black carp is
a carnivorous freshwater fsh belonging to Cyprinidae and
the genusMylopharyngodon. It often lives in the lower water
body. Juvenile fsh live on zooplankton, while adult fsh feed
onmollusks such as snails and clams [17]. With the excellent
characteristics of large yield, delicious meat quality and high
nutritional value, it is deeply loved by the majority of
consumers [18, 19]. According to the statistics, the annual
production of black carp was about 6.8×105 tons and the
annual production of grass carp was about 5.53×106
tons [20].

At present, researchers have conducted a large number of
studies on the structural characteristics of bacteria and archaea in
the aquatic environment [21–24]. Te studies on intestinal
microorganisms of fshmainly focus on growth andmetabolism,
nutrient absorption, immune regulation, and the efect of bait on
intestinal tract [25–27]. Te correlation between intestinal fungi
of two diferent predatory fshes and fungi in reproductive water
environment has not been reported. In this study, we selected
grass carp, black carp, and culturedwater samples from the same
aquatic culture environment. Based on Illumina Hiseq
2500 high-throughput sequencing platform, we analyzed the
diversity and community structure of fungi in grass carp, black
carp and their cultured water, and explored their correlation
between fungi. Tese results will provide basic data for the
tolerance of fsh with diferent feeding habits to aquaculture
water, so as to provide theoretical basis for the regulation and
improvement of aquaculture water quality and the realization of
healthy and green aquaculture.

2. Materials and Methods

2.1. Sample Collection. Black carp (QY, Q�ingyú), grass carp
(CY, Cǎoyú), and cultured water samples (SY, Shuǐ yàng)
were collected in the same pond of Loudi Fisheries Research
Institute (27°43′47″N, 112°0′6″E), Hunan Province, China.
Te pond has a depth of 2.0m and an area of 1.5 hm2. Te
sampling time was 08:00 a.m. on January 19, 2021, with
water temperature 17.8°C, pH 8.10–8.56 and dissolved
oxygen> 4.35mg/L. Five grass carps (1431.34± 33.25 g) and
fve black carps 2627.3± 42.69 g) of the same size without
disease symptoms were randomly selected from the fsh
caught in the net and brought back to the laboratory together
with water samples, and the others were put back into the
pond. Te fsh used in the experiment came from natural
ponds and were not fed any food. At the same time, 8
sampling points were randomly selected in the pond, and
10mL equal volume water samples were collected at a depth
of about 1.0m under the water surface. After mixing, the
samples were loaded into sterilization centrifuge tubes.

In order to minimize sample contamination, the fsh
surface was washed with sterile water and 70% ethanol
successively before dissection. Grass carp intestinal contents
samples (CY1-CY5), black carp intestinal contents samples
(QY1–QY5), and water samples (SY1-SY5) were collected in
a sterile operating tray with sterilized centrifuge tubes and
refrigerated at −80°C for later use.

2.2. PCR Amplifcation and Illumina HiSeq Sequencing.
Te MN NucleoSpin 96 Soi kit was used to extract DNA
from collected chyme samples. Te PCR amplifcation was
performed with ITS1_F and ITS2_R primers of fungal ITS,
and high-throughput sequencing was performed using
Illumina HiSeq 2500 platform. Te primer, reaction system,
and amplifcation conditions are as follows: Primer synthesis
and sequencing were completed by Beijing Biomarker
Technologies Co., Ltd (Beijing, China).

Amplifcation primers: ITS1_F (5′-CTTGGTCATTTA
GAGGAAGTAA-3′) and ITS2_R (5′-GCTGCGTTCTTC
ATCGATGC-3′). Te amplifcation reaction was performed
as follows: 5 μL KOD FX Neo Bufer, 0.3 μL (10 μM) of each
forward primer and reverse primer, 2 μL (2mM) of dNTPs,
0.2 μL KOD FX Neo, and 50 ng of DNA template, ddH2O
supplement to 20 μL. Reaction conditions: Initial de-
naturation at 95°C for 5min, followed by 25 cycles consisting
of denaturation at 95°C for 30 s, annealing at 50°C for 30 s,
and extension at 72°C for 40 s, with a fnal extension of 7min
at 72°C.

2.3. Microbial Composition Analysis. Quality fltering was
performed on the original data (Trimmomatic, version 0.33)
[28], primer sequences were identifed and removed
(Cutadapt, version 1.9.1) [29], and double-ended reads were
spliced (FLASH, version 1.2.11) [30]. Finally, we removed
chimeras using UCHIME version 8.1 to obtain high-quality
sequences for subsequent analysis [31]. Te sequences were
clustered at the 97% similarity level (USEARCH, Version
10.0) [32], and operational taxonomic units (OTUs) were
fltered with 0.005% of all sequenced sequences as the
threshold [33]. QIIME2 software (https://qiime2.org/) was
used to calculate alpha and beta diversity in the samples to
comprehensively assess the overall diversity and reveal
diferences between samples. Alpha diversity includes Chao1
richness estimator and Ace richness estimator to measure
the richness of the microbiota and Shannon−Wiener di-
versity index and Simpson diversity index to measure the
diversity of the microbiota. Beta diversity analysis includes
principal component analysis (PCA), principal coordinates
analysis (PcoA), and nonmetric multidimensional scaling
(NMDS), all belonging to ordination analysis, which is about
rearrange these samples in a visualized low-dimensional
space or plane, so that the distance between samples can
refect the relationship information between samples in the
plane scatter plot to the maximum extent. Based on the four
distance matrices obtained from beta diversity analysis,
unweighted paired average (UPGMA) was used to perform
hierarchical clustering of samples by R language tool to
assess the similarity of species composition among samples.
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LefSe analysis [34] (https://huttenhower.sph-harvard.edu/
lefse/), namely, the analysis of species with signifcant dif-
ferences between groups, used linear discriminant analysis
(LDA) to estimate the impact of each species abundance on
the diference efect size and searched for species with
signifcant diferences between all groups.

2.4. Statistical Analysis. SPSS 25.0 statistical software (IBM
Corp., Armonk, NY, USA) was used to analyze the data, and
the measurement data was represented by means± standard
deviations, and independent sample T test was used for pair
comparison. Diferences between groups were considered
statistically signifcant at P< 0.05 [35].

2.5. Data Storage. Te original sequences obtained in this
study have been submitted to the NCBI sequence read ar-
chive (accession number is PRJNA802701 https://www.ncbi.
nlm.nih.gov/bioproject/PRJNA802701).

3. Results

3.1. Sequencing Characteristics and Microbial Diversity.
After quality control, a total of 1193261 high quality se-
quences were obtained from 15 samples in CY, QY, and SY,
and the proportion of efective sequences in each sample was
between 0.9748 and 0.9911.Te average sequence length was
between 235–251 bp (Table 1).Te average coverage index of
each sample was 0.9986, between 0.9978 and 0.9997, which
could refect the real situation of species in the community
(Table 2). As shown in the species Venn diagram, a total of
1099 OTUs were obtained in the three groups, and 651, 825,
and 670 OTUs were found from the CY, QY, and SY groups.
Among them, 282 were identical (Figure 1). It indicated that
the richness and diversity of fungi in QY and SY were higher
than that in CY, but there was no statistical diference.

Chao1 index, Ace index, Shannon index, and Simpson
index were calculated to illustrate the diversity and richness
of CY, QY, and SY. From the calculation results of richness
index (Table 2), the Chao1 index in QY was the highest, the
Ace index in SY was the highest, and the Chao1 index and
Ace index in CY were the lowest. From the calculation
results of diversity index, the Simpson index and Shannon
index in QY were the highest, the Simpson index in SY was
the lowest, and the Shannon index in CY was the lowest.
Compared with SY, there was no signifcant diference in the
other indexes except Shannon diversity index in CY
(P< 0.05). Tese results indicated that the richness of fungi
in cultured water was the highest, and the diversity of fungi
in the intestinal tract of black carp was the highest, with no
signifcant diference between them. Tese results indicated
that the richness of fungi in SY was the highest, while the
diversity of fungi in QY was the highest, with no signifcant
diference between them.

3.2. Overall Microbial Community Structure. A total of 9
phyla and 288 genera were identifed from 15 samples
collected from CY, QY, and SY groups. Nine phyla and 210

genera were identifed in CY, 9 phyla, and 253 genera in QY
and 8 phyla and 188 genera in SY. Among the identifed
phyla, Ascomycota, Basidiomycota, Chytridiomycota, and
Mortierellomycota had higher relative abundance. Te total
abundance of these four phyla accounted for 94.34%,
91.54%, and 66.77% in CY, QY, and SY, respectively
(Figure 2).

3.3. Characteristics of Fungal Community Composition

3.3.1. Characteristic of Fungal Community Composition at
Phylum Level. Tere were 9 phyla detected in 15 samples of
the three groups, among which Calcarisporiellomycota was
not detected in the SY samples. Te dominant phyla in CY,
QY, and SY samples were Ascomycota (68.29%, 68.67%, and
31.58%, respectively), Basidiomycota (13.40%, 12.37%, and
9.33%, respectively), Mortierellomycota (12.14%, 9.43%, and
4.14%, respectively), and Chytridiomycota (0.51%, 1.07%,
and 21.72%, respectively). Among the 9 strains identifed,
Ascomycota, Chytridiomycota, Glomeromycota, and Mor-
tierellomycota in CY and QY showed signifcant diferences
compared with SY (P< 0.01 or P< 0.05), and there was no
signifcant diference in CY and QY between these bacteria
(Figure 3, Table 3). In addition, Calcarisporiellomycota was
not detected in the SY, and Chytridiomycota signifcantly
increased in the SY, while all other phyla have diferent
degrees of reduction.

3.3.2. Characteristic of Fungal Community Composition at
Genus Level. A total of 288 genera were detected in 15
samples of the three groups. 210, 253, and 188 genera were
detected in CY, QY, and SY, respectively. Te unclassifed
genera in the SY were the most, accounting for 66.87%. Of
the 288 identifed genera, the top 10 genera in relative
abundance among these three groups of samples were
Mortierella, Termoascus, Termomyces, Aspergilleus, Peni-
cillium, Fusarium, Saitozyma, Archaeorhizomyces, Alter-
naria, and Cladosporium (Figure 4, Table 4). Compared with
SY sample, there were 5 genera in the CY and QY samples
that were signifcantly diferent from the SY sample (P< 0.01
or P< 0.05). In addition, Aspergillus and Cladosporium had
signifcant diferences in CY and QY samples (P< 0.05).

Further, as shown in Figure 5(a), UPGMA analysis
showed that the microbial community similarity of each
group was relatively high. According to LefSe analysis re-
sults, there were more fungal species with statistical dif-
ferences in the CY but fewer in the QY, and only phylum
Chytridiomycota and class Chytridiomycetes had statistical
diferences in the SY (Figure 5(b)).

4. Discussion

Pond aquaculture has become the most important and
broadest breeding mode in China and the most important
source of aquatic products [36]. Te quality of aquatic
products is closely related to the cultured environment, and
the microbial composition in the cultured environment has
become one of the most important factors. Terefore, the
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aquaculture environment of aquatic products should be
highly valued. In the intestinal tract of freshwater fsh, the
dominant bacteria belong to Pseudomonas, Bacteroides, and
Aeromonas, whose main functions can be summarized as
improving the absorption and utilization of nutrients, pro-
moting the maturation of the immune system, and protection
against pathogenic microorganisms [37–40]. Its community

structure varies with fsh species, feeding habits, bait, and
various environmental factors [41–43]. Under the same
conditions, the composition of microbial community in re-
productive water environment will directly afect the com-
munity structure of intestinal microorganisms of fsh [43–46].

Fungi, as an important component of intestinal mi-
croorganisms, play an important role in maintaining the

Table 2: Coverage and diversity indices of fungal species in each group.

Group Chao1 Ace Simpson Shannon Coverage
CY 467.7671± 159.2337 640.5842± 252.8119 0.9733± 0.0058 6.0649± 0.1492∗ 0.9985± 0.0007
QY 564.4470± 69.5352 870.1195± 204.2143 0.9768± 0.0050 6.4822± 0.3672 0.9983± 0.0003
SY 529.2817± 128.6672 1065.8730± 415.0554 0.9713± 0.0078 6.4572± 0.2899 0.9989± 0.0004
Note. CY stands for grass carp, QY stands for black carp; SY stands for water sample; compared with water sample. ∗stands for P< 0.05, ∗∗stands for P< 0.01.
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Figure 1: Fungi venn diagram in diferent test groups. Note: CY stands for grass carp, QY stands for black carp; SY stands for water sample.

Table 1: Characteristics of ITS sequences in each sample.

Sample ID Raw reads Clean reads Efective reads AvgLen (bp) Efective (%)
CY1 80157 79447 79431 241 99.09
CY2 80094 79293 79023 244 98.66
CY3 79958 79163 78611 248 98.32
CY4 79886 79098 79088 242 99
CY5 79925 79153 77909 241 97.48
QY1 80158 79375 78295 242 97.68
QY2 80256 79354 79348 244 98.87
QY3 79967 79090 78033 242 97.58
QY4 73220 72620 71513 239 97.67
QY5 79987 79215 79040 235 98.82
SY1 79911 79179 79148 251 99.05
SY2 79799 79118 79090 248 99.11
SY3 79670 78967 78773 249 98.87
SY4 80190 79454 79075 249 98.61
SY5 80083 79374 78968 246 98.61
Note. CY stands for grass carp, QY stands for black carp; SY stands for water sample.
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Figure 3: Relative abundance of fungi identifed at phylum level in each group. Note: CY stands for grass carp, QY stands for black carp; SY
stands for water sample.

Table 3: Relative abundance of fungi identifed at phylum level in each group.

Phylum CY QY SY
Ascomycota 0.6829± 0.0392∗∗ 0.6867± 0.0226∗∗ 0.3158± 0.0535
Basidiomycota 0.1340± 0.0415 0.1237± 0.0267 0.0933± 0.0213
Calcarisporiellomycota 0.0009± 0.0020 0.0003± 0.0006 0.0000± 0.0000
Chytridiomycota 0.0051± 0.0047∗∗ 0.0107± 0.0085∗∗ 0.2172± 0.0486
Glomeromycota 0.0096± 0.0030∗∗ 0.0092± 0.0053∗ 0.0023± 0.0016
Mortierellomycota 0.1214± 0.0319∗∗ 0.0943± 0.0366∗ 0.0414± 0.0109
Mucoromycota 0.0030± 0.0045 0.0021± 0.0028 0.0024± 0.0036
Olpidiomycota 0.0008± 0.0017 0.0037± 0.0032 0.0016± 0.0011
Rozellomycota 0.0085± 0.0099 0.0120± 0.0053 0.0061± 0.0066
Unclassifed 0.0339± 0.0079∗∗ 0.0573± 0.0149∗∗ 0.3199± 0.0338
Note. CY stands for grass carp, QY stands for black carp; SY stands for water sample; compared with water sample. ∗stands for P< 0.05, ∗∗stands for P< 0.01.
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Figure 2:Te fungal community in all samples at phylum level. Note: CY stands for grass carp, QY stands for black carp; SY stands for water
sample.
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balance of intestinal microecology [47]. Under normal
circumstances, there is a stable synergistic, antagonistic, or
symbiotic relationship between intestinal fungi, intestinal
bacteria, and other intestinal microorganisms to jointly
stabilize the intestinal microbiota environment and main-
tain the intestinal mucosal barrier function [16]. However,
when intestinal microbiota is disturbed, fungi will play
a negative role and become the source of pathogenic bacteria
for fungal infection [48]. Studies have confrmed that
pathogenic fungi Fusarium, Aphanomyces, and Lagenidium
were identifed in Oreochromis niloticus aquaculture
pond [49].

In this study, we applied high-throughput sequencing
technology for the frst time to fungal microbial communities
in cultured water bodies and the intestinal tracts of aquatic
animals. Te results showed that 9 phyla were identifed from
the DNA metabarcodes, among which Ascomycota, Basi-
diomycota, and Mortierellomycota were the dominant phyla
in CY and QY samples. Ascomycota, Basidiomycota, Mor-
tierellomycota, and Chytridiomycota were the dominant
phyla in SY samples. At the phylum level, the fungal microbial
composition in CY and QY samples was similar, and there
was no signifcant diference in abundance. However,
Ascomycota, Chytridiomycota, Glomeromycota, and
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Figure 4: Relative abundance of fungi identifed in each group for the most abundant 10 genera. Note: CY stands for grass carp, QY stands
for black carp; SY stands for water sample.

Table 4: Relative abundance of fungi in each group for the 10 most abundant genera.

Genus CY QY SY
Unclassifed 0.2568± 0.0617∗∗ 0.2665± 0.0358∗∗ 0.6687± 0.0519
Mortierella 0.1214± 0.0319∗∗ 0.0879± 0.0309∗ 0.0414± 0.0109
Termoascus 0.1055± 0.0299∗∗ 0.1045± 0.0085∗∗ 0.0425± 0.0100
Termomyces 0.0628± 0.0119∗∗ 0.0525± 0.0305 0.0287± 0.0126
Aspergillus 0.0305± 0.0140 0.0138± 0.0071 0.0113± 0.0157
Penicillium 0.0187± 0.0085∗∗ 0.0157± 0.0086∗ 0.0040± 0.0041
Fusarium 0.0167± 0.0112 0.0259± 0.0169 0.0136± 0.0098
Saitozyma 0.0154± 0.0099 0.0167± 0.0102 0.0096± 0.0069
Archaeorhizomyces 0.0142± 0.0084∗ 0.0189± 0.0063∗∗ 0.0043± 0.0037
Alternaria 0.0095± 0.0103 0.0139± 0.0156 0.0111± 0.0109
Cladosporium 0.0074± 0.0055 0.0183± 0.0066∗∗ 0.0048± 0.0037
Others 0.3411± 0.0510∗∗ 0.3655± 0.0494∗∗ 0.1598± 0.0251
Note. CY stands for grass carp, QY stands for black carp; SY stands for water sample; compared with water sample. ∗stands for P< 0.05, ∗∗stands for P< 0.01.
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Mortierellomycota in CY and QY were signifcantly diferent
from those in SY, and Calcarisporiellomycota was not de-
tected in SY. Moreover, the abundance of Chytridiomycota
was relatively high in SY. Tis result indicated that

Ascomycota, Basidiomycota, and Chytridiomycota were
the main phyla in the freshwater fungal community, with
Ascomycota and Chytridiomycota as the dominant phyla;
these are consistent with the research results of domestic

Similarity Taxonomic composition
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Figure 5: Similarity and diference analysis of fungi in each group. (a) UPGMA analysis, (b) LefSe analysis. Note: CY stands for grass carp,
QY stands for black carp; SY stands for water sample.
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and foreign scholars [50–52]. Surprisingly, Ascomycota
was enriched in CY and QY samples. Ascomycota is the
largest category in the fungal community in the study,
mainly by the Dothideomycetes, Sordariomycetes, and
Eurotiomycetes. Tese three fungi were widely distributed
in all habitat types, among which Dothideomycetes had
diverse ecological functions and environmental adapt-
ability [50]. Basidiomycota is the main component of the
terrestrial fungal community, and the abundance of
Basidiomycota in sediments is closely related to the input of
exogenous organic matter [51, 53]. Chytridiomycota feeds
mainly on aquatic plant residues [54], which may be the
reason for its relatively high abundance in SY. Further-
more, Ascomycota and Basidiomycota are not only the
main decomposers of organic matter in the soil fungal
community but also participate in the nitrogen cycle and
play an extremely important role in the material cycle and
energy fow of the biosphere [55, 56].

At the genus level, a total of 288 genera were detected,
of which 210 were detected in CY samples, 253 in QY
samples, and 188 in SY samples. Mortierella, Termoascus,
and Termomyces were the three genera with the highest
relative abundance in each group. Among the unclassifed
fungi detected, CY and QY samples accounted for 25.68%
and 26.65%, respectively. Tere was little diference be-
tween the two groups of samples, but they accounted for
66.87% in SY samples. Tese results indicated that the
fungal species of QY sample were richer than CY sample,
and the fungal diversity of SY sample was richer than CY
and QY samples, mainly belonging to unclassifed fungi.
Compared with SY samples, 5 of the 10 dominant fungal
genera in CY and QY samples showed signifcant difer-
ences, but these genera did not show signifcant diferences
in CY and QY. Tese results indicated that the species and
abundance of intestinal fungi in QY and CY samples were
basically the same, which were related to cultured water.
Mortierella is an important component of soil microbial
community. Some species form symbiotic relationships
with plants [57, 58], while some are hosts themselves and
beneft from the symbiotic bacteria in the process of growth
and reproduction [59–61]. Both Termoascus and Ter-
momyces are thermophilic fungi with unique survival
ability and can secrete a variety of enzymes such as amylase
and cellulase, which can provide nutrients for the growth of
microorganisms [62, 63].

In conclusion, based on the community characteristics of
fungi in CY, QY, and SY samples, our work identifed the
similarity of fungal microbes in CY and QY, and the cor-
relation between fungal microbes in CY, QY, and SY. Te
present study showed that species composition of abun-
dance of intestinal fungi in two cyprinid species were re-
markably similar despite their contrasting feeding habits
(herbivorous vs. carnivorous). Tis suggests that intestinal
fungi have similar roles to the digestive ability of the two
carp species. Tese results will provide a theoretical basis for
the regulation and improvement of aquaculture water
quality, the realization of healthy and green fsh aquaculture,
and provide reference for the research and development of
probiotic products.
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