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Te nursery culture of bivalves typically relies on the feeding of costly live microalgae, while the use of natural sources of
phytoplankton for feed is uncertain due to their variable quality and abundance. Replacement diets have been applied in bivalve
nursery culture to replace live microalgae with varying success. Tis study investigated the potential use of two concentrated
microalgal diets at a range of levels of substitution with live microalgae. Shellfsh Diet 1800® (called SD) and LPB™ Frozen
Shellfsh Diet® (called LPB) were fed to juvenile green-lipped mussels (Perna canaliculus) at fve levels of substitution for live
microalgae (i.e., 0, 25, 50, 75, and 100%) for 27 days. Te mortality of mussels fed with 100% LPB replacement was signifcantly
higher than the mortality of mussels fed at the lower levels of replacement, i.e., 0 and 25%. Te overall fnal size of spat tended to
decrease with the increasing level replacement of live microalgae. Proximate analysis (i.e., crude ash-free dry weight, crude
protein, crude lipid, and carbohydrate) showed that only the proportion of carbohydrate content of spat was infuenced by feeding
treatments, with the mean total carbohydrate content of mussels tending to decrease with increasing levels of replacement of live
microalgae. Te results indicate that both concentrated microalgal feeds (SD and LPB) are efective at replacing live microalgae by
up to 50% without compromising the survival and nutritional profle (AFDW, protein, lipid, and carbohydrate content) of
juvenile green-lipped mussels and are therefore a useful resource for improving the efciency of production.

1. Introduction

Te suspended culture of mussels is normally reliant on
seeding the farms with juvenile mussels, known as spat,
which are most commonly harvested from the wild using
a variety of techniques [1–3]. In New Zealand, an in-
termittent supply of juveniles or spat of the green-lipped
mussel, Perna canaliculus, that are attached onto drifting
seaweed that is washed ashore at Ninety Mile Beach has
supplied around 70% of spat resource for all mussel farms in
the country for at least 40 years [4–6]. In 2019, the supply of
spat from the wild has contributed to the production of 98 t
of market-size mussels (4.7% of global mussel production in
the same year), with the total export reaching∼NZ$300
million [7, 8].

A large number of mussel spat, consisting of 200 to 2
million of spat per kg of spat material (e.g., seaweed frag-
ments and debris) are routinely harvested from Ninety Mile
Beach and transported to mussel farms across the country of
New Zealand [9]. Te physiological and nutritional condi-
tion of these spat during transportation has been reported to
be compromised and may afect their subsequent perfor-
mance once seeded onto coastal mussel farms [10]. Similarly,
the transportation of spat of the blue mussel, Mytilus edulis,
for more than 24 hours can compromise their physiological
and nutritional condition [11]. Te poor nutritional con-
dition of juvenile mussels has been reported to negatively
afect the number and quality of byssus threads that they
produced, with starved mussels producing fewer byssus
threads that are also weaker [12]. Terefore, a period of
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feeding for wild spat has been suggested to improve their
nutritional condition prior to seeding onto mussel farms to
increase their subsequent retention and survival under
aquaculture conditions [13].

Including a nursery culture step for wild mussel spat
would signifcantly increase the cost of production, espe-
cially through the provision of large quantities of cultured
live microalgal food, which typically constitutes 30–50% of
the total cost of hatchery production of shellfsh [14, 15].
Moreover, shellfsh hatcheries most often need to produce
a range of species of microalgae for feeding larvae and ju-
veniles, in order to provide a nutritionally complete diet for
ensuring adequate growth and survival [16, 17]. Te most
common microalgae species used in shellfsh hatcheries
belong to the genera Tisochrysis, Diacronema, Chaetoceros,
Tetraselmis, Nanochloropsis, Talassiosira, Skeletonema, and
Chlorella [18]. Of these, Tisochrysis lutea, Diacronema
lutheri, and Chaetoceros calcitrans are the most commonly
used in multispecies microalgae diets in bivalve hatcheries
and nurseries [19].

As a consequence of the signifcant costs involved in
feeding live microalgae for the nursery culture of mussel
spat, there has been growing interest in their replacement
with artifcial diets, which have generally been found to
produce unsatisfactory results. For example, some artifcial
diets are difcult to resuspend without disintegration or
rapidly drop out of suspension and do not support good
growth and survival of shellfsh spat [15]. For example,
feeding the formulated diet (i.e., MySpat®, INVE Aqua-
culture, Inc.) was found to negatively afect the feeding
activity of green-lipped mussel spat (7mm in shell length)
and often caused mortality among smaller spat [20].

Partial replacement of live microalgae using diferent
types of formulated diets has been reported for facilitating
the aquaculture of a number of species of bivalves. For
example, yeast-based diets [21], lipid emulsion [22], mi-
crocapsule [23], bacteria [24], and microalgal pastes [25, 26]
have been used to partially substitute live microalgae for
rearing juvenile shellfsh. For example, a replacement of 20%
of the dried microalgae Tetraselmis suecica, 80% of yeast and
up to 81% of mixed microcapsules and yeast has been found
to be a satisfactory diet for juvenile oysters (Crassostrea gigas
and Ostrea edulis) and the clams (Mercenaria mercenaria
and Ruditapes philippinarum) [15]. In a spat of the medi-
terranean mussel, Mytilus galloprovincialis, feeding of
75,000 cells·ml−1 of live microalgae and 2.5% MySpat® on
a mussel live weight basis resulted in similar weight gain to
the spat fed with 150,000 cells·ml−1 of pure live microalgae
over a three-week experimental period [27]. In green-lipped
mussel spat, a replacement of live microalgae with up to 50%
fabricated liposomes or up to 75% MySpat® diet did not
compromise the survival of spat over 32 days [28]. However,
these previous studies mostly determined the performance
of replacement feeds by measuring the survival and growth
of the shellfsh, rather than examining diferences in their
fnal nutritional status. Mussel spat are known to be highly
resistant to short-term starvation, exhibiting low mortality
(i.e., less than 1.5%) and with their growth only compro-
mised after 9 days without food [29], despite a marked

decrease in endogenous energy reserves evident after 8 days
of starvation [30]. Te nutritional status of spat (i.e., protein,
carbohydrate, lipid, and fatty acids) is critical to their
subsequent performance in aquaculture and, in turn, is
dependent on the abundance and nutritional qualities of
their food supply [31]. Terefore, this study aims to in-
vestigate the potential for using two commercially available
preserved concentrated microalgal shellfsh diets for
maintaining the growth and survival of green-lipped mussel
spat, while also improving their nutritional condition prior
to seeding out onto coastal farms.

2. Materials and Methods

2.1. Spat Collection. About 50 g wet weight of hatchery spat
(∼1.2mm shell length) sourced from SPATNZ Ltd. was used
for the experiment. Tey were placed on fne plastic mesh
and covered with a cloth wetted with seawater, packed in
a polystyrene box, and airfreighted to Leigh Marine labo-
ratory for ∼5 h. On arrival, spat were randomly subdivided
into 27 aliquots of 1.6 g wet weight (∼2000 spat), of which
∼75mg (∼100 spat) from each aliquot were randomly sub-
sampled for shell length measurement using image analysis.
Tose 27 aliquots were then placed into 27 conical bottles of
1.5 L volume containing 1 µm fltered and UV sterilised
seawater. Aeration of 18ml·s−1 was supplied from the centre
of the base of the conical bottles [32, 33]. Te spat were then
fed using experimental combinations of live microalgae and
concentrated microalgal diets during feeding treatments.

2.2. Marine Microalgal Culture and Commercial Feeds.
Axenic cultures of three species of microalgae: Tisochrysis
lutea, Diacronema lutheri, and Tetraselmis suecica obtained
fromCSIRO culture collection were used for the experiment.
Starter cultures of T. lutea and T. suecica were grown in
Guillard media, while D. lutheri was grown in Walne media
under standardised environmental conditions described by
Kaplan et al. [34] and Kaspar et al. [35].

Two commercial shellfsh diets recommended for
feeding juvenile bivalves were sourced from Reed Mari-
culture; (1) Shellfsh Diet 1800® consisting of concentrated
and preserved cultured microalgal cells comprising a mix of
fve microalgae species, i.e., Isochrysis sp., Diacronema sp.,
Tetraselmis sp., Talassiosira weissfogii, and Talassiosira
pseudonana and (2) LPB™ Frozen Shellfsh Diet® consistingof a mix of Tetraselmis sp., T. weissfogii, T., and
Schizochytrium sp.

2.3. Feeding Treatment. Nine diferent feed treatments, each
with three replicate tanks, were used to experimentally
compare the performance of the mussel spat, i.e., control
treatment (a mixture of three species of live microalgae
T. lutea, D. lutheri, and T. suecica, (0% replacement) and
feed treatments (25, 50, 75, and 100% replacement of dry
biomass of mixed live microalgae for each of both SD and
LPB). Te three microalgal species used for the experiment
have diferent nutritional compositions and are commonly
used for feeding juvenile shellfsh in hatcheries and nurseries
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[36–38]. Spat in the control treatment were fed using the
three microalgal species at a combined concentration of
200,000 cells spat−1·day−1 (required to reach the DW feeding
target for this experiment), which was reported to promote
optimum feeding for green-lipped mussel spat of
0.5–1.2mm [39]. Te proportion of a mixture of live algae
for feeding spat in the control group was calculated based on
the ratio of their algal cell volumes (i.e., 1 : 1: 0.1, for T. lutea,
D. lutheri, and T. suecica respectively). Terefore, feeding of
200,000 cells spat−1·day−1 consisted of 95,238 cells of T. lutea
and D. lutheri and 9,524 cells of T. suecica. Te feeding
concentration was increased every week following the
methods of Sanjayasari [40]. Te proportion of replacement
of SD and LPB was calculated based on the dry mass of
microalgae cells following Helm et al. [41] and Utting and
Spencer [37]. Te feeding experiment was conducted over
27 days. Seawater changes were undertaken on a daily basis
by draining the conical tanks through a 250 µmmesh size to
retain the spat. At the end of feeding treatment, the spat that
had died in each tank were sorted and counted under
a dissecting microscope. Te dead spat were then photo-
graphed for digital size measurement. Live spat from each
tank were counted and 100 spat were randomly subsampled
for size measurement using digital image analyses ImageJ
software. Te spat were then washed using deionised water
and dried using a paper towel. Tey were then stored in
−80°C for later biochemical analysis.

2.4. Biochemical Analyses. Prior to biochemical analyses,
10ml of each SD and LPB diets were centrifuged at 4000 rpm
at 4°C for 10minutes to separate the seawater content and
concentrate the microalgae. Te concentrated SD and LPB
(without seawater content) and spat from each treatment
were freeze-dried for 16 h. Triplicate samples of 100mg dry
weight (hereafter called DW) of SD, LPB, and spat were used
for each analysis of ash-free dry weight (AFDW), total car-
bohydrate, and crude lipid content. For AFDW, 50mg of spat
from each treatment was burned in a mufe furnace at 450°C
for 4 h, reweighed, and the results were used to calculate the
proportion of AFDW of spat. For total carbohydrate analysis,
the freeze-dried SD, LPB, and spat from each treatment were
prepared following Wang et al. [42]. Te total carbohydrate
content of spat, SD, and LPB were determined using the
phenol sulphuric acid reagent method of Dubois et al. [43] by
reading the absorbance against a D-glucose standard at
490 nm [44]. Crude lipid content was extracted using
a modifed methanol-chloroform solvent extraction of Wang
et al. [45]. A 50mg freeze-dried lipid-free residue from the
lipid assay was used for protein analysis. Crude protein
content was measured using the bicinchoninic acid (BCA)
method with a micro-BCA protein assay kit (TermoFisher
Scientifc, USA) followingWang et al. [42].Te absorbance of
samples was read against a bovine serum albumin (BSA)
standard as a reference at 562 nm.

2.5. Statistical Analyses. One-way ANOVAs were used to
compare the mean values of all parameters observed (i.e.,
size of dead spat, increase in shell length of spat, proportion

of AFDW, total carbohydrate, crude protein, and crude
lipid) among spat from diferent feeding treatments after
confrming the normality (Kolmogorov–Smirnov test) and
homogeneity (Levene’s test) of variances. In addition, the
mortality of spat in relation to the increasing replacement of
live microalgae with the commercial shellfsh diets for the
two feeding treatments were compared using linear re-
gression. All percentage data were arcsine transformed prior
to use in ANOVA. A Kruskal–Wallis test was used to
compare the experimental results among groups for those
data where the assumptions of normality and homogeneity
of variances could not be met. Pairwise Tukey’s posthoc tests
were used for parametric analyses and Dunn’s test for
nonparametric analyses at a signifcance level of α� 0.05
were used to identify diferences among pairs of means
where the analyses indicated an overall signifcant diference
among treatments.

2.6. Ethics Statement. Tis work did not require ethics
approval.

3. Results

3.1. Proximate Analysis of SD and LPB. Te nutritional
compositions of SD and LPB were both dominated by crude
protein content of 30.3% and 20.0% DW, respectively,
followed by crude lipid and carbohydrate. Te proportion of
crude lipid were 6.7%DW for SD and 7.6%DW for LPB.Te
carbohydrate content of SD and LPB were both only 0.6%
DW (Table 1).

3.2. Spat Mortality. Te mean percentage of dead spat in
each of the experimental feeding combinations following
27 days of culture ranged from 12± 1% to 43± 2%. Tere
was a linear relationship between the proportion of dead
spat and the increasing replacement of live microalgae with
commercial shellfsh diet regardless of the type of com-
mercial diet used, i.e., SD (F(4,10) � 5.19, P< 0.05, R2 � 0.55)
and LPB (F(4,10) � 11.20, P< 0.01, R2 � 0.74) (Figure 1).
However, pairwise comparisons among means for feeding
treatments showed that there was no statistical diference in
the percentage of dead spat for 0%, 25%, and 50% re-
placement treatments for either the SD or LPB diets, while
the replacement of live microalgae using 100% and 75%
LPB and 100% SD resulted in higher mortality of spat, i.e.,
41± 5%, 36± 2% and 43± 2%, respectively, compared to the
0 and 25% replacement treatments. Te size of dead spat
was diferent among feeding treatments (χ2(8) � 18.32,
P< 0.05). Overall, the size of dead spat tended to increase
with the increasing level of replacement but a signifcant
diference was only observed between spat fed with 0%
replacement (1.3 ± 0.0mm) and spat fed with 100% SD
(2.0± 0.0mm).

3.3. Spat Growth. Te growth rate of spat overall treatments
following 27 d of experimental feeding was signifcantly
diferent (F(8,26) � 16.30, P< 0.01), ranging from 0.02± 0.00
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to 0.07± 0.00mm·day−1 (Figure 2). Te growth rate of spat
fed with a mixture of live microalgae (control group) was the
highest (0.07± 0.00mm·day−1), and it decreased when the
live algae were replaced by 25% of SD
(0.04± 0.00mm·day−1).Te growth rate of spat fed with LPB
showed a decreasing trend with the increasing proportion of
replacement of live microalgae but was only statistically
signifcant after the live microalgae feeding was replaced by
75% LPB (0.03± 0.00mm·day−1). Spat fed with 100% of SD
and LPB showed the lowest growth rate at
0.02± 0.00mm·day−1 for both SD and LPB diets.

3.4. AFDW. Temean percentage of AFDW of spat from all
treatments ranged from 26.4± 0.6% to 36.1± 1.9% and was
signifcantly diferent among feeding treatments (χ2(8) �

17.70, P< 0.05) (Figure 3). Tere was an overall trend for
AFDW to decrease with increasing replacement of live
microalgae with either of the two commercial shellfsh diets.
However, the only statistical diference in AFDW was be-
tween spat from 0% replacement (26± 0.6%) compared to
spat from 100% replacement with SD (36± 1.9%). Te small
number of diferences detected among the treatments will be
due in part to the low statistical power of the nonparametric
comparisons.

3.5. Biochemical Composition of Spat. Te mean crude
protein content of spat as a proportion of tissue drymass was
not signifcantly diferent among feeding treatments
(F(8,18) � 1.25, P � 0.32) (Figure 4). Te average of crude
protein content across nine feeding treatments was
591.3± 28.5mg·g−1 dry tissue.

Te mean crude lipid content of spat as a proportion of
tissue dry mass was not diferent among diferent feeding
treatments (χ2(8) � 14.6, P � 0.07) (Figure 5). Te mean
crude lipid content of spat from 0% replacement was
141.6± 41.5mg·g−1 dry tissue. Te mean crude lipid content
of spat fed with 25, 50, 75, and 100% SD replacement was
77.3± 21.9, 101.3± 5.9, 66.4± 2.3, and 61.1± 1.1mg·g−1 dry
tissue, respectively. Meanwhile, the mean crude lipid content
of spat fed with replacement of LPB was 73.7± 21.7,
91.0± 14.2, 58.1± 0.2, and 59.6± 4.4mg·g−1 dry tissue,
respectively.

Te mean total carbohydrate content as a proportion of
tissue dry mass of spat from all feeding treatments ranged
from 26.5± 2.3 to 63.8± 12.7mg·g−1 of dry tissue (Figure 6).
Te mean of the total carbohydrate content of spat was

diferent among feeding treatments (F(8,18) � 4.82, P< 0.01).
Overall, the mean carbohydrate content of spat tended to
decrease with increasing replacement of live microalgae
regardless of the type of concentrated preserved microalgae
used as a replacement. Tere were diferences between 0%
versus 100% SD, 25% SD, and LPB vs. 100% SD and LPB).
Spat fed with 100% SD replacement had a lower mean total

Table 1: Proximate composition for the mixture of live microalgae used in the control treatment [48] and SD and LPB diets as determined in
this study.

Composition

Mg·g dry weight−1 (% DW)
Mixture of live

algae (T. iso, D. lutea,
and T. suecica)

SD LPB

Crude protein 430 (43.0) 302.6± 35.4 (30.3) 206.4± 13.1 (20.6)
Crude lipid 121 (12.1) 66.6± 1.5 (6.7) 75.8± 4.3 (7.6)
Carbohydrate 151 (15.1) 5.6± 0.1 (0.6) 5.6± 0.3 (0.6)
Crude ash — 465.7± 6.0 (46.6) 295.3± 5.4 (29.5)
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Figure 1: Mean (±SE, n� 3) percentage of dead spat for feeding fve
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for feeding fve levels of replacement (i.e., 0, 25, 50, 75, and 100%) of
live microalgae with either of two commercial shellfsh diets (i.e.,
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carbohydrate content (26.5± 2.2mg·g−1 dry tissue) than spat
fed with 0% (59.8± 3.5mg·g−1 dry tissue), 25% SD
(63.8± 12.7mg·g−1 dry tissue) and 25% LPB replacement
(61.2± 5.8mg·g−1 dry tissue). Te mean of total carbohy-
drates of spat fed with 50%, 75%, and 100% replacement for
both SD and LPB were not diferent to each other.

4. Discussion

Te inclusion of an extended nursery stage in the aqua-
culture production of juvenile bivalves is problematic be-
cause of the high cost of providing sufcient live microalgal
food [15]. However, transferring early juvenile bivalves to
grow-out in coastal farms, in an efort to reduce or eliminate
the cost of nursery rearing, can result in high losses of the
bivalves. For example, consistently high losses of green-
lipped mussel spat have been reported in New Zealand
within a few weeks after seeding of the spat onto coastal
farms [3, 46, 47]. Replacing the costly production of live
microalgae in spat nurseries by either full or partial sub-
stitution with more cost-efective replacement diets is
therefore a pressing need [28, 48]. Te results of the current
study indicate that two commercially available diets, LPB
and SD, can substitute live microalgae for feeding spat of the
green-lipped mussel by up to 50% without signifcantly

compromising the survival and nutritional condition of
the spat.

Te mortality of spat fed with SD and LPB in this study
did not signifcantly difer from the mortality of spat in the
control (0% replacement) until live microalgae were
replaced with 75% LPB and 100% SD.Tis is consistent with
previous studies that have reported increased mortality of
spat following partial replacement of live microalgae with
alternative diets. For example, there was no diference in the
mortality of green-lipped mussel spat after being fed with
formulated diets, MySpat®, at 0, 25, 50, 67, 75, 90, and 100%replacement for 21 days (ranging from 27 to 52% mortality)
[48] or fed with 25% and 50% of fabricated liposomes for
32 days (ranging from 18 to 20% mortality) [28]. In medi-
terranean mussel spat, no mortality was observed in a spat
when they were fed with 16% of live microalgae and up to
4.8% MySpat® on a mussel live weight basis [27]. Te size of
dead spat recovered at the end of the experiment for 0%, 25%
SD (1.3± 0.1mm), and 25% LPB (1.4± 0.1mm) replacement
were not diferent from the size of spat in these treatments at
day 0 (1.2± 0.0, 1.3± 0.0, and 1.3± 0.0mm, respectively). In
contrast, the size of dead spat fed with 50% or higher
percentage of replacement were larger (>1.5mm) than their
size at day 0. Tis suggests that the dead spat from 0% and
25% replacement might have died before the start of the
experiment. While there was no diference in spat mortality
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portion of tissue dry mass in nine experimental feeding treatments
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icantly diferent between feeding treatments (P> 0.05).
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between 0% and up to 50% replacement of SD and LPB, the
growth of spat decreased when they were fed with 25%
replacement of SD and LPB.

Te growth of spat in the present study tended to de-
crease with an increasing percentage of live microalgal feed
replacement using either SD or LPB. Te nutritive value of
SD and LPB per DW basis (Table 1) are lower than the
nutritive value of live microalgae as reported in Gui et al.
[48]. Terefore, it is possible that the lower nutritional
density or the nutritional composition of SD and LPB have
resulted in lower growth of spat. However, it has been re-
ported that the growth of spat is not always infuenced by the
nutritional composition of feeds [49]. Tere are several
factors afecting the growth of bivalves when fed alternative
diets, especially the extent of particle retention during flter
feeding, which is related to the size of particles, chemical
cues, and nutritional composition of diets [20, 23, 27]. Te
size of concentrated microalgae in SD and LPB diets in this
study range from 4– 20 µm (Reed Mariculture Inc., Cal-
ifornia, USA); however, food particles larger than 15 µm
have been shown to be not well tolerated by green-lipped
mussel spat of this size range, interrupting feeding and
possibly resulting in mortality [20]. Consequently, this
disparity in meeting the specifc particle size requirements of
the spat may have resulted in lower growth of the spat with
the increasing percentage of replacement of SD and LPB.

Overall, there was largely no diference in the nutritional
profles of spat following diferent ranges of replacement of
SD and LPB (i.e., the percentage composition of AFDW,
protein, and lipid) except for the total carbohydrate content,
which tended to decrease with increasing replacement of live
microalgae. Tis decreasing trend is likely to be a result of
the relative carbohydrate content present in the SD and LPB
diets (∼0.6% DW), which is 25 times lower than the car-
bohydrate content of 100% live microalgal feed used in this
study (15.1% DW) [48]. Tis may be due to losses of some
proportion of carbohydrate content associated with a con-
centration of live microalgae. Te measured carbohydrate
content of the microalgal concentrates presented in SD and
LPB in the present study were over 10 times lower than for
live microalgae of the same species used to make these
concentrated microalgal products [38, 50, 51]. A decrease of
carbohydrate content was also reported in concentrates of
the microalgae Chaetoceros calcitrans, Skeletonema cos-
tatum, and T. lutea which were on average 50% lower than
live microalgae of the same species and may be a result of
soluble carbohydrates not being retained in the concentrated
microalgal cells [25].

Te nutritional composition, particularly the carbohy-
drate content of SD and LPB in the present study, appears to
be insufcient for green-lipped mussel spat to maintain
growth and nutritional condition achievable on live
microalgae feed at the same DW basis. Carbohydrate con-
tent has been previously reported to be the main energy
reserves utilised by the spat of the same species when food
supplies were limited [30, 52]. A marked decrease in the
growth of spat was evident in this current study when 25% of
live microalgae was replaced with SD and LPB. In contrast,
spat of the same species fed with formulated diets, MySpat®,

did not show a decrease in the growth of spat until 90% of
live microalgae was replaced [48]. Spat fed with 100% live
microalgae in the present study achieved the best growth
among all feeding treatments, with spat being 1.5 times
larger than spat fed with 25–75% replacement and nearly
double the size of spat fed with 100% replacement. Te mix
of live microalgae used in this study has relatively high
nutritive values by DW (43% protein, 12.1% lipid, and 15.1%
carbohydrate) [38, 48]. In contrast, the protein, lipid, and
carbohydrate content extracted from SD and LPB in this
study were 20.6–30.3% DW, 6.7–7.6% DW, and 0.6% DW,
respectively.Tis suggests that for SD and LPB to be efective
replacement diets their feeding rates may need to be in-
creased to achieve a similar level of dietary nutrient delivery
on a dry weight basis compared to feeding pure live
microalgae.

Te nutritional requirements of juvenile bivalves have
been reported to be highly varied. For example, a juvenile
European fat oyster,Ostrea edulis, showed good growth rates
when fed with live microalgae containing 15.5% protein and
59.4% DW of carbohydrates [53]. Juveniles of the Pacifc blue
mussel, Mytilus trossulus, achieved optimal growth when the
diets contained higher than 40% DW of protein [54]. In
contrast, high carbohydrate content (74% DW) together with
18% DW protein and 10% DW lipid content in the diets were
sufcient to achieve optimum growth in Sydney rock oyster
juvenile, Saccostrea commercialis [55]. In juvenile grooved
carpet shell clam, Ruditapes decussatus, a minimum of 22%
DW protein and 18% DW lipid content, by replacing live
microalgae with 50% cornmeal were required to achieve
similar growth to feeding only live microalgae [56]. Tese
previous studies suggest that the nutritional requirements of
juvenile bivalves are likely to be species-specifc and could be
related to the diferences in the storage and utilisation of
energy reserves among diferent bivalve species [57, 58].
Terefore, the nutritional composition of SD and LPB in the
present study needs to meet the nutritional requirement of
green-lipped mussel spat to achieve optimum growth. Nu-
tritional composition of SD and LPB, particularly their car-
bohydrate content needs to be at least at a similar level of the
carbohydrate content in 100% live microalgae (∼15%DW). In
contrast, the protein content of SD and LPB (30.3 and 20.6%
DW) and lipid content of SD and LPB (6.7 and 7.6% DW) in
this study did not appear to signifcantly infuence the overall
proportions of protein and lipid content accumulated by the
growing spat when fed up to 100% of both diets over 27 days
but did result in signifcantly reduced growth of spat overall,
i.e., the total accumulation of nutrients as tissue biomass in
the spat.Terefore, both concentrated algae used in this study
may need to be delivered at higher feeding rates to meet the
nutritional requirement (carbohydrate, protein, and lipid
content) of spat to achieve a similar level of growth of the spat
fed with a mixture of live microalgae.

5. Conclusion

Te current study confrms the potential for commercial
diets made from concentrated and preserved microalgae
(i.e., SD and LPB) to partially replace live microalgae for
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nursery feeding of green-lipped mussel spat. Under the
condition of this study, the replacement of live microalgae
using up to 50% SD and LPB did not compromise the
survival and proportional biochemical composition (i.e.,
AFDW, lipid, protein, and carbohydrate) of spat, showing
similar levels to spat fed with 100% live microalgae. How-
ever, the marked decrease in growth of spat fed with higher
replacements of live microalgae with SD and LPB, and the
lower proportional carbohydrate content of spat fed with
100% SD suggests that spat may require the delivery of
higher dietary nutrients levels, especially carbohydrates.
Terefore, future studies need to investigate the performance
and biochemical composition of green-lipped mussel spat
fed at higher feeding rates of SD and LPB.
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