
Research Article
High Occurrence of Multiple-Drug Resistance Mediated by
Integron in Aeromonas Isolated from Fish-Livestock
Integrated Farms

Yu Ting Deng ,1,2 Yong Yong Feng ,3 Ai Ping Tan ,1 Fei Zhao ,1 Lan Jiang ,1

and Zhi Bin Huang 1

1Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Afairs,
Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture,
Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
2Key Laboratory of Control of Quality and Safety for Aquatic Products of Ministry of Agriculture and Rural Afairs,
Chinese Academy of Fishery Sciences, Beijing, China
3College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, China

Correspondence should be addressed to Fei Zhao; zhaofei@prfri.ac.cn

Received 6 September 2022; Revised 9 December 2022; Accepted 31 December 2022; Published 6 February 2023

Academic Editor: Zhitao Qi

Copyright © 2023 Yu Ting Deng et al.Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fish-livestock integrated farming is a traditional practice in South China and Southeast Asia. Te administration of antimicrobial
agents in livestock may potentially facilitate the spread of antimicrobial resistance to aquaculture through the drainage of livestock
manure. Aeromonas spp. are fsh pathogens that are the predominant bacteria in water bodies. Te aim of this study was to
characterize multiple-drug-resistantAeromonas spp. isolated from integrated and nonintegrated fsh-livestock farms and to
investigate the occurrence of class 1 integrons. Of the 481Aeromonas strains examined in this study, isolates from pigmanure, fsh,
and environmental samples from pig-fsh or goose-fsh integrated farms were signifcantly more resistant to various antimicrobial
agents than those from nonintegrated farms (P< 0.05). High rates of resistance to nalidixic acid and sulfamonomethoxine were
observed in the isolates from the integrated farm. Fifty Aeromonas isolates (10.4%) from integrated farms contained class 1
integrons. In addition, 96.0% (48/50) of the integron-positive strains displayedmultiple-drug resistance. Ten types of gene cassette
arrays were determined by sequencing, including dfrA17, dfrA12-orfF-aadA2, catB8, dfrB4-catB3-aadA1, aac6(6′)-Ib-cr-arr-3,
aac-II-blaOXA-21-catB3, aar2-aacA4-drfA1-orfC, aac(6′)-Ib-cr, dfrA15, and dfrB4-catB3-blaOXA-10-aadA1. Notably, among the
50 integron-positive isolates, twenty isolates showed integrons located in plasmids, which may facilitate the transmission of
resistance in integrated farms. Our investigation confrmed the high prevalence of multiple antimicrobial resistances mediated by
class 1 integrons in Aeromonas isolates from integrated farms. Terefore, it is necessary to establish a risk assessment method for
antimicrobial resistance in aquaculture.

1. Introduction

Fish-livestock integrated farming is a traditional practice in the
countryside of South China and has been introduced into other
Asian countries, such as Vietnam, Indonesia, Tailand, and
India [1, 2]. Farmers often own these aquaculture systems. Fish
are usually raised on farms with pigs, ducks, or geese that breed
in sheds beside the fshponds. Untreated sewage from livestock
urine, manure, and excess food was discharged directly into the

ponds.Manure is often used as a source of organicmatter for the
growth of plankton and benthos and can be utilized by her-
bivorous and omnivorous fsh [3]. Te integrated fsh-livestock
farming system facilitates the input supply and marketing of
products. However, the environmental impact of uncontrolled
disposal of livestock waste is unacceptable.Within the integrated
fsh farming system, the accumulation of surplus antimicrobial
agents and their residues from livestock may establish selective
pressure that favours the selection and growth of antimicrobial-
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resistant bacteria (ARB) [4]. ARB from livestock can enter ponds
through animal manure and/or excess food [5]. A recent report
found that an aquatic pathogen, Aeromonas salmonicida subsp.
salmonicida, harbored two novel plasmid variants carrying
multiple antibiotic resistance genes that were linked to a swine
pathogen [6]. Previous studies on integrated farms in China and
Southeast Asia have demonstrated that high levels of
residual antimicrobial agents and antimicrobial resistance
genes (ARGs) can be detected in polluted environments
[2, 4, 5, 7]. Moreover, the potential transfer of ARB and
ARGs from the aquaculture environment to humans may
occur through direct or indirect consumption of fsh and
associated products harboring ARB [8, 9]. Faecal waste
from livestock contains microbes and constituents that
are potentially hazardous to pond ecology and food safety.
To efciently monitor antimicrobial resistance (AMR) in
aquaculture systems, it is necessary to identify an efective
general indicator bacterium. Aeromonas spp. are water-
borne bacteria that are ubiquitous in aquatic animals and
in the environment. Aeromonas are facultative pathogens
that can infect various species of aquatic animals and may
cause diseases in humans and warm-blooded animals
through direct or indirect consumption of contaminated
water or food [10]. Aeromonas spp. are the most conve-
nient bacteria to isolate from freshwater aquatic
animals and environments. Terefore, Aeromonas spp. are
useful indicators for monitoring AMR in aquaculture
systems [11].

Te spread of AMR and ARGs among bacterial path-
ogens on integrated livestock farms is a major public health
issue [2, 4, 5, 12]. Genetic elements, such as plasmids,
transposons, and integrons, can be transferred horizon-
tally between bacteria of diferent origins. Integrons are
especially important among these genetic elements given
their ability to capture and express resistance genes
harbored by diferent gene cassettes [13]. Class 1 inte-
grons, the most common integrons, have a complete
structure containing a 5′-conserved segment, variable
gene cassettes, and 3′-conserved segment. Integrons with
gene cassettes have mostly been reported in Gram-
negative bacteria, especially in Enterobacteriaceae
[12, 14, 15]. Several studies have investigated AMR and
mobile resistance elements in aquaculture systems
[8, 16, 17]. Previous studies have found that class 1
integrons are the most predominant type of integrons
detected in Aeromonas isolated from aquatic animals and
the environment [18, 19]. It has also been shown that
aminoglycoside resistance genes (aadA1 and aadA2) and
trimethoprim resistance genes (dfrA1 and dfrA12) are the
most prevalent resistance genes carried by class 1 inte-
grons [19–21]. Integrated fsh-livestock aquaculture sys-
tems seem to have a negative efect on ecosystems;
however, studies on the genetics of AMR in integrated
aquaculture systems are limited. Tis study aimed to
determine the occurrence and characteristics of class 1
integrons in Aeromonas spp. isolated from integrated fsh-
livestock farms in Guangdong Province, China, and to
provide information regarding the risk of AMR resistance
in integrated farming systems.

2. Materials and Methods

2.1. Sample Collection. Eight ponds belonging to three types
of freshwater farms in Zhaoqing, Foshan City, and
Guangdong Province, South China, were selected. Tree pig
fshponds (PF1, PF2, and PF3), two goose-fsh ponds (GF1
and GF2), and three nonintegrated farms (F1, F2, and F3)
were sampled between September and October 2014. Te
fshes reared in these ponds were tilapia (Oreochromis au-
reus), grass carp (Ctenopharyngodon idella), and mud carp
(Cirrhinus mrigala). For all of these farming systems, the
Xijiang River was the main water source. All the investigated
integrated farms applied animal waste directly to the fsh-
ponds. Furthermore, the sediments were seldom removed or
left untreated.

Ten fsh of the same type were collected by the farmers
from each pond. Manure of pigs or geese was obtained from
pig or goose farms near the fshponds. Five representative
sites in the pond, including locations for animal waste
discharge and fsh-feeding hacks, were selected as sampling
points. At each sampling point, a water sample of ap-
proximately 2 L was collected from 1m below the water
surface. Approximately 100 g of the sediment sample was
collected from the 10 cm water-sediment interface. In total,
72 fsh samples (20 grass carp, 20 tilapias, and 32 mud carp),
35 pig manure, 33 samples of goose manure, 35 samples of
pond water samples, and 35 sediment samples were collected
from both integrated and nonintegrated farms. All the
samples were placed in separate plastic bags, stored in
a cooler, and transported to the laboratory within 12 h of
collection.

2.2. Bacterial Isolation and Genetic Identifcation. Fish were
euthanized by immersion inMS222 solution (Sigma, Beijing,
China) (250mg/L; 25–30°C) that was assumed to cause rapid
unconsciousness according to the American Veterinary
Medical Association (AVMA) guidelines [22]. Pretreatment
of fsh and environmental samples was conducted as de-
scribed previously, with some modifcations [23, 24]. In
brief, approximately 25 g of the gills and intestines were
aseptically removed using sterile scissors and forceps, cut
into small pieces, and placed in a sterile blender bag con-
taining 250mL of alkaline water and peptone medium
(Oxoid, UK). For solid samples, 5 g of sediment or manure
was suspended in a 100mL alkaline water peptone medium.
All sample suspensions were shaken on a horizontal shaker
for 30min at 200 r/min and left to stand for 1 h at room
temperature, after which bacterial suspensions were ob-
tained. All applicable international, national, and in-
stitutional guidelines for the care and use of animals were
followed.

Ten-fold serial dilutions of each sample, including pond
water and sample suspensions, were prepared in a sterile
saline solution (0.85% NaCl). Each dilution (0.1mL) was
then spread on Rimler–Shotts agar (Oxoid, UK) and in-
cubated at 28± 2°C for 18–24 h. Individual yellow colonies
were subsequently identifed using an oxidation test [25].
Te oxidase-positive isolates were further identifed by PCR
amplifcation of the 16S rRNA and gyrB genes, as previously
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described [26, 27]. Nucleotide sequences were analyzed
using BLAST in GenBank (https://blast.ncbi.nlm.nih.gov/).
No more than 3 Aeromonas strains were selected from each
sample.

2.3. Antimicrobial Susceptibility Tests. Antimicrobial sus-
ceptibility tests (ASTs) of Aeromonas isolates were per-
formed according to the broth microdilution method
described in the Clinical and Laboratory Standards Institute
(CLSI) guideline VET03 [28]. Te antimicrobial agents
tested included ampicillin (AMP), cefotaxime (CTX),
chloramphenicol (CHL), forfenicol (FFC), thiamphenicol
(THI), neomycin (NEO), gentamicin (GEN), amikacin
(AMK), nalidixic acid (NAL), norfoxacin (NOR), enro-
foxacin (ENR), ciprofoxacin (CIP), sulfamonomethoxine
(SMM), sulfadiazine/trimethoprim (SD/TMP), sulfame-
thoxazole/trimethoprim (SXT), tetracycline (TET), doxy-
cycline (DOX), and nitrofurantoin (NIT). Antimicrobial
agents were double diluted using Mueller–Hinton broth
(Oxoid, UK) in 96-well plates at the following ranges: AMP
(2–128mg/mL), CTX (0.03–64mg/mL), CHL (2–64mg/
mL), FFC (1–32mg/mL), THI (2–32mg/mL), NEO
(1–64mg/mL), GEN (0.25–16mg/mL), AMK (0.5–64mg/
mL), NAL (0.5–128mg/mL), NOR (0.03–16mg/mL), ENR
(0.008–8mg/mL), CIP (0.004–8mg/mL), SMM (16–512mg/
mL), SD/TMP (2.5/0.5–20/4mg/mL), SXT (9.5/0.5–76/
4mg/mL), TET (0.5–64mg/mL), DOX (0.5–32mg/mL), and
NIT (4–64mg/mL).

Aeromonas spp. isolates were inoculated on Rimler–
Shotts agar (Oxoid, UK), and incubated at 28 ± 2°C for
18–24 h. Growth was resuspended in 2mL of sterile PBS,
adjusting the concentration to 1.5×108 CFU/mL in ac-
cordance with the 0.5 McFarland standard. Te turbidity
was adjusted using a turbidimeter (BioMérieux, USA). Te
bacterial suspension was delivered to the wells at a fnal
concentration of approximately 5×105 CFU/mL. In-
oculated plates were incubated at 28± 2°C for 24–28 h.
Escherichia coli ATCC 25922 was used as a quality control
strain.

Currently, no criteria have been established for inter-
preting AST results for aquatic pathogens, except for Aer-
omonas salmonicida subsp. salmonicida. Te minimal
inhibitory concentration (MIC) results were interpreted,
and the isolates were divided into resistant, intermediate,
and susceptible groups according to the CLSI guideline
VET01 (5th ed.) for animal isolates [29]. Multiple-drug
resistance (MDR) was considered when isolates were re-
sistant to three or more diferent antimicrobial classes. Te
multiple antibiotic resistance (MAR) index was determined
using the procedure described by Krumperman [30]. Te
MAR index over 0.20 was presumed to be afected by high-
risk environments [30].

2.4. Polymerase Chain Reaction (PCR) Assays for Detection of
Integrons and Gene Cassettes. Genomic DNA was extracted
using a whole-cell boiling lysate protocol [31]. PCR am-
plifcation of intI1, intI2, and intI3 was performed using
template DNA from Aeromonas isolates. All intI1-positive

strains were analyzed for sulI and qacE△1 fragments by PCR
using the previously described primers [32 ̶34].

2.5. Enterobacterial Repetitive Intergenic Consensus (ERIC)-
PCR Fingerprinting. Integron-positive strains were used in
the ERIC-PCR DNA fngerprinting assay. Te PCR reaction
mixture (TaKaRa, Dalian, China) contained 100 ng of DNA,
0.2mmol/L of each dNTP, 2.5mmol/L MgCl2, 10×PCR
bufer, 1.5U of Taq DNA polymerase, and 2 μmol/L of each
ERIC primer (ERIC-F: 5′-ATG TAA GCT CCT GGG GAT
TCA C-3′; ERIC-R: 5′-AAG TAA GTG ACT GGG GTGA
GCG-3′) [35]. Te PCR conditions were as described by
Versalovic et al. [35]. Isolates with ERIC-PCR fngerprint
patterns with an index greater than 0.80 were considered
clonally related [36].

2.6. Plasmid Analysis. Plasmid isolation from integron-
positive strains was performed using the QIAGEN Plas-
mid Midi Kit (QIAGEN, Germany) according to the
manufacturer’s protocol, with several modifcations, such as
on-ice incubation, centrifugation, using elution bufers at
room temperature and 65°C, sequential elution, and iso-
propanol storage (−20°C). Te yield, purity, and integrity
were evaluated using a spectrophotometer (Termo Fisher
Scientifc, NanoDrop-1000, USA). Plasmid profles were
determined by 0.8% agarose gel electrophoresis.

2.7. Statistical Analysis. Te ERIC-PCR fngerprints were
compared and analyzed using Tocan Gel analysis software
(Shanghai, China). Cluster analysis was performed using
NTSYS-pc software V2.2, according to the method reported
by Dos Anjos Borges et al. [36]. Based on Dice’s similarity
coefcient (1% position tolerance) and the unweighted pair
group method, arithmetic averages (UPGMAs) were used
and similarity values greater than 80% were classifed as the
same genotype, representing the same clonal type. Te
variables were compared using Fisher’s exact test. Statistical
signifcance was considered at P≤ 0.05, highly signifcant at
P≤ 0.01, and extremely signifcant at P≤ 0.001.

3. Results

3.1. Isolation of Aeromonas spp. from Farm Samples. A total
of 481 presumed Aeromonas strains were isolated from the
integrated and nonintegrated farms. Species identifcation of
the 481 Aeromonas strains was performed using PCR am-
plifcation of the 16S rRNA and gyrB genes. Te dominant
Aeromonas species was A. veronii (51.4%), while other
Aeromonas species included A. jandaei (22.7%), A. caviae
(10.8%), A. sobria (8.5%), A. hydrophila (6.0%), A. simiae
(0.4%), and A. schubertii (0.2%) (Table 1).

3.2. Antimicrobial Susceptibility of Aeromonas. Te fre-
quencies of antimicrobial resistance of Aeromonas from
integrated and nonintegrated farms are shown in Table 2.
Aeromonas isolates were resistant in varying degrees to 16 of
the 18 tested antimicrobial agents. Resistance was most
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prevalent to ampicillin (97.9%) (intrinsic resistance), sul-
famonomethoxine (52.6%), and nalidixic acid (45.1%)
(Table 2). Most isolates (>85%) were sensitive to fuo-
roquinolones, tetracyclines, amphenicol, aminoglycosides,
and β-lactams. All the isolates were sensitive to amikacin and
nitrofurantoin.

Te diversity of antimicrobial resistance was compared
among diferent sources (pig manure, fsh, pond water, and
pond sediment) from integrated and nonintegrated farms
(Table 2). High resistance rates of 94.4% and 72.1% for
nalidixic acid and 66.7% and 68.0% for sulfamonomethoxine,
respectively, were observed in isolates from pig slurry and fsh
samples. Te frequencies of nalidixic acid, sulfadiazine/tri-
methoprim, sulfamethoxazole/trimethoprim, forfenicol,
thiamphenicol, and chloramphenicol resistance inAeromonas
isolates from pig slurry and fsh were signifcantly higher than
those in pondwater and sediment (P< 0.05).TeMDR ratios
for pig slurry and fsh (38.9% and 20.5%, respectively) were
signifcantly higher than those for pond water and sediment
samples from integrated farms (12.0% and 5.3%, respectively)
(P< 0.05) (Table 2). MDR was identifed in 47 isolates (9.8%)
from integrated farms, with anMAR index ranging from 0.06
to 0.72 from integrated farms, whereas no multiple-drug-
resistant isolates were identifed in nonintegrated farms
(Table 2) (P< 0.001).

3.3. Detection and Characterization of Integrons and Gene
Cassettes. Among the 481 Aeromonas strains, 50 (10.4%)
were positive for intI1, whereas intI2 and intI3 were not
detected in any isolate. All integron-positive isolates also
contained sul1 and qacE△1, which indicated that these
isolates contained structurally complete integrons. All
50 integron-positive strains were isolated from integrated
farms, whereas no integrons were detected in the non-
integrated farms. Of the 50 intI1-positive isolates, 36 (72%)
harbored gene cassettes. Ten types of gene cassette arrays
were determined by sequencing, including dfrA17, dfrA12-
orfF-aadA2, dfrB4-catB3-aadA1, catB8, aac6(6′)-Ib-cr-arr-3,
aac-II-blaOXA-21-catB3, aar2-aacA4-drfA1-orfC, aac(6′)-Ib-
cr, dfrA15, and dfrB4-catB3-blaOXA-10-aadA1 (Table 3).
Among them, dfrA17 was the most predominant type of
gene cassette array associated with seven isolates, followed
by dfrA12-orfF-aadA2 and dfrB4-catB3-aadA1, each of
which was associated with six isolates (Table 3). Te
characteristics of 50 integron-positive isolates are listed in
Table 4.

Te comparison of the resistance profles of integron-
positive and integron-negative strains to 18 antimicrobial
agents showed signifcantly higher resistance rates to 13
drugs in integron-positive strains (P< 0.001) (Figure 1). In
addition, there are 96.0% (48/50) of the integron-positive
strains that displayed multiple-drug resistance with a MAR
index from 0.11 to 0.67 (Table 4). Te resistance ratios of the
18 antimicrobial agents in integron-positive and integron-
negative strains are listed in Table 5. Among the carriers of
the gene cassettes, strains harboring aac(6′)-cr-aar3 and
aac(6′)-cr displayed resistance to 13 and 11 drugs, re-
spectively. Other gene cassette carriers displayed resistance
to only three to six types of drugs. Strains that did not carry
gene cassettes (empty integrons) were found to be resistant
to sulfamonomethoxine. More details on the resistance
phenotypes of diferent gene cassette carriers are shown in
Figure 1 and Table 5.

3.4. ERIC-PCR Analysis of Integron-Positive
Isolates. ERIC-PCR analysis was performed to analyze the
genetic similarity of the 50 Aeromonas isolates carrying class
1 integrons (Figure 2(a)). Tese isolates were assigned to 16
major clusters based on 80% similarity and were designated
as A to P (Table 3, Figure 2(b)). Each cluster was further
subdivided into diferent ERIC types at the individual strain
level, based on more than 95% similarity between the strains
(Table 4). Strains showing diferences in one or more bands
were considered to belong to the diferent ERIC types. Tus,
42 ERIC types were obtained from 16 ERIC clusters among
the 50 integron-positive strains (Table 4, Figure 2(b)). Te
results of the cluster analysis revealed that some integron-
positive isolates were clonally related. Two fsh isolates (7F9-
1 and 7F9-2) showed indistinguishable ERIC patterns. Both
isolates 7F9-1 and 7F9-2 were “empty” with no gene cas-
settes inserted between the conserved segments of the
integron. One strain (isolate 5S33) from the pond sediment
and one strain (isolate 5W13) from the pond water also
showed indistinguishable ERIC-PCR patterns. Isolates 5S33
and 5W13 carry the same gene cassette (catB8). More details
on the ERIC-PCR clusters of the integron-positive strains
are presented in Table 4.

3.5. Plasmid Analysis. Plasmid analysis showed that single
and/or multiple plasmids, ranging from 1.5 to 23 kb, were
detected in 40% (20/50) of integron-positive strains (Table 3
and Supplementary Figure 1). Plasmids were not restricted

Table 1: Distribution of Aeromonas spp. in diferent sources from farm samples.

Aeromonas spp.
(no., %) Pig manure Goose manure Fish Pond water Pond sediment

A. veronii (247, 51.4%) 2 0 139 69 37
A. jandaei (109, 22.7%) 1 0 33 36 39
A. caviae (52, 10.8%) 12 0 13 7 20
A. sobria (41, 8.5%) 0 0 23 14 4
A. hydrophila (29, 6.0%) 1 0 7 9 12
A. simiae (2, 0.4%) 2 0 0 0 0
A. schubertii (1, 0.2%) 0 0 1 0 0
Total (481) 18 0 216 135 112
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to a specifc gene cassette array of isolates but appeared to be
present in isolates carrying the aac(6′)-Ib-cr gene (83.3%, 5/6),
or dfrB4-catB3-aadA1 (71.4%, 5/7). In addition, four isolates
(7F2-3, 7F5-2, 7F6-1, and 7F6-2) carrying the aac(6′)-Ib-cr
gene and two isolates (7F4-2 and 7W4-6) carrying the dfrA12-
orfF-aadA2 appeared to share similar plasmid profles
(Table 4).

4. Discussion

4.1. AMR in Fish-Livestock Integrated Farms. Integrated
farming systems in the countryside are a major source of
increase in farmers’ incomes. However, they also represent
ecological impacts and potential food safety hazards
[23, 37–39]. Studies from China have reported high fre-
quencies of antimicrobial resistance to multiple drugs in
bacteria isolated from integrated farms [12, 40]. In this study,
isolates from pig manure and fsh were more resistant to the
tested antimicrobial agents than those from the aquaculture
environment. Te frequencies of nalidixic acid, sulfadiazine/
trimethoprim, sulfamethoxazole/trimethoprim, forfenicol,
thiamphenicol, and chloramphenicol resistance in Aero-
monas isolates from pig manure and fsh were signifcantly
higher than those from pond water and sediment (P< 0.05).
In the pig-fsh integrated farm, pig manure water was
fushed into the ditch and then discharged into the pond
without treatment. Pig-manure samples were collected from
the ditch, and only 18 Aeromonas strains were isolated.
Aeromonas was not dominant in pigs and had lower iso-
lation rates than other sources; however, higher resistance
rates of Aeromonas from pig manure were determined in
this study. Tis is presumably due to the extensive use of
antimicrobials in livestock husbandry. In addition, we found
that the risk of the emergence of AMR from livestock
husbandry is signifcantly higher in integrated farms as
compared to that from nonintegrated farms (P< 0.05).
Similarly, no Aeromonas strains were isolated from goose
manure, but isolates from fsh and environmental samples
from two goose-fsh farms showed high multiple-drug re-
sistance, twenty-one of which carried integrons. In goose-
fsh integrated farms, the increase in water geese stocking
density has also led to bacterial pollution. Excessive use of

antimicrobial agents in feed has been reported to reduce
bacterial infections in geese and has a negative efect on
antimicrobial resistance [41, 42]. Tese data imply that
antimicrobial resistance may spread from livestock to the
aquatic environment. A study by Petersen and Dalsgaard
[43] showed that a signifcantly higher level of resistant
Enterococci spp. was found in the intestines of fsh from
ponds where chicken manure was discharged compared to
the level of resistance present in fsh from control ponds. We
also found that 15.3% of isolates were resistant to multiple
antimicrobial agents in samples from integrated farms,
whereas nomultiple-drug-resistant isolates were observed in
nonintegrated farms. Tis implies that livestock manure
might be a source of ARB in aquaculture systems. In our
previous study, multiple-drug resistance was detected in
Aeromonas spp. isolated from cultured freshwater animals
[31]. We also found multiple resistant phenotypes in Aer-
omonas strains from fsh and pig slurries, indicating that
bacterial resistance originates from animals. Te frequencies
of resistance to certain extended-spectrum antimicrobial
agents in Aeromonas were moderately high compared with
those in Enterobacteriaceae isolates reported in previous
studies [23, 40]. Terefore, the reduction in the sensitivity of
Aeromonas to certain drugs warrants further investigation.

4.2. Integrons in Fish-Livestock Integrated Farms. Class 1
integrons are also found extensively in Aeromonas spp.
isolated from aquatic animals as well as from the envi-
ronment and are associated with a variety of gene cassettes
[44]. Te prevalence of integrons was also assessed in the
present study, wherein class 1 integrons were detected in
10.4% of isolates. Te association of sul1 and qacEΔ1 in-
dicated that integrons contained the typical 3′-conserved
region in these 50 intI1-positive strains. Tis prevalence is
comparable to that reported for fsh and aquatic environ-
ments in other geographical locations [19, 45]. Ten types of
gene cassette arrays were identifed in this study, and
36 integron-positive strains (72%) carried gene cassettes.Te
amplicon sequences revealed gene cassettes encoding
dihydrofolate reductases (drfA1, dfrA12, dfrA17, dfrA15, and
dfrB4), aminoglycoside adenylyl transferases (aadA1 and
aadA2), aminoglycoside acetyl transferase (aacA4 and

Table 3: Characteristics of integron-positive strains carrying diferent gene cassettes.

Types of
gene cassette
arrays

GenBank accession
no.

No. of
strains ERIC clusters

No. of
strains carrying

plasmid

Size of
plasmid (kb)

dfrA17 KR067581.1 7 G, H, M, P 2 1.5–23
dfrA12-orfF-aadA2 KR067578.1 6 A, C, G, M, J 2 2–7.5
dfrB4-catB3-aadA1 KR067582.1 6 G, I, L 4 3–15
catB8 KR067580.1 5 K 0
aac(6′)-Ib-cr-arr-3 KR868994.1 5 E, F 4 6.5–15
aac6-II-blaOXA-21-catB3 KR067583.1 3 E, J 2 2.5–15
aar2-aacA4-drfA1-orfC KR067585.1 1 H 0
aac(6′)-Ib-cr KR868995.1 1 F 1 2–3
dfrA15 KR868993.1 1 L 1 15
dfrB4-catB3-blaOXA-10-aadA1 KR067584.1 1 G 1 15
Empty integron 14 B, C, D, J, N, O 4 1.8–15
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aac(6′)-II), chloramphenicol acetyltransferase (catB3 and
catB8), β-lactamase (blaOXA-21), and plasmid-mediated
quinolone resistance (aac(6′)-Ib-cr), and ribosyl trans-
ferase (aar-3).

Bacteria acquire resistance to antimicrobial agents
mainly because of genetic resistance determinants. In this
study, 44% (22/50) of integron-positiveAeromonas strains
carried various dihydrofolate reductase genes and displayed
resistance to sulfamonomethoxine and sulfamethoxazole/
trimethoprim. Chloramphenicol acetyltransferase genes
were carried by 30% (15/50) of the strains, and 66% (10/15)
of the strains were resistant to forfenicol or thiamphenicol.
Te aac (6′)-Ib-cr gene was identifed in six isolates and
displayed resistance to ciprofoxacin and enrofoxacin.
Previous studies reported that the most prevalent resistance
genes, addA and dfr, confer resistance to streptomycin and
sulfamethoxazole/trimethoprim [17, 46]. Te aac(6′)-Ib-cr,
arr3, and catB3 genes are responsible for resistance to fu-
oroquinolone, rifampin, and chloramphenicol, respectively
[17, 19]. In these studies, the strains harboring aac(6′)-Ib-cr
genes displayed multiple-drug resistance compared to
strains harboring other gene cassettes.Te aac(6′)-Ib-cr gene
is a plasmid-mediated quinolone resistance gene detected in
Aeromonas isolated from diferent aquatic animals and
environments [19, 31]. Tis aminoglycoside resistance gene
modifed with two amino acids is generally located in a large
plasmid, which also harbors resistance genes of various
antimicrobial groups and contributes to multiple-drug
resistance [47].

In this study, similar ERIC-PCR fngerprints, resistance
phenotypes, and resistance gene cassettes were observed in
strains isolated from sediment, pond water, and diferent

fshes. Tis implies the clonal transmission of multiple-
drug-resistantAeromonas strains of diferent origins. In
contrast, some of the isolates were phylogenetically distant.
Tis implies that clonal and horizontal transmission of
resistance occurred simultaneously between bacteria. In
this study, we confrmed that mobile genetic elements
might play an important role in mediating multiple-drug
resistance. To defne the location of the class 1 integron in
the chromosome or plasmid of the isolates, plasmids were
extracted and used as templates for the amplifcation of
intI1 genes. Results showed that 40% (20/50) of the isolates
contained integrons located in the plasmids. Tis implies
that integrons may be present in plasmids or chromosomes.
Plasmids may play an important role in integrons that
mediate gene transfer and facilitate the transmission of
resistance among bacteria. Most of the empty integrons
without gene cassettes were found in the plasmids. Tese
may have lost gene cassettes in the absence of antimicrobial
selective pressure or on the other hand, never acquired the
resistance gene insert [48]. However, they can acquire new
resistance genes and facilitate the dissemination of re-
sistance in bacteria [13].

In conclusion, our study demonstrated the widespread
dissemination of class 1 integrons among Aeromonas strains
isolated from integrated farms. Tese results confrmed that
the selective pressure enforced by the use of antimicrobial
agents in livestock husbandry increases the prevalence of
integrons carrying resistance genes. A large number of
antimicrobial agents and ARB contaminate fsh-farming
systems. It is necessary to establish a risk assessment for
antimicrobial resistance in aquaculture to promote the
healthy development of Chinese aquaculture.
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Figure 1: Antimicrobial resistance phenotypes of Aeromonas strains carrying diferent gene cassette arrays.
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Figure 2: ERIC-PCR profles of 50 integron-positive isolates. (a) Electrophoresis of ERIC-PCR fngerprints of 50 integron-positive isolates.
M denotes the DL 5000 DNA marker (Takara, Dalian, China). (b) Dendrogram of ERIC-PCR fngerprint patterns of 50 integron-positive
isolates. Te bands were analyzed by applying the dice coefcient and the matrix was clustered using the UPGMA method. Isolates with
>80% similarity represent the same clonal type.
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