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The heterogeneous and homogeneous growth (HmG) assumptions in an intensive tilapia Oreochromis niloticus pre-grow-out
production were evaluated under the different stocking scenarios. Four growth models (von Bertalanffy, Logistic, Pütter, and
Gompertz) were tested and modified to include the effect of stocking density and growth difference. Models with homogeneous
growth were fitted using a nonlinear regression, while heterogeneous growth (HtG) models were parameterized using quantile
(0.05, 0.15, 0.25, 0.50, 0.75, 0.85, and 0.95) regression. According to goodness of fit and validation, the models that best fit
homogeneous and HtG were Logistic and von Bertalanffy, respectively, which confirm the existence of the dense dependency
effect on growth performance. Density and growth have an inversely proportional relationship. Quantile regression provided
greater efficiency in predicting growth of the different groups of individuals in the population. The results obtained can be used by
the aquaculture farmer to select stocking management strategies and optimal transfer time for tilapia juveniles.

1. Introduction

The tilapia Oreochromis niloticus is the third most farmed
freshwater fish in the world and represents an important
food source in the different countries [1]. Tilapia production
includes three stages: nursery (1–30 g bodyweight), pre-grow-
out (30–220 g body weight), and grow-out (>220 g body
weight) [2]. Pre-grow-out is considered a crucial stage in
tilapia culture, especially in a full cycle or vertically integrated
companies because it reduces mortality, grow-out time, dis-
ease risk, high implementation, and operation costs, exposure
to extreme environmental variables and increases per unit
area productivity in the intensive systems [3–12].

Intensive systems are characterized by high-stocking den-
sities (25–300 fishm−3), which affect growth performance
[5, 11, 13–18]. Therefore, an important management factor
is to select the optimal stocking density in the three tilapia
(nursery, pre-grow-out, and grow-out) culture stages, because
this factor determines growth and other productive variables
of economic interest [19–21]. However, high-stocking densi-
ties cause high levels of stress and trigger disease outbreaks
due to impaired immunity and higher vulnerability to patho-
gens [22, 23].

Growth in aquaculture has been evaluated through dif-
ferent nonlinear growth models that represent the balance
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between anabolism and catabolism and incorporate the prin-
ciple of Pütter’s equation [24–28]. Some of these models have
been modified to include the effect of important manage-
ment or environmental variables [28–35].

Most growth models used in aquaculture consider the
mean weight and assume size homogeneity [18, 36]. Param-
eters for these models are usually obtained using nonlinear
regression methods [37, 38]. However, there is evidence that
organisms on farms grow heterogeneously under different
rearing conditions. Since slight changes in final weights
could cause significant changes during economic valuation,
some studies have evaluated heterogeneous growth (HtG) for
determining productive performance and economic benefit
[21, 39–46].

Models with HtG can be fitted using quantile regression,
which is suitable for nonparametric analyses, offers a closer
idea of weight distribution, and is not sensitive to the pres-
ence of outliers [42, 47–55].

Determining HtG of tilapia in the pre-grow-out stage is
fundamental, mainly when the producer is required to carry
out transfer strategies without overestimating or underesti-
mating growth [56]. Overestimating growth leads to revenue
and earnings expectations that would likely not materialize;
on the contrary, underestimating may lead to a delay in
harvest time and nonoptimal feeding [38].

Tilapia growth has been previously modeled in the pre-
grow-out stage considering size homogeneity [2]. However,
models with HtG are still scarce [31, 43, 44, 57]. To date, to
our knowledge, works regarding the HtG of Nile tilapia in
pre-grow-out stage have not been found. Therefore, the
objective of the present research study is to evaluate the effect
of stocking density on the HtG of tilapia reared in pre-grow-
out stage under the different stocking densities.

2. Materials and Methods

2.1. Experimental Design and Culture Conditions. The exper-
iment was developed in a tilapia enterprise located in Sinaloa,
Mexico using different stocking densities (D0) in an intensive
pre-grow-out facility under a Biofloc system. The stocking
densities used were chosen based on the previous studies
of tilapia cultures [58–63] with three treatments: T1= 59

fishm−3, T2= 89 fishm−3, and T3= 117 fishm−3 with four
replicates per treatment. The three treatments were ran-
domly assigned in 12-indoor rectangular tanks of 40m−3

with brackish water (4 PPT) and constant aeration using a
diffuser hose Aero-tube® (Aero-Tube, Sparks, NV, USA).
The experiment used 42,400 tilapias with an average initial
individual weight of 27.00Æ 6.63 g and lasted 69 days
(Figure 1).

The Biofloc system was initiated four weeks before the
introduction of fish in the three tanks. This system was pre-
pared by adding Winfish® (Belenes, Zapopan, Jal., México)
commercial feed with 55% crude protein, Epicin-hatcheries®

(Megasupply, Eastampton, NJ, USA) commercial probiotic
(Bacillus subtilis, Bacillus licheniformis, Bacillus coagulans,
Lactobacillus acidophilus, and Saccharomyces cerevisiae)
with a concentration of 4.0× 10−9 colony forming units
(CFU)/g, microalgae of the genus Thalassiosira sp. with a
concentration of 5× 10−4mL−1, molasses and corn flour. A
carbon–nitrogen ratio of 12 : 1 was maintained following the
methodology proposed by De Schryver et al. [64]. At the end
of 4 weeks, 10m−3 of the water were added to each culture
tank and the tilapias were stocked.

Fish were fed using a commercial feed Winfish® (Belenes,
Zapopan, Jal., México) for tilapia with 35%–45% crude pro-
tein on a daily ratio between 3% and 4% of the biomass,
distributed from six to seven rations. Weekly biometrics
were conducted to evaluate tilapia growth to adjust the feed
ration and the carbon sources to be administered in each tank
according to the biomass (kg) obtained. Monitoring was car-
ried out by weighing individually 30 fish per tank using a
digital scale (Æ0.01 g).

Feed was applied directly on the surface of the tanks, and
the carbon sources were weighed and mixed individually in a
clean bucket with tank water, followed by a uniform and
direct application to the tank surface after the first feeding.
Water temperature and dissolved oxygen content were mea-
sured in each tank with an oximeter YSI 55® (YSI Inc.,
Yellow Springs, OH, USA) four times a day (06:00, 12:00,
18:00, and 24:00 hr). Water pH was measured with a poten-
tiometer Waterproof pHTestr 10® (Cole-Parmer, East Bun-
ker Court Vernon Hills, IL, USA). Weekly measurements of
ionized and nonionized ammonium, nitrite and alkalinity
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FIGURE 1: Layout of experimental tanks in the pre-grow-out area of tilapia Oreochromis niloticus in a biofloc system.
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were performed with a photometer YSI 9300® (YSI Inc.,
Yellow Springs, OH, USA) at 08:00 hr (Table 1). These water
parameters were maintained in the optimal conditions for
tilapia culture [65, 66].

Settling solids were determined using Imhoff® (DWK
Life Sciences, Millville, NJ, USA) cones with a settling time
of 20min and taken daily alternating each tank once per
treatment at 8:00 hr. An optimal level for juvenile tilapia
from 20 to 50mL L−1 was maintained throughout the cul-
ture; when the allowed level exceeded, it was controlled with
limited water exchanges (10%) and a sedimentation tank con-
nected to the culture tanks with recirculating water [66–71].

The water exchange rate was 10% every other day from
Days 7 to 33 and 30% 1 day a week from Days 55 to 69; water
recirculation through the sedimentation tank was 8 hr/day
from Days 34 to 69. To ensure that water management was
adequate, the volume of flocs was measured before and after
these processes [70].

2.2. Modeling Homogeneous and Heterogeneous Growth
Scenarios. Two growth scenarios were studied in the present
investigation. The first one assumes homogeneous growth
(HmG) where all the initially stocked fish (t= 0) show a
similar growth pattern; size variability is ignored, which
means that from stocking to transfer time (t=T), the popu-
lation is represented by the average weight x(t) of the indi-
viduals, where t is time in days. This process has been the
most common way of representing growth of aquaculture
populations via a model. The second scenario using quantile
regression assumes the HtG in which the fish of the same
population are considered to show different growth patterns.
This process starts with the stocking of fish (t= 0) of the
same age and origin (cohort) which is distributed in the
different sizes over time until transfer time (t= T).

2.2.1. Homogeneous Growth (HmG). To represent tilapia
growth in HmG, mathematical models were tested based
on bioenergetic principles and biologically interpretable
parameters [24, 72, 73]. For this purpose, von Bertalanffy,
Logistic, Pütter, and Gompertz models were selected because
they are widely used in aquaculture. Such growth models
were modified in the anabolic component with the objective
of including the effect of initial density D0. The inclusion of
this effect (initial density) on the growth models has been
similar to that described by Araneda et al. [31]. Thus, the
mathematical expressions used to model pre-grow-out of

Nile tilapia in a biofloc system under the different stocking
densities were:

(a) von Bertalanffy

g x; D0ð Þ ¼ α0f D0ð Þx2
3 − α2x; ð1Þ

(b) Logistic 1

g x; D0ð Þ ¼ α0f D0ð Þx − α2x2; ð2Þ

(c) Pütter

g x; D0ð Þ ¼ α0f D0ð Þxβ1 − α2x; ð3Þ

(d) Logistic 2

g x; D0ð Þ ¼ α0f D0ð Þxβ1 − α2x2; ð4Þ

(e) Gompertz

g x; D0ð Þ ¼ α0f D0ð Þxβ1 − α2xln xð Þ; ð5Þ

where x is the weight (g) of each tilapia; D0 represents the
initial density; α0, α2, and β1 are parameters within each
growth function; f D0ð Þ, represents the effect of initial den-
sity, which is given by [31]:

f D0ð Þ ¼ e−α1 lnD0ð Þ2 ; ð6Þ

where α1 is a parameter.

2.2.2. Heterogeneous Growth (HtG). Under the heteroge-
neous scenario, the same models described by HmG were
considered (Equations (1)–(5)) but β= 1 was assumed in
Equations (3)–(5). Quantile regression was used to parame-
terize growth. In this study, the quantiles 0.05, 0.15, 0.25,
0.50, 0.75, 0.85, and 0.95 were selected to estimate the HtG
of tilapia. This selection was made to consider central (quan-
tiles 0.25, 0.50, and 0.75) and extreme (quantiles 0.05, 0.15,
0.85, and 0.95) values [51]. According to the empirical data,
these models admitted a modification with the effect of the
initial density (D0) in the parameter that represents catabo-
lism (α2) as indicated below.

TABLE 1: Water quality of intensive pre-grow-out of Nile tilapia Oreochromis niloticus in a biofloc system with three stocking densities.

Variable Treatment 1 Treatment 2 Treatment 3

Temperature (°C) 31.78Æ 0.54 31.58Æ 0.84 31.85Æ 0.51
Disolved oxygen (mg L−1) 4.99Æ 0.27 4.75Æ 0.35 4.93Æ 0.33
pH 7.98Æ 0.11 7.95Æ 0.09 7.95Æ 0.10
Ionized ammonium (mg L−1) 1.25Æ 0.63 0.94Æ 0.57 0.53Æ 0.41
Nonionized ammonium (mg L−1) 1.26Æ 0.92 1.09Æ 0.67 0.64Æ 0.53
Nitrite (mg L−1) 1.15Æ 0.56 1.16Æ 0.39 1.13Æ 0.72
Alkalinity (mg L−1) 315.17Æ 27.53 299.16Æ 10.20 291.60Æ 11.25
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A new perspective of the effect of the initial density in
tilapia intensive pre-grow-out emerges. However, the modi-
fied Equations (3) and (4) did not show convergence in the
estimation of the parameters. Therefore, the three equations
used to model the growth of the organisms with size hetero-
geneity were:

(a) von Bertalanffy:

g x; D0ð Þ ¼ α0f D0ð Þx2
3 − α2f D0ð Þx; ð7Þ

(b) Logistic 1:

g x; D0ð Þ ¼ α0f D0ð Þx − α2f D0ð Þx2; ð8Þ

(c) Gompertz:

g x; D0ð Þ ¼ α0f D0ð Þx − α2f D0ð Þxln xð Þ; ð9Þ

where x is the size in weight (g) of each tilapia; D0 represents
the initial density; α0, and α2 are coefficients within each
growth function; and f D0ð Þ represents the effect of initial
density, which was defined in Equation (6).

To obtain the weight of the organisms at time t from
Equations (1)–(5) and (7)–(9), the following equation was
used:

Xt ¼ X0 þ
Z

T

0
g x; D0ð Þdt; ð10Þ

where x0 is the initial tilapia weight and T represents the final
integration time.

2.3. Fit, Parameterization, and Validation of the Models. In
the HmG, the model coefficients were estimated through
fitting the average observed weight from each tank per treat-
ment of initial density. The parameterization of the growth
models was performed using nonlinear regression methods
[74] in Statistica v12 (StatSoft Inc., Tulsa, OK, USA).

In HtG, coefficients were estimated through the fit of all
the observed weights from each tank per treatment of initial
density. The parameterization of the growth models was
performed using quantile regression methods [75] and quan-
treg package for quantile regression available in R statistical
software (R Development Core Team, 2014 and RStudio
v2.15.2).

The parameterized Equations (1)–(5) and (7)–(9) were
solved by numerical integration (Equation (10)) and simu-
lated in Excel MS© (Microsoft Corp., Redmond, WA, USA)
using the Euler method with a step size of 1 day (ds= 1).

Validation was made using indicators for system dynam-
ics [76]. The indicators used include the coefficient of deter-
mination (R2), root-mean-square error (RMSE), and Theil’s
inequality coefficient (U) with a critical value of 0.2 (U≤ 0.2)
[77] and three proportions of inequality in mean (Um), vari-
ance (Us), and covariance (Uc) [31, 78–80].

3. Results

3.1. Modeling Homogeneous Growth (HmG)

3.1.1. Parameter Estimation. The nonlinear regression anal-
yses proposed in Equations (1)–(5) showed statistical signif-
icance for the estimation of growth rates (p<0:1). The
parameter α1 of each function (Equations (1)–(5)) includes
the effect of the initial density D0 on growth rate g (x; D0) of
each size x (Table 2). All parameters were significant (p<0:1)
in the modified HmG models (von Bertalanffy, Logistic 1,
Pütter, Logistic 2, and Gompertz).

The predictions of each function showed a decrease
in the growth rates per size as initial density increased
(Figure 2). It is important to highlight that depending on
density, there are different growth trends, and every trend
has a maximum growth rate.

At the end of the experiment, the von Bertalanffy model
estimated differences in growth of 53.9% between T1 (2.91 g
day−1) and T3 (1.67 g day−1). On the other hand, the Logistic
1, Pütter, Logistic 2, and Gompertz models estimated differ-
ences in growth of 55.6, 53.5, 57.9, and 55.3%, respectively,
between T1 and T3.

3.1.2. Validation and Simulation. In the HmG, all modified
growth functions adequately represented the increase in weight
of tilapia in the pre-grow-out stage. However, the fit and vali-
dation statistical indicators showed that the Logistic model 1
(Equation (2)) was the one that best represents the empirical
data from the period t= 0 (stocking) to t= 69 (transfer).

In each initial culture density (D0), the coefficient of
determination (R2) explained from 97% to 98% the variation

TABLE 2: Parameters, estimation, standard error, and t statistic for
the modified models of homogeneous growth of tilapiaOreochromis
niloticus.

Models Parameters Estimation
Standard
error

t Statistic

von
bertalanffy

α0
α1
α2

0.4439
−0.0309
0.0307

0.10
0.09
0.01

4.44
−3.65
3.33

Logistic 1
α0
α1
α2

0.1120
−0.0461
0.0002

0.02
0.01
0.00

4.63
−4.72
6.87

Pütter

α0
α1
β1
α2

1.9181
−0.0009
0.9891
1.7676

0.32
0.00
0.00
0.30

5.91
−3.39
535.03
5.90

Logistic 2

α0
α1
β1
α2

0.0081
−0.0060
1.8837
0.0040

0.00
0.00
0.01
0.00

11.58
−4.94
163.11
9.83

Gompertz

α0
α1
β1
α2

0.1711
−0.0078
1.1119
0.0486

0.02
0.00
0.03
0.01

7.09
−2.59
36.87
3.41

Note: α0, α1, α2, and β1 are parameters within each growth function.
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of the model concerning the observed values of weight and
the RMSE estimated values of 5.9–6.5 g. This result was con-
firmed by Theil’s inequality coefficient (U), showing that the
Logistic model 1 generated the observed data more precisely.
In each initial density, the values of U were lower than the

critical value of 0.2, with low error in the mean and variance
(Table 3).

All HmGmodels had a good fit regarding the observed data.
However, R2 and U were the indicators considered to select the
best model. Logistic 1 was chosen as the best model for the three
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FIGURE 2: Observed (points) and simulated tilapia Oreochromis niloticus growth rates (g day−1) (lines) for the modified growth models in
homogeneous scenario: (a) von Bertalanffy; (b) Logistic 1; (c) Pütter; (d) Logistic 2; and (e) Gompertz. Each curve represents the simulated
growth rate for a given initial density (D0).
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treatments. Theil’s inequality coefficient (U) showed that Logis-
tic 1 was themost appropriatemodel with values of 0.062, 0.086,
and 0.090 for T1, T2, and T3, respectively.

Over time, the model adequately simulated a decrease in
weight (g) as the initial density increased (Figure 3). At the
end of the culture, T1 obtained a simulated average weight of
184.01 g, T2 of 142.72 g, and T3 of 118.27 g. Growth trajec-
tories with the best model (Logistic 1) differed according to
initial density. The initial density negatively affected the final
average weight of the tilapia culture in the biofloc system.

3.2. Modeling Heterogeneous Growth (HtG). The objective of
the HtG modeling was to select the mathematical function
that best simulates the observed quantile growth trajectories.
The growth model was selected using the same criteria as the
HmG, through the statistical significance of its parameters
and the simulation validation of each quantile growth curves.

3.2.1. Parameter Estimation. The nonlinear fitted models
(Equations (7)–(9)) applying quantile regression showed sig-
nificant parameters (p<0:1 for each initial density (D0)) in
Logistic 1 and Gompertz model. Parameters α0 and α2 of the
von Bertalanffy model were not significant in 0.05, 0.15, and

0.25 quantiles. Parameter α1 of equation f(D0) (Equation (6))
included the effect of initial density (D0) on growth rate in
both model components (anabolic and catabolic). These
parameters explain the changes that happen in the growth
rate due to initial density (D0) (Table 4).

The highest growth rates occur in T1 and the lowest ones
are in T3. For example, for the von Bertalanffy model (Equa-
tion (7)) T1 had a maximum growth rate of 3.15 g day−1, T2
of 2.66 g day−1, and T3 of 2.32 g day−1 in the 0.50 quantile.
For the Logistic model 1 (Equation (8)) T1 had a maximum
growth rate of 3.43 g day−1, T2 of 2.07 g day−1, and T3 of
1.41 g day−1 in the same quantile. For the Gompertz model
(Equation (9)), T1 had a maximum growth rate of 3.70 g
day−1, T2 of 1.91 g day−1, and T3 of 1.39 g day−1 in the
same quantile.

3.2.2. Validation and Simulation. In the HtG, the modified
growth models represented the increase in weight of tilapias
in the pregrowth stage. However, the statistical comparison
showed that the von Bertalanffy model was the one that best
represented the HtG data of tilapia from the period t= 0
(stocking) to t= 69 (transfer). In each initial culture density
(D0), the coefficient of determination (R2) explained from

TABLE 3: Validation of the modified growth models in the homogeneous scenario for tilapia Oreochromis niloticus.

Models Statistics Treatment 1 Treatment 2 Treatment 3

von Bertalanffy

R2

RMSE
U
Um

Us

Uc

0.985.79
0.06
0.09
0.00
0.91

0.97
6.56
0.09
0.20
0.00
0.80

0.98
7.39
0.09
0.64
0.12
0.24

Logistic 1

R2

RMSE
U
Um

Us

Uc

0.99
6.58
0.06
0.31
0.15
0.55

0.97
5.97
0.09
0.11
0.00
0.88

0.98
6.45
0.09
0.51
0.19
0.30

Pütter

R2

RMSE
U
Um

Us

Uc

0.99
5.62
0.06
0.08
0.01
0.92

0.97
6.60
0.09
0.24
0.00
0.76

0.98
8.21
0.09
0.66
0.15
0.20

Logistic 2

R2

RMSE
U
Um

Us

Uc

0.99
6.54
0.07
0.03
0.35
0.64

0.97
5.84
0.09
0.05
0.00
0.95

0.98
4.90
0.09
0.17
0.25
0.59

Gompertz

R2

RMSE
U
Um

Us

Uc

0.99
6.29
0.06
0.24
0.03
0.74

0.97
7.35
0.09
0.39
0.00
0.61

0.98
9.99
0.10
0.71
0.15
0.14

Note: R2= coefficient of determination; RMSE= root- mean- square error; U=Theil’s coefficient of inequality; Um= proportion of mean; Us= proportion of
variance; Uc= proportion of covariance.
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FIGURE 3: Results of modeling tilapia Oreochromis niloticus growth in the homogeneous scenario for each of the initial culture densities (D0)
with the Logistic 1 modified model. The numbers indicate the final simulated size.

TABLE 4: Quantiles, parameters, estimate, standard error, and t statistic of modified models in heterogeneous scenario for tilapia Oreochromis
niloticus growth.

Models Quantiles Parameters Estimate Standard error t Statistic

von Bertalanffy

0.05
α0
α1
α2

0.1749
0.0254
0.0123

6897.75
0.01
0.01

0.42
5.39
0.84

0.15
α0
α1
α2

0.1806
0.0247
0.0091

11922.30
0.00
0.00

0.65
11.46
1.46

0.25
α0
α1
α2

0.2000
0.0269
0.0106

7745.88
0.00
0.00

0.86
16.01
1.89

0.50
α0
α1
α2

0.3270
0.0326
0.0316

315.83
0.00
0.00

3.49
17.98
5.05

0.75
α0
α1
α2

0.2971
0.0328
0.0232

1160.61
0.00
0.00

1.81
14.47
3.06

0.85
α0
α1
α2

0.3716
0.0367
0.0353

315.34
0.00
0.00

3.70
18.40
5.14

0.95
α0
α1
α2

0.5021
0.0430
0.0545

280.58
0.01
0.01

2.79
8.50
2.95
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95% to 99% of the variation of the model concerning the
observed weight values and RMSE estimated values from
3.1 to 24.3 g. This result was confirmed by Theil’s inequality
coefficient (U), showing that the modified von Bertalanffy
model was the best one for weight observations in the het-
erogeneous case.

In each treatment, the values of U were lower than the
critical value of 0.2, with low error in the mean and variance
(Table 5). The best model was chosen considering R2 and U
values. In this case, von Bertalanffy is shown to have the best
fit with observed data for the three densities and showed

higher values in R2, and lower ones in U. Although as men-
tioned earlier, some parameters were not significant.

In tilapia culture at 59 fishm−3 the quantile 0.25 indicates
that 25% of the population has a body weight lower than
141.80 g while the other 25% has a body weight higher than
183.55 g in the quantile 0.75. Quantile 0.50 indicates a final
body weight of 171.79 g in the median (Figure 4). Following
this example in the other densities (89 and 117 fishm−3),
initial density has a negative effect on body weight. Arrows
in Figure 4 show the final weight of central quantile 0.50 and
extreme quantiles 0.05 and 0.95.

TABLE 4: Continued.

Models Quantiles Parameters Estimate Standard error t Statistic

Logistic 1

0.05
α0
α1
α2

1.0510
0.1404
0.0100

3.63
0.02
0.52

28.85
6.52
2.04

0.15
α0
α1
α2

0.6866
0.1204
0.0058

2.83
0.02
0.25

41.84
7.29
2.70

0.25
α0
α1
α2

0.6600
0.1192
0.0052

2.50
0.02
0.22

50.38
7.82
2.99

0.50
α0
α1
α2

0.7363
0.1303
0.0049

3.35
0.02
0.24

44.02
7.85
3.01

0.75
α0
α1
α2

0.9016
0.1521
0.0050

5.14
0.01
0.23

34.90
10.82
3.85

0.85
α0
α1
α2

1.6741
0.1909
0.0085

4.56
0.01
0.33

43.05
16.55
5.02

0.95
α0
α1
α2

4.2535
0.2449
0.0188

6.21
0.02
1.86

36.38
10.31
2.29

Gompertz

0.05
α0
α1
α2

5.2550
0.1725
1.0877

4.07
0.02
0.37

30.76
10.47
2.94

0.15
α0
α1
α2

6.3795
0.1782
1.2999

2.47
0.01
0.28

54.90
17.40
4.69

0.25
α0
α1
α2

5.3211
0.1699
1.0682

2.86
0.01
0.21

50.86
18.68
5.19

0.50
α0
α1
α2

6.8542
0.1871
1.3369

3.29
0.01
0.29

51.25
17.78
4.66

0.75
α0
α1
α2

5.3795
0.1833
1.0143

5.22
0.01
0.22

38.52
18.16
4.61

0.85
α0
α1
α2

5.3080
0.1868
0.9851

8.07
0.01
0.22

27.11
15.19
4.40

0.95
α0
α1
α2

8.6631
0.2134
1.5713

8.75
0.01
0.38

28.33
15.86
4.17

Note: α0, α1, α2, and β1 are parameters within each growth function.
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FIGURE 4: Results of the heterogeneous growth modeling of tilapia Oreochromis niloticus for each of the initial culture densities (D0) with the
modified models. Treatments (a) T1, (b) T2, and (c) T3.
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The model adequately simulated a decrease in weight (g)
in all quantiles as the initial density (D0) increased (Table 6).

3.3. Forecasting Scenarios in Tilapia Pre-Grow-Out.With the
best models of both scenarios (HmG and HtG), tilapia
growth was projected in time. Weight prediction is impor-
tant, especially in vertically integrated or complete cycle
farms, because the aquaculture farmer needs to organize
management plans and make the best decisions. For this
reason, growth patterns in HmG and HtG were simulated
with the best models (Logistic 1 and von Bertalanffy) during
a pre-grow-out stage of 150 days with the same initial densi-
ties (T1, T2, and T3). HmG model shows evidence of the
effect of initial density on growth (Figure 5). All densities
have an initial increase in weight, which tends to stabilize
through the culture of 150 days. Growth patterns of tilapia in
pre-grow-out stage with HmG show logistic growth.

In the HtG model, simulation mainly considered growth
curves corresponding to 0.25, 0.50, and 0.75, because other
quantiles represent extreme variability [42]. The HtG model
also shows the evident effect of initial density (Figure 6).
Under the same quantile, organisms grow less at high densi-
ties and vice versa. Growth patterns of tilapia in pre-grow-
out stage with HtG showed exponential growth.

The daily growth rates of quantiles 0.25, 0.5, and 0.75
at each initial density were also simulated (Figure 7).
Depending on size, the organisms with the same initial
density have different growth patterns. The effect of the
initial density is evident since the low density (T1) shows
a higher growth rate compared to the medium (T2) and
high densities (T3). Instantaneous growth rates show a
positive increase.

4. Discussion

The present research study shows homogeneous (HmG) and
heterogeneous (HtG) growth models in intensive fattening of
Nile tilapia with different initial densities. As recommended
by several authors, both models contain the least possible
number of parameters [31, 81], so they comply with the
parsimony principle [82]. The modified Logistic model 1
was the most effective equation for projecting HmG growth,
and the modified von Bertalanffy model was the most appro-
priate for casting HtG.

Simulated growth rates in HmG decreased with increas-
ing initial stocking density, which is consistent with other
studies of tilapia reared at different stocking densities [5, 20,
60, 71, 83–85]. The results confirm that stocking density
affects the growth rate of tilapia raised in the pre-grow-out
stage and with a biofloc system at the intensive level.

The Logistic model 1 described the continuous evolution
of tilapia growth in the pre-grow-out stage at the intensive
level considering the average body weight and showed the
best fit homogeneous data, given its high-R2 value and low
RSME and U< 0.2. The results in this study are consistent
with the findings of other authors who tested different
growth models in tilapia and rainbow trout cultures consid-
ering size homogeneity [38, 86–88].

The modified Logistic model 1 of this study is the first
evidence of a growth model expressed as the growth rate
(differential equation) and altered in the anabolic compo-
nent with the effect of population density, like the growth
rate models studied by Araneda et al. [31]. The authors of the
present research tested three modified models (von Berta-
lanffy, Gompertz, and Pütter) in intensive cultures of white
shrimp in the growth stage.

Although the knowledge of suitable models to describe
the HmG of tilapia in the pre-grow-out stage is still scarce,
the Logistic model 1 can be implemented in intensive tilapia
farms to model the HmG in this stage. The growth patterns
of this study confirm that increased tilapia densities in the
pre-grow-out stage can lead to biomass reduction due to
crowding stress [13, 89, 90]. As a result, management deci-
sions should be considered at high-population densities
because brooding time is longer, organisms are less efficient,
and economic performance is likely to suffer.

Even though Logistic 1 was the best model overall, it
slightly overestimates average growth. Most of the growth
models used in the aquaculture consider a single average
value, which is a limiting factor to show various growth
patterns of different batches or sizes in the same population.
Logistic 1 was observed to adequately represented the

TABLE 6: Simulated final weights in the three stocking densities with
heterogeneous growth of tilapia Oreochromis niloticus.

Quantiles Treatment 1 Treatment 2 Treatment 3

0.05 109.29 g 89.99 g 82.73 g
0.15 132.02 g 107.32 g 96.63 g
0.25 141.80 g 116.35 g 102.62 g
0.50 171.79 g 138.34 g 119.26 g
0.75 183.55 g 151.19 g 127.06 g
0.85 197.77 g 160.62 g 134.48 g
0.95 218.96 g 180.79 g 147.65 g
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FIGURE 5: Simulation growth trajectories with sizes homogeneity in
tilapia Oreochromis niloticus culture for 150 days.
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homogeneous tilapia growth at the intensive level in the pre-
grow-out stage, which agrees with previous authors who
used the Logistic function to model the HmG of tilapia in
the grow-out stage [38, 86].

Furthermore, different growth models have been evalu-
ated in the present study applying a quantile regression.
Other authors have made these modifications considering,
for example, bioenergetics growth models [34, 35, 91–93].
Thus, this contribution is important for the aquaculture
industry in the production of organisms in the pre-grow-
out stage.

The modification of the von Bertalanffy model shown in
this research is, to our knowledge, the first evidence of a
model modified in both components (anabolic and catabolic)
with the effect of stocking density and fitted with quantile
regression and the purpose of modeling HtG (Tables 4 and
5). These results are consistent with other authors, who have
used a quantile regression mixed-TGC model to predict the
HtG of gilthead sea bream considering the effect of water tem-
perature [42, 49]. Other authors used a model size–structure to
predict the HtG of tilapia [29, 40, 43, 94] and shrimp consider-
ing the effect of stocking density [31, 33].

Despite von Bertalanffy was the best growth model in
HtG scenario, some parameters were not significant

(p<0:1) in lower quantiles (0.05, 0.15, and 0.25). This prob-
lem could be due to the small amount of data in the first
quantiles, which affects the parameterization and could be
solved with more data on each sample. Nevertheless, it is not
a limiting factor for the contribution of this research study to
the approximation of size heterogeneity in pre-grow-out
stage. Martínez and Seijo [95] modeled the effect of water
temperature on shrimp growth and some parameters of the
growth model were not significant but subsequently, the
growth model was successfully used in a bioeconomic analy-
sis. Additionally, choosing the best model is complicated; in
some cases, the statistics results contrast with the biological
interpretation [96].

The quantile regression can serve as a predictive and
decision-making support tool in intensive systems of tilapia
or other farmed species, mainly in the pre-grow-out stage
since it describes different growth patterns through time and
gives relevant information to find optimal transfer times
(from pre-grow-out to grow-out stages). Additionally, size
heterogeneity is significant in economic terms because small
fish with slow growth increases the culture costs, and differ-
ent sizes have different market prices that directly affect
revenue, thus net profit [21, 29, 38]. Therefore, the quantile
regression could provide beneficial results in tilapia
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FIGURE 6: Simulation growth trajectories with size heterogeneity in tilapia Oreochromis niloticus culture for 150 days.
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aquaculture, especially when the stocking density is a crucial
management point that determines the final yield and
strengthens the estimates of final fish size at harvest or
transfer.

Based on longer-time simulation, the von Bertalanffy
model shows higher asymptotic growth than the Logistic
model 1 [37, 72, 97, 98]. This result is also in line with the
those obtained by Júnior et al. [86] during 1,000 days of tilapia
rearing in net cages and Musa et al. [99] during 400 days of
African catfish rearing in a recirculation aquaculture system.
Despite the Logistic 1 and von Bertalanffy models developed
showed to be suitable for tilapia pre-grow-out in the biofloc
system, rearing data beyond 69 days would be needed to
validate the projections of these models. Quantile regression
successfully modeled HtG; in the future, the model would be
improved by including other growth drivers, such as water
temperature and nutrient dynamics. Additionally, in the case
of von Bertalanffy model, the growth rate continues to
increase, indicating that the tilapia before pre-grow-out has
not yet reached the maturity stage.

Decision-making in intensive systems, such as optimal
population densities, is essential when these decisions affect
production costs, income, and net profit [11, 32, 40].

Optimizing a tilapia farm at different growth stages is crucial
in aquaculture, mainly since the performance of one stage
goes hand in hand with the next one until the organisms
reach commercial size [5, 21, 45, 100]. In this case, stocking
density affected tilapia growth in the pre-grow-out stage
showing an inverse relationship, i.e., growth rates decreased
as the initial density increased [101]. The determination of
intrapopulation heterogeneity is important since it provides
information closer to reality and helps decision-making in
the different production stages [42–44], especially in verti-
cally integrated farms where the objective of pre-grow-out
stage is to optimize scarce resources and reduce production
costs determining the optimal transfer time to the grow-out
stage [102].

The predictive application that is here in this study pro-
posed could be used as a tool based on the business analytics
and applied to real production conditions as a tool for pro-
duction control and surveillance, validation for production
plans and comparison between key performance indicators
versus observed results. Based on the latter and the results,
designing through hypotheses the prescriptive analysis would
allow an aquaculture company to estimate the optimal values of
management variables, such as ration or seeding density, that
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would allow minimizing the production costs of the company
and determine the optimal transfer time [103–105]. Finally, the
growth models analyzed in this study using quantile regression
can be easily applied to other species grown under the similar
conditions and incorporate the effects of other variables that
influence size dispersion. For example, future research on tila-
pia should consider dense population dependency and its
dynamic effect on growth and survival [33].

5. Conclusion

Quantile regression proved to be a valuable and accurate tool
to describe the HtG of tilapia in the pre-grow-out stage at
different stocking densities. Unlike other models that use the
average value of the population, the quantile regression does
not penalize size variation in growth and decreases uncer-
tainty in its estimates. Through quantile regression, the mod-
ified von Bertalanffy model allowed different growth patterns
to be predicted in intensive tilapia culture, successfully eval-
uating size heterogeneity throughout the production cycle. In
contrast, the modified Logistic model 1 was the most effec-
tive in predicting HmG. The findings in the present study on
HmG and HtG at intensive level in the pre-grow-out stage
may be the basis for future studies aimed at determining the
culture time that minimizes production costs (optimal
transfer time) during the pregrowing stage in commercial
aquaculture of tilapia and other aquatic species in vertically
integrated farms.
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