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Understanding the spawning and rearing habitats of fishes is critical to effective fisheries management and conservation. Longfin
smelt Spirinchus thaleichthys is an imperiled migratory fish that is believed to spawn and rear in habitats of varying salinities;
however, optimal conditions for each stage remain unknown. Here, we examined the effects of variation in salinity on egg
fertilization, hatch success, and larval growth and survival. Eggs that were fertilized in freshwater (0.4 ppt) exhibited a significantly
higher fertilization rate (81%) than those fertilized in brackish water (62% at 5 ppt), with no detectible effects of fish origin or
female size. In contrast to fertilization rates, once the eggs were fertilized, their hatching rates were not affected by the fertilization
salinity, incubation salinity, nor their interaction; however, hatching success and larval survival both increased with increasing
maternal body mass. Larval growth rate appeared to be independent of salinity and maternal size. Taken together, the results
indicate that fertilization is possible at a range of salinities, but optimal at lower salinities for longfin smelt; however, embryos and
larvae can perform well across a range of salinities. Furthermore, results indicated that larger mothers produced high-quality
offspring, a finding that supports the “bigger is better” paradigm in fisheries science and management. These results likely explain,
in part, the spawning and rearing behaviors of wild longfin smelt and suggest that the conservation culture program would likely be
optimized by utilizing freshwater fertilization and larger females as broodstock.

1. Introduction

Many fish populations are declining globally due to anthro-
pogenic activities and the intensifying impacts of climate
change [1, 2]. An increasing number of species and popula-
tions have been listed as threatened, vulnerable, endangered,
or extinct, according to local and international biological
assessments [3, 4]. One such fish species is longfin smelt
Spirinchus thaleichthys, which is listed as “threatened” under
the California Endangered Species Act in 2009 [5]. Longfin
smelt are small anadromous forage fish that were once abun-
dant throughout the San Francisco Estuary (SFE), California

[6, 7]. A rapid decline in this southernmost distinct popula-
tion [8] has occurred in recent decades, with some studies
suggesting that the population may be on the path toward
extinction [9]. Therefore, immediate action is needed to pre-
vent further population declines in the wild.

Successful spawning of wild broodstock, hatching of pro-
duced eggs, and rearing of larvae are the key features of
successful fish conservation hatcheries [10, 11]. Researchers
at the Fish Conservation and Culture Laboratory (FCCL) at
the University of California, Davis (UCD) and several other
departments at UCD have been working for many years to
develop suitable captive culture methods for the longfin
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smelt [12–15]. However, unpublished data from the FCCL
indicate low survival of longfin smelt relative to delta smelt
Hypomesus transpacificus during the first 40 days post-hatch
(dph; Table 1) [16–18]. The spawning of longfin smelt and
rearing of their larvae has been challenging, possibly because
of their complex migratory behaviors between coastal, estu-
arine, and freshwater habitats [19, 20].

Fertilization, embryonic development, hatching, and lar-
val growth of fishes are often highly sensitive to salinity. For
example, salinity significantly affects sperm performance in
capelinMallotus villosus and rainbow smelt Osmerus mordax
[21]; fertilization rate in Atlantic herring Clupea harengus
[22] and common carp Cyprinus carpio [23]; embryonic
development in obscure puffer Takifugu obscurus [24] and
Siberian sturgeon Acipenser baerii [25]; and hatching, larval
survival, and deformation rates in common carp and bullseye
puffer Sphoeroides annulatus [26]. For the endangered delta
smelt, incubation salinity significantly affects embryo perfor-
mance and survival rates [27]. Furthermore, recent research
on longfin smelt has shown that their yolk sac larvae are
widespread across habitats of varying salinities [12, 20,
28–31] and exhibit the highest growth and survival in brack-
ish water (5 and 10 ppt) relative to freshwater (0.4 ppt), [14].
Since the distribution of larval longfin smelt can range from
tidal freshwaters to brackish estuarine habitats [12, 19, 29, 32,
33], a key question has been raised whether egg fertilization,
hatching, and larval growth are significantly influenced by
salinity gradients throughout the SFE.

To further inform and guide the development of the
captive culture and breeding program for this sensitive spe-
cies, the present study aimed to investigate the effects of
salinity during fertilization and incubation and their interac-
tion on fertilization, hatching, and larval performance. The
findings of this study are expected to provide knowledge
about the key salinity regimes for optimizing longfin smelt
spawning and incubation that can be used for the future
captive rearing and conservation of this threatened species.

2. Materials and Methods

2.1. Ethics Statement. The study was carried out under the
animal ethics approval of UCD Institutional Anima Care and
Use Committee (no. 21353).

2.2. Broodstock Collection and Rearing. Mature longfin smelt
were collected from the lower SFE, in South San Francisco
Bay, by the UCD Otolith Geochemistry and Fish Ecology
Laboratory (OGFL) and from Chipps Island in the upper
SFE, within the Sacramento-San Joaquin River Delta, by the

US Fish andWildlife Service (USFWS) between November 29,
2021 andMarch 18, 2022. A summary of broodstock collection
location can be found in Figure 1.

After the fish were transported to the FCCL, they were
quarantined in 400-L tanks and received a 3-day prophylac-
tic antibiotic treatment (Pennox 343, Animal Health Inter-
national, Ceres, CA, USA) in standing water with aeration
(20 nephelometric turbidity units, 10 ppt, and 12°C). All ripe
females were immediately separated, size measured (fork
length in mm and weight in g), and stripped for spawning,
if available. The spawned fish were then tagged with FTF-69
Fingerling tags (Floy Tag & Manufacturing Inc., Seattle, WA,
USA) and consolidated back with other fish arrived in the
same batch for the prophylactic treatment. No feed was pro-
vided during the quarantine period. After the treatment, the
remaining untagged fish were measured, tagged, and trans-
ferred to their assigned broodstock tanks (400-L tanks at 10ppt
and 12°C). All fish were fed five times per day with commercial
dry feed (Biovita Starter mash crumble, Bio-Oregon, WA,
USA) and newly hatched brine shrimp Artemia franciscana
(Artemia International, Fairview, TX, USA) and supplemented
with adult brine shrimp twice per day to satiation. Tanks were
inspected daily and cleaned twice weekly, and any observed
mortalities were recorded and removed. Water quality was
monitored twice weekly.

2.3. Spawning, Fertilization, and Hatching. A total of 12 crosses
were made for this study (Table 2 and Figure 2) from
December 02, 2021 to February 18, 2022. During spawning,
selected ripe females and males were anaesthetized with
0.1% buffered tricaine methane sulfonate (MS-222, Syndel,
ferndale, WA, USA) solution. Fork length, body weight, and
tag numbers were recorded. Each female was stripped into an
egg bowl, and immediately milt from an expressing male
(sometimes more than one male was taken, if the milt quantity
was very low) was collected and mixed with the eggs. Six of the
12 crosses were fertilized in filtered source water to the FCCL
(0.4 ppt), while the other six crosses were fertilized with 5 ppt
saline water prepared using Instant Ocean sea salt (Spectrum
Brands Inc., VA, USA) for 5 min before the water was replaced
with the filtered source water (0.4 ppt). Temperature was con-
trolled at 12Æ 1°C throughout both incubation periods (first
step: 6 days and second step: 10 days; Figure 2). During the first
incubation period, eggs were disinfected with Pond Rid-Ich
solution (55mL Pond Rid-Ich diluted with 378mL water; Kor-
don LLC, CA, USA) for 1 min daily to alleviate fungal growth
[34]. OnDay 5, the eggs weremixed with bentonite (Sigma–Al-
drich, Saint Louis) to remove the adhesion and coagulation
[18]. On Day 6, after the disinfection treatment, live and

TABLE 1: Summary of larvae produced from wild caught longfin smelt Spirinchus thaleichthys at the FCCL from 2018 to 2021.

Year Number of crosses Fertilization (%) Hatching (%) Larval (0–40 dph) survival (%)

2018–2019 45 63.8 (n= 45) 94.3 (n= 15) 23.9 (n= 10)
2019–2020 29 42.8 (n= 29) 89.5 (n= 20) 68.4 (n= 16)
2020–2021 14 37.5 (n= 14) 91.7 (n= 7) 16.2 (n= 5)

Abbreviations: dph, days post-hatch; FCCL, Fish Conservation and Culture Laboratory Note. number of samples varied because fertilized eggs were used for
other purposes.

2 Aquaculture Research



dead eggs were identified, separated, and number estimated
following the protocols for delta smelt developed by the FCCL
[35]. The fertilization rate (%) was calculated using the fol-
lowing formula:

F %ð Þ ¼ Ef=Et × 100; ð1Þ

where F represents the fertilization rate (%), Ef is the number
of fertilized eggs, and Et is the number of total eggs.

The fertilized eggs were equally divided into two groups
and transferred to separate column incubators for the second
incubation period (10 days) at 0.4 or 5 ppt at 12Æ 1°C until
the larvae hatched out (Figure 2). The incubators were
inspected daily, and any dead embryos were recorded and
discarded.

2.4. Larval Rearing and Trait Assessment. After hatching, the
total number of hatchlings was estimated by deducting the

dead eggs from the total number of incubated fertilized eggs,
and the hatching rate (%) was calculated using the following
formula:

H %ð Þ ¼ Eh=Ef × 100; ð2Þ

Eh ¼ Ef − Eu; ð3Þ

where H represents the hatching rate (%), Eh is the estimated
number of hatchlings, and Eu is the sum of dead and
unhatched embryos recovered.

Larvae from each incubator were transferred to randomly
assigned tanks within four identical recirculating systems and
reared at 12°C for 40 days. Each tank held 92 L of 5 ppt water.
The range of stocking density was 4–27 larvae per liter
(Table 3). During the first 3 days (0–2 dph), larvae were
held in the tanks without feeding, and at 3 dph, larvae started
to receive their first live prey: rotifers Brachionus plicatilis
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FIGURE 1: (a) San Francisco Estuary, California. The figure shows locations of wild longfin smelt Spirinchus thaleichthys broodstock collection,
where (b) indicates the Chipps Island and (c) indicates the South Bay. The solid dots represent the location of collection coordinates.

TABLE 2: Numbers, sex, size, and resulting fecundity of wild-caught longfin smelt Spirinchus thaleichthys used for spawning.

Fish source Collection site F (n) M (n)
Fork length (mm)

Fecundity
F M

OGFL South Bay 4 5 104.0Æ 1.5 109.6Æ 2.8 3,661.3Æ 474.7
USFWS Chipps Island 8 12 100.0Æ 1.5 103.4Æ 2.1 3,863.6Æ 273.9

Abbreviations: OGFL, UC Davis Otolith Geochemistry and Fish Ecology Laboratory; USFWS, US Fish and Wildlife Service; M, male; F, female. Note. Fork
length (mm) is presented as meanÆ SE.

Aquaculture Research 3
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(N = 12♀ × 17♂)
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(5 min)
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(6 days)

Second-step incubation
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FIGURE 2: Experimental design depicting the fertilization, embryo incubation, hatching, and larval rearing of longfin smelt Spirinchus
thaleichthys during this study. Here, N= total number of broodstocks used for spawning, n= number of crosses, dpf = days post fertilization,
and dph = days post hatching.

TABLE 3: Larval stocking density of longfin smelt Spirinchus thaleichthys reared during this study.

Cross Fish source Fertilization salinity (ppt) Incubation salinity (ppt) Stocking density (larvae/L)

1 USFWS 5
0.4 18

185

2 USFWS 0.4
0.4 16

165

3 USFWS 0.4
0.4 10

105

4 USFWS 5
0.4 12

125

5 USFWS 0.4
0.4 27

275

6 USFWS 5
0.4 10

105

7 USFWS 0.4
0.4 21

215

8 USFWS 0.4
0.4 20

205

9 OGFL 0.4
0.4 22

225

10 OGFL 5
0.4 4

45

11 OGFL 5
0.4 20

205

12 OGFL 5
0.4 17

175

Abbreviations: OGFL, UC Davis Otolith Geochemistry and Fish Ecology Laboratory; USFWS, US Fish and Wildlife Service.
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(L-type and size of 210 µm, Reed Mariculture, Pasadena, CA,
USA). On the same day, a commercial algae Nannochloropsis
sp. (Nanno 3,600™ReedMariculture Inc., San Jose CA, USA)
was added to the systems to increase the turbidity to 10
nephelometric turbidity units. At 10 dph, newly hatched nau-
palii of Aretemia were added to the diet. The co-feeding of
rotifers and Artemia was continued to 40 dph.

At 40 dph, the total number of larvae was counted, and
20 larvae were haphazardly collected from each tank and
euthanized in buffered MS-222 for measurements. Total
length (to the nearest 0.1mm) of each larva was measured
using ImageJ v1.53j software (Available online: https://mvnre
pository.com/artifact/net.imagej/ij/1.53j). Body weight of
each larva was also measured (to the nearest 0.001 g) using
an analytical balance (Cole-Parmer, model: TA-224.C, Shang-
hai, China). The larval survival rate (%) from 0 to 40 dph was
calculated using the following formula:

S %ð Þ ¼ 100 × El=Es; ð4Þ

Es ¼ Eh − Ex; ð5Þ

where S represents the larval survival rate (%), Es is the total
number of fish that successfully hatched minus those removed
for measurements, El is the total number of larvae at 40 dph,
and Ex is the number of fish sampled for the measurements.

Since the newly hatched larvae were reared at different
stocking densities, the density effects on the larval performance
were investigated. In addition, since larvae from the two incu-
bation salinities were both reared at 5 ppt, an analysis was also
done to explore the effect of salinity shock on the newly
hatched larvae when moved from the hatching environment
(0.4 and 5 ppt) to the larval rearing environment (5 ppt).

2.5. Statistical Analyses. All analyses were performed using
“R” version 4.0.5 [36]. The descriptive statistics (means,
maximum, minimum, SEs, etc.) were estimated using the
“psych” package [37]. The normality was tested through
the Shapiro–Wilk test, while the homogeneity of variance
was tested by the Levene’s test using the “onewaytests” pack-
age [38]. The generalized linear model (GLM) including the
“quasi-poisson” family option was used with the “pscl” pack-
age [39] for analyzing the effects of fertilization and incuba-
tion salinities (fixed factor) on the fertilization, hatching, and
larval survival rates as these data did not follow the required
assumptions of any parametric model. The “quasi-poisson”
option provides flexibility with the required assumptions
which considers overdispersion for the dependent variables
[40]. In hatching and survival rate models, fertilization salin-
ity, incubation salinity, their interaction, and the source of
fish were included as fixed factors, while the size of females
and stocking density of larvae (excluded from the hatching
rate model) were incorporated as covariates. In the fertiliza-
tion ratemodel, only the fertilization salinity and the source of
fish were included. The univariate analysis of variance
(ANOVA) model using the “car” package [41] was applied
to find out any variation in larval size (e.g., total length and
weight), where fertilization salinity, incubation salinity,

fertilization salinity× incubation salinity, and the source of fish
were included asfixed factors, and female size and larval stocking
density were incorporated as covariates. The linear regression
models were run to explore the relationship between female size
and spawning performance (i.e., fertilization rate, hatching rate,
and larval length and survival rate). To test the significance level
and measure the magnitude of effects, the effect size (ES) was
estimated [42, 43], where interpretations of ES were based
on parameters set by Cohen [42] (i.e., <0.02, 0.02≤ to <0.13,
0.13≤ to<0.26 and ≥0.26 for very small, small, medium, and
large ESs, respectively, for ANOVA analysis) using the package
“effectsize’” [44]. All graphs were prepared using the “ggplot2”
package [45].

3. Results

3.1. Fertilization. To evaluate the effect of salinity on fertili-
zation, results of the GLM indicated that fertilization rates at
0.4 ppt (meanÆ SE: 80.1%Æ 3.6%) were significantly higher
than that of 5 ppt (meanÆ SE: 62.3%Æ 5.8%, t= 2.18,
p<0:05; Figure 3). Neither broodstock origin (t= 0.68,
p ¼ 0:51) nor female size (t= 1.38, p ¼ 0:18) appeared to
influence fertilization rates. The calculated effect size (ES=0.28)
suggested that there was a 29% difference in relative fertiliza-
tion rate between 0.4 and 5 ppt treatments due to the fertili-
zation salinity in this study.

3.2. Hatching. Hatching rate was significantly influenced by the
female size, with larger females producing offspring with higher
hatching rates (77%–96%, R2 = 0.57, p<0:001; Figure 4(a)).
Hatching rate did not appear sensitive to fertilization salinity
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FIGURE 3: Salinity effect on the fertilization rate (%) of longfin smelt
Spirinchus thaleichthys between 0.4 and 5 ppt treatments. Boxplot
shows values of mean (dots), median (horizontal lines), upper and
lower quartile, and error bars show maximum and minimum fer-
tilization rates. Letters above each box indicate significant variation
between treatments (p<0:05).
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(t= 0.19, p ¼ 0:85), incubation salinity (t= 0.29, p ¼ 0:77),
fertilization salinity× incubation salinity (t= 0.12, p ¼ 0:91),
nor the source of fish (t = 0.34, p ¼ 0:74). The interaction
between female size and fertilization salinity indicated that
hatching rate increased with female size at lower fertilization
salinity (R2 = 0.78, p<0:001), but not at the higher one
(R2 = 0.32, p ¼ 0:06; Figure 4(b)). In addition, the female
size effect on hatching rate was significant and similar at
both incubation salinities (0.4 ppt, R2 = 0.55, p<0:01 and
5 ppt, R2 = 0.60, p<0:01; Figure 4(c)).

3.3. Larval Performance. Larval survival from 0 to 40 dph was
significantly higher for larvae produced from larger female
broodstock (R2 = 0.45, p<0:001; Figure 5(a)). No significant
effects of fertilization salinity (t= 2.1, p ¼ 0:053), incubation
salinity (t= 0.30, p ¼ 0:77), fertilization salinity× incubation
salinity (t= 0.04, p ¼ 0:97), source of fish (t= 1.7, p ¼ 0:11),
and larval stocking density (t= 0.71, p ¼ 0:41) on larval sur-
vival were detected. Fertilization salinity exerted a marginally
significant effect on the survival, with embryos fertilized at
5 ppt exhibiting slightly higher larval survival than at 0.4 ppt
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(76.3%Æ 5.3% and 61.3%Æ 5.6%, respectively). Moreover,
the calculated effect size (ES = 0.30) suggested that there
was a 24% increase in relative survival rate when eggs were
fertilized with 5 ppt rather than 0.4 ppt during this study.
Larval survival increased with female size at 0.4 ppt fertiliza-
tion salinity (R2 = 0.71, p<0:001; Figure 5(b)) and at both
incubation salinities (0.4 ppt, R2 = 0.42, p<0:05 and 5 ppt,
R2 = 0.59, p<0:01; Figure 5(c)). However, no significant
relationship between the female size and larval survival was
observed at 5 ppt of fertilization salinity (R2 = 0.20, p ¼ 0:19;
Figure 5(b)). The lack of a difference in survival between fish
hatched in 0.4 and 5 ppt (0–40 dph, t= 0.46, p ¼ 0:65) indi-
cated no detectible effect of “salinity shock” for larvae being
transferred from fresh to low-salinity water at 0 dph.

Total length and weight of 40 dph larvae were not signif-
icantly affected by any salinity treatments and other associ-
ated parameters (Table 4).

4. Discussion

Salinity is one of the most important ecological factors influ-
encing the distribution [46], growth [47], reproduction [48],
and larval development [49] of fishes. In particular, salinity can
exert strong influence on spawning performance and larval
growth [49, 50]. Therefore, by examining responses of the
reproductive and early life history of fishes to variation in salin-
ity, we can greatly enhance the effectiveness of conservation
culture programs andmanagement practices of wild populations.

Here, we found that longfin smelt can successfully spawn
and rear in a range of low salinity (0.4−5 ppt); however,
fertilization was highest at lower salinities. Similarly, anad-
romous pike Esox lucius exhibit the best fertilization and
embryonic development in freshwater [51], whereas anadro-
mous sea trout Salmo trutta [52] and chum salmon Oncor-
hynchus keta [53] also exhibit higher fertilization success at
lower salinities (<4 ppt). These studies suggest that lower
fertility at higher salinity might be due to intrachorionic
osmolality, which requires more energy for eggs to cope
with the higher osmotic pressure [54]. The chorion can be

physically altered by salinity that could potentially influence
its permeability. Thus, eggs fertilized in saline water could
become hardened and may weaken the resistance to internal
pressure to prevent successful fertilization [27, 34, 53]. More-
over, evidence showed that high osmotic pressure can inhibit
sperm motility [55], which could be another limiting factor
for the declined fertilization rate at higher salinity for estua-
rine species.

Although some studies found significant effects of the
fertilization and incubation salinities on the hatching perfor-
mance in different brackish and marine fish species [52, 56],
the present study revealed no variation in hatching of longfin
smelt when fertilized eggs were incubated at 0.4 and 5 ppt.
Corroborating the findings of this study, several studies also
found no fertilization salinity and/or incubation salinity
effect on the hatching success in some brackish water species
[57, 58]. In addition, high hatching rates were achieved for all
the treatments (fertilization salinity: (0.4 ppt: 93.80% and
5 ppt: 94.41%) and incubation salinity: (0.4 ppt: 93.81% and
5 ppt: 94.42%)) in this study. This indicates that the current
fertilization and incubation protocols applied at the FCCL
are well suited to the needs for culturing of this species in
captivity. Furthermore, this suggests that longfin smelt
embryos are likely capable of successfully incubating and
hatching across a wide range of brackish, low-salinity habi-
tats throughout the SFE, as has been suggested by laboratory
[14] and field [20, 31] observations.

The present study revealed a marginally significant effect
of fertilization salinity on larval survival from 0 to 40 dph,
where the larvae with 5 ppt fertilization salinity had compar-
atively higher survival rate (76%) than the larvae with 0.4 ppt
fertilization salinity (61%). In a recent study, Yanagitsuru
et al. [14] demonstrated that the survival rate was highest
and notochord length longest in longfin smelt yolk sac larvae
in moderately brackish water conditions (i.e., 5–10 ppt), sug-
gesting that these brackish water salinities might be optimal
for their larval growth and survival. However, the better
fertilization rate of eggs fertilized in freshwater in this study
indicates that this might be a key reason that longfin smelt

TABLE 4: Effects of different salinity, broodstock source, larval stocking density, and female size on total length and body weight of longfin
smelt Spirinchus thaleichthys larvae reared during this study.

Larval trait Factors Sum. Sq. df F-value p-Value

Total length (mm)

Fertilization salinity (ppt) 0.0033 1 0.62 0.45
Incubation salinity (ppt) 0.0042 1 0.78 0.39

Fertilization salinity× incubation salinity 0.0009 1 0.17 0.68
Source of broodstock 0.0100 1 1.8 0.19

Larval stocking density (ind./L) 0.0088 1 1.62 0.22
Fork length of female (mm) 0.0079 1 1.45 0.25

Body weight (g)

Fertilization salinity (ppt) 0.000 1 0.02 0.89
Incubation salinity (ppt) 0.000 1 0.24 0.63

Fertilization salinity× incubation salinity 0.000 1 0.20 0.66
Source of broodstock 0.000 1 4.01 0.06

Larval stocking density (ind./L) 0.000 1 3.59 0.08
Fork length of female (mm) 0.000 1 4.19 0.06

Abbreviations: Sum. Sq., the sum of squares; df, degrees of freedom; ind., individuals.

Aquaculture Research 7



migrate back to freshwater to spawn. Tana and Tempero [59]
used Sr:Ca on the otolith to determine that spawning of
common smelt Retropinna retropinna occurred in freshwa-
ter, while larval growth happened mostly in marine water,
and Grimaldo et al. [12] observed high densities of longfin
smelt larvae in shallow, low-salinity wetland habitats in the
upper estuary. In years with high freshwater outflow, Lewis
et al. [20] also observed spawning adults and recruiting lar-
vae of longfin smelt in shallow low-salinity wetland habitats
throughout the SFE, including San Pablo Bay and Lower
South Bay, CA, United States. Moreover, studies using the
otolith strontium isotope for their nursery ground recogni-
tion [33] and sampling the physicochemical and biological
attributes of SFE [12] suggest that longfin smelt prefer brack-
ish water conditions as their larval nursing grounds. These
findings suggest that longfin smelt benefit from spawning in
lower salinity habitats and for their larvae to move to mod-
erately brackish water for higher survival and growth.

The size of maternal broodstock is also considered as an
important factor for successful fish spawning because it can
influence egg quality, fertilization, hatching success, and lar-
val traits. Studies showed that larger and older females can
produce high-quality eggs [60], have better fertilization and
hatching success [61], and produce good-quality larvae [62].
Evidence suggests that maternal proteins and RNAs can
modulate the egg quality [63], while their hormones, such
as thyroid and cortisol, can be transferred through the egg
yolk to influence larval development [64]. The findings of the
present study corroborate these studies and indicate that the
hatching rate and larval survival increased with the increase of
maternal broodstock size. Similar to the maternal size, studies
showed that paternal size also could have significant effects on
fish spawning and larval growth [65]. Unfortunately, some
males provided tiny amount of milt during this study, and
multiple males had to be used to fertilize the eggs for those
crosses, which restricted to partition the individual paternal
effects on spawning performance and larval development.
However, further studies could be done to explore the paternal
contribution to these spawning performances in this species.

Lastly, the study found no significant effects of incubation
salinity, fertilization salinity× incubation salinity, source of
broodstock, stocking density, and salinity shock on any of
the measured spawning performances and larval traits. The
plausible reasons could be the incubation salinity and fertili-
zation salinity× incubation salinity did not cause any osmotic
stress that would lead to the mortality of hatchlings, brood-
stock collected from two sites might not be genetically differ-
ent populations, stocking densities in this study might not
create any competition for space and food to deter larval
growth and survival, and change of rearing water salinity
would be tolerable for larval longfin smelt.

5. Conclusion

The population of longfin smelt in the SFE has dramatically
declined in recent years, likely due many interacting anthro-
pogenic impacts. The establishment of a conservation culture
program is a key component of a multifaceted approach to

conserving this imperiled population. Our results highlight
that fertilization is highest in freshwater, thus informing opti-
mal culture practices and possibly explaining the anadromous
life history of this species. Furthermore, hatching and larval
survival were strongly correlated with the female broodstock
size, thus highlighting the importance of selecting large
females as conservation broodstock. Combined, this work
provides new information regarding the responses of longfin
smelt reproduction and early life history to variation in salin-
ity, which is key to developing an effective conservation cul-
ture program and for guiding the management of the
remaining wild population.
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