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The suppressor of cytokine signaling (SOCS) plays a negative role in the cytokine signaling pathway, preventing excessive signaling
from interfering with the metabolic homeostasis of the body. By regulating the Janus kinase-signal transducer and activator of
transcription pathway through negative feedback, SOCS have a significant impact on the regulation of both innate and adaptive
immunity against pathogens, thus playing a crucial role in the immune response, growth, and development of the body. In this
study, the cDNA sequences of SOCS1, 2, 3a, 3b, 4, 5b, 6, 7, 8, 9, and CISH genes of spotted seabass (Lateolabrax maculatus), an
important marine economic fish in China, were cloned using RT-PCR, nested PCR, and RACE techniques. Multiple sequence
alignment showed that the SOCS family members shared highly conserved functional structural domains, including the SRC
homology 2 domain (SH2 domain) and the SOCS-box domain. The phylogenetic analysis showed that SOCS1, 2, 3a, 3b, 8, and
CISH belonged to the type II subfamily of SOCS genes, while SOCS4, 5b, 6, 7, and SOCS9 belonged to the type I subfamily.
Furthermore, gene organization and syntenic analysis confirmed the phylogenetic analysis and protein annotation of the SOCS
gene family in spotted seabass. Constitutive expression of spotted seabass SOCS genes was observed in various tissues of healthy
fish, with varying expression levels. Following the lipopolysaccharide and Edwardsiella tarda challenge, the expression profiles of
spotted seabass SOCS genes were differently regulated in the gill, head kidney, intestine, and spleen. These findings provide a basis
for future research on the functional properties of SOCS genes in spotted seabass.

1. Introduction

Suppressors of cytokine signaling (SOCSs) are a class of
intracellular proteins that are produced in response to cyto-
kine action, which play an essential role in negative feedback
regulation of cytokine-Janus kinase-signal transducer and
activator of transcription (JAK-STAT) signaling pathway,
which prevent their overexpression [1]. The JAK-STAT sig-
naling pathway mediates the intracellular signaling process
of various cytokines and growth factors and activates the
corresponding target genes, which are closely related to cell
proliferation, differentiation, invasion, apoptosis, and immune

regulation [2]. SOCS family proteins, acting as JAK-binding
proteins or STAT inhibitors, which are regulated by different
mechanisms, and there are four main mechanisms involved in
the cytokine-JAK-STAT signaling pathway, including as fol-
lows: (a) blocking the binding of JAK to its substrate and
inhibiting its activity; (b) inhibiting STAT phosphorylation;
(c) binding to elongin BC and degrading the protein; (d)
degrading JAK [2, 3]. Nowadays, there are eight SOCS
proteins: SOCS1, SOCS2, SOCS3, SOCS4, SOCS5, SOCS6,
SOCS7, and CISH have become the most significant cytokine
receptor signaling inhibitors [4]. SOCS family members share
a common structural feature consisting of a centrally located
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SH2 domain and a conserved domain at the carboxyl termi-
nus, known as the SOCS-box [5]. In addition, the N-terminal
domain shows variability, and SOCS1 and SOCS3 have a spe-
cific small kinase inhibition region (KIR) within this domain
[6, 7]. It is worth noting that SOCS has not only an inhibitory
effect on signaling pathways but also an activating effect. In a
recent study, it was found that redlip mullet socs5b could
directly activate the PI3k/Akt pathway by itself, thus enhanc-
ing the proliferation and migration of cells [8].

In 1997, researchers identified eight members of the
SOCS family, including SOCS1-7 and CISH, in mammals
[9]. A decade later, Jin et al. [10] identified and characterized
SOCS3b, SOCS5b, SOCS8, and SOCS9 in five model fish
species, including Tetraodon, Zebrafish, Fugu, Stickleback,
and Medaka, and systematically analyzed and identified
them as new members of the SOCS family [11]. Phylogenetic
analysis shows that the vertebrate SOCS gene family can be
divided into two subfamilies: the type I subfamily consists of
vertebrate SOCS4, SOCS5a, SOCS5b, SOCS6a, SOCS6b, SOCS7,
and SOCS9. The type II subfamily is composed of CISH,
SOCS1a, SOCS1b, SOCS2, SOCS3a, SOCS3b, and SOCS8
[12–14]. The way in which SOCS proteins are grouped
together reflects their evolutionary history, with proteins
that share similar structures and functions being clustered
together [15].

To date, SOCS family members have been identified in a
variety of fish species, in addition to the five model fish
mentioned above, also including rainbow trout [16], channel
catfish [17], tongue sole [18], nile tilapia [19], Japanese floun-
der [20], soiny mullet [5], yellow catfish [21], swamp eel [22],
grass carp [14], and redlip mullet [8]. However, little is known
about studies in Perciformes. This study will clone and iden-
tify the SOCS gene family and analyze their expression in
eight tissues, i.e., brain, gill, head kidney, intestine, liver, mus-
cle, skin, and spleen of spotted seabass (Lateolabrax macula-
tus). As the large-scale and intensive aquaculture for spotted
seabass grows, pathogenic diseases have emerged as a crucial
factor that limits its sustainable growth. Given the important
role of SOCS family members in regulating immune signaling
pathways, this study also aimed to observe their mRNA
expression patterns at different time points following intra-
peritoneal injection of lipopolysaccharide (LPS) and Edward-
siella tarda stimulation in spotted seabass, hoping to further
understand the functions of SOCS genes in spotted seabass
and their evolutionary relationships.

2. Materials and Methods

2.1. Fish. All the spotted seabass used in this experiment
were obtained from an aquaculture farm, Xiaoshan District,
Hangzhou, Zhejiang Province, China. Before the experiment,
a healthy spotted seabass with uninjured body surface, nor-
mal feeding, and active behavior, weighing 300Æ 50 g, was
temporarily reared for one week in a barrel at a water tem-
perature of 25°C, feeding once in the morning and evening.
All the animal procedures were performed according to the
instructions set by the Council of Animal Care of Shanghai
Ocean University (SHOU-DW-2019-012).

2.2. Expression Analysis of Spotted Seabass SOCS after LPS
and E. tarda Stimulation. The experimental fish were divided
into three groups: The LPS experimental group (5μg/g, 300μL,
intraperitoneal (ip) injection), E. tarda experimental group
(1× 104CFU/mL, 300 μL, ip injection), and the control group
(PBS, 300μL, ip injection). Each group consisted of 40 fish,
which were kept evenly and temporarily in four culture buckets.
At 0, 6, 12, 24, and 48hr after injection, four fish were randomly
selected from each group for dissection. Four immune tissues
(gill, head kidney, intestine, and spleen) were obtained from
each fish. In addition, eight tissues (gill, head kidney, spleen,
intestine, brain, skin, liver, and muscle) were collected from
healthy fish. All the collected tissues were stored at −80°C.

2.3. Extraction of Total RNA, Preparation of cDNA, and qRT-
PCR Template. Total RNA extraction was performed accord-
ing to the instructions for the TRIzol method (Takara, Japan).
The cDNA was synthesized using a SMART RACE cDNA
Amplification Kit (Clontech, USA) for gene cloning. The
Revert Aid™ First Strand cDNA Synthesis Kit (Fermentas,
USA) was used to synthesize cDNA for quantitative real-time
PCR (qPCR).

2.4. Design of Primers. The partial cDNA sequences of SOCS
family genes were obtained by local Blast analysis using the
BioEdit program through the genomic database (https://
www.ncbi.nlm.nih.gov/genome/43909), and the sequences
of closely related species were compared with those obtained
by NCBI comparison, and DNAMAN software was used to
design-specific primers in the relatively conserved regions.
The fragments were compared with the sequences of closely
related species obtained by NCBI and specific primers were
designed in the relatively conserved region by DNAMAN
software for cloning of partial cDNA fragments; the obtained
fragments were sequenced, and RACE-specific primers were
designed at both ends of the obtained target fragments by
Primer 5.0 software. The primers used in this experiment were
synthesized byHangzhou Jinweizhi Biotechnology (Table S1).

2.5. Gene Cloning. The cDNA templates from eight tissues:
gill, head kidney, spleen, intestine, brain, skin, liver, and mus-
cle were mixed and diluted 20-fold for use as gene cloning
templates. Spiking systems: Ex Taq enzymes (Takara, Japan)
12.5μL; F primer 1 μL; R primer 1 μL; cDNA template 1 μL;
ddH2O up to 25 μL. Reaction procedures: 95°C 2min; 98°C
10 s, 60°C 30 s, 72°C, 38 cycles; 72°C 7min. Subsequently, the
target bands were excised and recovered using OMEGA Bio’s
Gum Recovery Kit (OMEGA, USA). The recovered product
was ligated with pMD-19T vector (Takara, Japan) overnight
at 16°C. The ligation products were transformed into Escherichia
coli DH5α competent cells. Single colonies were selected and
sequenced by Shanghai Sangon Biotech Company.

2.6. Sequence Analysis. The spliced 5′-RACE, 3′-RACE, and
cDNA fragments were assembled using DNAMAN software
to obtain the full-length sequence of CISH, SOCS1, SOCS2,
SOCS3a, SOCS3b, SOCS4, SOCS5b, SOCS6, SOCS7, SOCS8,
and SOCS9. The open reading frames (ORFs) of the obtained
sequences were predicted using the NCBI online website
(https://www.ncbi.nlm.nih.gov/orffinder/). Homology matching
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of the inferred amino acid sequences of the identified SOCS
parent genes in the NCBI database was obtained using Protein
BLAST at the NCBI online website (https://blast.ncbi.nlm.nih.
gov/Blast.cgi). Protein molecular weights and isoelectric points
of the corresponding amino acids were predicted using the
Expasy online website (https://web.expasy.org/compute_pi/).
The structural domains of the protein were determined using
the SMART (http://smart.embl-heidelberg.de) online website.
Exon–intron analysis of the gene was performed using the
Ensembl online website (http://asia.ensembl.org/index.html).
A neighbor-joining tree was constructed using the neighbor-
joining method usingMEGAX software, where the bootstraps
value was set to 10,000. The upstream and downstream genes
of the vertebrate SOCS gene are available on the Genomicus
v108.01 online website (https://www.genomicus.bio.ens.psl.
eu/genomicus-108.01/cgi-bin/search.pl).

2.7. qPCR Analysis. EF-1α was used as the internal reference
gene. Quantitative real-time experiments were performed
using the Light Cycle 480 system (Roche, Germany). The
qRT-PCR reaction consisted of SYBR Green Master Mix
(YEASEN) 5μL, forward primer 0.2μL, reverse primer 0.2μL,
and cDNA template 4.6μL. The thermal profile for qRT-PCR
was 95°C for 30 s, followed by 40 cycles of 95°C for 10 s, 60°C
for 20 s and 72°C for 20 s.

2.8. Data Statistics. One-way analysis of variance (ANOVA)
in IBM SPSS Statistics software was used for statistical
ANOVA, with a difference level of “ ∗” indicating a significant
difference (P<0:05), and “ ∗∗” indicating a highly significant
difference (P<0:01). Histograms were plotted using GraphPad
Prism 9.0 software, and data were expressed as meanÆ SEM
(n= 4).

3. Results

3.1. Sequence Identification of the Spotted Seabass SOCS
Family Genes. In this study, 11 genes of the SOCS family
of spotted seabass, including CISH, SOCS1, SOCS2, SOCS3a,
SOCS3b, SOCS4, SOCS5b, SOCS6, SOCS7, SOCS8, and
SOCS9, were cloned using RT-PCR and RACE-PCR techni-
ques. Sequence characteristics are shown in Table 1. Among
them, the ORFs were 612, 744, 603, 618, 681, 1,200, 1,692,
1,611, 2,559, 645, and 1,644 bp, encoding amino acid sequence
lengths of 203, 247, 200, 205, 226, 399, 563, 536, 852, 214, and
547 aa, respectively. The molecular weights (kDa) of the pro-
teins predicted through the Expasy online website were 22.56,
27.37, 22.50, 23.24, 25.16, 45.40, 62.07, 59.85, 91.51, 24.05, and
61.22 kDa, respectively. The isoelectric points (pI) were 9.35,
9.16, 7.76, 8.95, 7.92, 9.06, 8.91, 6.09, 6.78, 8.30, and 6.77,
respectively. The GenBank accession numbers on NCBI
are nos. OQ540951, OQ540952, OQ540953, OQ540954,
OQ540955, OQ540956, OQ540957, OQ540958, OQ540959,
OQ540960, and OQ540961, respectively.

3.2. Phylogenetic Analysis, Sequence Similarity, and Amino
Acid Characterization of the Spotted Seabass SOCS Family
Genes. Amino acid structure mapping of spotted seabass
SOCSs family members was performed using IBS Illustrator
for Biological Sequence online mapping software (http://ibs.

biocuckoo.org). It was observed that the spotted seabass
SOCSs family members share two structural domains, the
SH2 and SOCS-box domains, at the C-terminus. All type I
members have longer amino acid sequences than type II
members, with the variation concentrated in the N terminus.
Using DNAman software, multiple sequence alignment was
performed for type I and II subfamily members, revealing
that the SH2 and SOCS-box domains of both types are con-
served despite having differences in amino acid length
(Figure 1).

To observe the evolutionary relationship of SOCS family
genes in spotted seabass, a phylogenetic tree was constructed
by the NJ-joining method with MEGA X software based on
amino acid sequences SOCSs of spotted seabass and other
representative vertebrates, including human (Homo sapiens),
mouse (Mus musculus), zebrafish (Danio rerio), rainbow
trout (Oncorhynchus mykiss), medaka (Oryzias latipes), tet-
raodon (Tetraodon nigroviridis), fugu (Takifugu rubripes),
and stickleback (Gasterosteus aculeatus) (Figure 2). The
results showed that the SOCS family genes formed two major
branches, classified as type I and type II, according to Hong-
Jian et al. [12] and Liongue et al. [13]. In the phylogenetic
evolutionary tree, type I members, including SOCS4, SOCS5b,
and SOCS9, cluster into one large branch, with SOCS5b and
SOCS9 forming a smaller branch, while SOCS6 and SOCS7
cluster into a separate large branch. Type II members, SOCS1,
SOCS3a, and SOCS3b, cluster into one large branch, with
SOCS3a and SOCS3b forming a smaller branch, while
CISH, SOCS2, and SOCS8 cluster into another large branch,
with CISH and SOCS8 forming a smaller branch.

The SOCS amino acid sequences were further compared
with those of representative vertebrates (Table 2). Results
showed that all the SOCS genes, except for SOCS7, exhibited
significant similarity with the SOCS genes of Stickleback,
ranging from 76.31% to 93.84%). In the phylogenetic tree,
the homology of SOCS1, SOCS2, SOCS3a, SOCS4, and
SOCS8 with the spotted seabass SOCSs genes of the Stickle-
back ranged from 76% to 98%, indicating their high depen-
dence on Stickleback. Meanwhile, SOCS6 showed significant
similarity across species (ranging from 65.81% to 93.84%),
suggesting that it has been conserved throughout evolution.
In contrast, the remaining spotted seabass SOCSs genes exhib-
ited lower similarity (ranging from 40.15% to 67.33%) with
mammals (humans andmouse) but demonstrated higher sim-
ilarity (ranging from 51.19% to 91.59%) with other fish species.

3.3. Gene Organization and Syntenic Analysis of Spotted
Seabass SOCS Family Genes. The obtained SOCS gene sequences
were put into through the perch genome data (https://www.ncbi.
nlm.nih.gov/genome/43909) and analyzed using the BioEdit pro-
gram to get the intron–exon information of the perch SOCS
gene. The exon–intron structures of spotted seabass SOCS genes
were compared with those of other species to assess their evolu-
tionary conservation. Information on spotted seabass SOCSs was
obtained from the spotted seabass transcriptome library and
compared with information on this SOCSs gene for zebrafish,
human, and mouse downloads. As shown in Figure 3, the results
indicate that SOCS genes have a typical exon–intron structure
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FIGURE 3: Genomic gene organization of spotted seabass SOCSs compared with other animals SOCSs. Spotted seabass SOCS3a and SOCS3b,
SOCS5b, and SOCS9, and CISH and SOCS8 were analyzed together because of their structural specificity.
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that is conserved across fish and mammal species. CISH shares a
similar structure with zebrafish, human, and mouse suggesting
that it likely performs a similar function in these species. The
SOCS1 has a unique exon–intron structure compared to other
species, indicating that it may have distinct functional char-
acteristics. Furthermore, SOCS3a, SOCS4, SOCS5, SOCS6,
and SOCS9 in all compared fish and mammals have a single
exon, while all ORFs of SOCS7 have nine exons and eight
introns, with each exon having a similar number of base pairs.

In order to gain a better understanding of how spotted
seabass SOCS genes are related to those of other species, the
genes were analyzed for linearity. As shown in Figures 4(a)
and 4(b), spotted seabass SOCSs genes exhibit varying scaf-
fold structures. The upstream genes of SOCS1 were relatively
conserved in fish, with both the Cacng3b and Prkcbb genes
being shared. Tnrc6a, a gene unique to Fugu and Stickleback,
was not found in spotted seabass. The downstream genes in
both mammals and fish, including the Clec16a gene and the
Dexi gene, were relatively conserved. In contrast, the down-
stream motifs of SOCS7 were more similar only in fish,
whereas the upstream motifs were more similar in both
mammals and fish. Despite genetic differences between
SOCS2, SOCS4, SOCS8, and CISH and human and mouse
SOCS genes, their motifs are more similar in fish. Surpris-
ingly, SOCS5 and SOCS9 were not identified in the spotted
seabass transcriptome library, but SOCS5 was predicted to be
located downstream of Rhoq on the seventh chromosome
based on syntenic analysis of other species. No motif infor-
mation was found upstream and downstream of spotted sea-
bass SOCS9 in the library. SOCS6 is the most conserved of all
the SOCS family genes in spotted seabass, being identical not
only to other fish but also to human and mouse genes.

3.4. Expression Analysis of Spotted Seabass SOCS Genes in
Healthy Fish. To investigate the tissue distribution of SOCS
family genes in healthy spotted seabass, eight tissues were
selected for QRT-PCR analysis. As shown in Figure 5, the
mRNA expression levels of CISH, SOCS1, and SOCS3a
showed the highest expression levels in the gill and relatively
lower levels of expression in the brain, head kidney, intestine,
and liver. SOCS2, SOCS3b, and SOCS8 also exhibited the high-
est expression in muscle and the lowest level in the head
kidney. SOCS4 was predominantly expressed in the gill, intes-
tine, muscle, skin, and spleen, with lower expression levels
in the head kidney and liver tissues. SOCS5b, SOCS6, and
SOCS7 exhibited a similar expression pattern with the highest
expression levels in the brain, lower levels in the liver, and
higher expression levels in other tissues. Conversely, spotted
seabass SOCS9 had a different expression pattern from
SOCS5b, with the highest expression observed in the skin
and the lowest in the muscle.

3.5. Modulation of Spotted Seabass SOCS Genes in Response
to E. tarda and LPS Injection for Gill, Head Kidney, Intestine,
and Spleen. In order to study how spotted seabass SOCS
family genes respond to the immune response, mRNA
expression levels were examined in four immune tissues
(gill, head kidney, intestine, and spleen) after injecting LPS
and E. tarda at 0, 6, 12, 24, and 48 hr (Figures 6 and 7). The

results showed that the mRNA expression patterns of various
spotted seabass SOCS genes were different within the same
immune tissue, and even the same SOCS gene displayed
diverse expression patterns in different immune tissues.

Surprisingly, the mRNA expression levels of the majority
of spotted seabass SOCSs remained largely unchanged in the
four tissues at any of the five time points sampled following
the injection of E. tarda. SOCS3b, SOCS6, and SOCS8 in the
spotted seabass demonstrated highly significant downregula-
tion in individual immune tissues at the late injection stage
(P<0:01) (Figures 6(6-d) and 7(3b-b, 3b-d, 8-c)). SOCS4
and SOCS5b showed significant downregulation, followed
by significant upregulation adjustment (Figure 6(4-a, 4-b,
5-b)). SOCS5 was the only one that exhibited an extremely
significant upregulation in gill and head kidney tissues at the
late injection stage (P<0:01). Only SOCS9 showed highly
significant downregulation in all immune tissues examined
(Figure 7(9-a, 9-b, 9-c, 9-d)).

Following LPS injection, there was a significant variation
in the mRNA expression levels of different the spotted sea-
bass SOCSs genes at different time points, in contrast to
E. tarda stimulation (P<0:01). In particular, most of spotted
seabass SOCSs genes showed highly significant upregulation
in the gill, head kidney, and spleen from the initial 6 hr of
injection until 48 hr (P<0:01). However, in the head kidney
and spleen of SOCS3, there was a highly significant up-
regulation in the preinfection period (6 hr), followed by a
highly significant downregulation in the late infection period
(24 hr) (P<0:01) (Figure 6(3b-b, 3b-d)).

4. Discussion

In the present study, 11 members of the spotted seabass SOCS
family, including SOCS1-9, SOCS3b, and CISH, were cloned
and identified from the spotted seabass. Notably, SOCS5b was
also not found in the study of the swamp eel by Tian et al. [22].
Some studies suggest that SOCS9 and SOCS5 are produced by
replication of the same gene, and therefore, SOCS9 is often
referred to as SOCS5b [12]. For example, SOCS5b and SOCS9
are considered to be the same gene [5]. In the present study,
we found evidence for the coexistence of SOCS5b and SOCS9
in spotted seabass, while further studies on SOCS5a in spotted
seabass are needed.

SOCSs proteins with highly conserved motifs, such as the
SH2 and SOCS-box structural domains, have been observed
in various species [23]. The SH2 and SOCS-box domains,
distinctive structural domains of SOCS proteins, are primar-
ily responsible for inhibiting cytokine signals. The results of
previous studies have shown that the SH2 domain and KIR
binding to phosphopeptides and JAK2 domain, respectively,
to achieve inhibition [24]. The SOCS-box has the ability to
inhibit JAK kinase and identified a specific KIR domain near
the N-terminal in SOCS1 and SOCS3 that allows them to
maintain the ability to inhibit JAK kinase despite the absence
of the SOCS-box domain [25]. In addition, the SH2 struc-
tural domain has the function of binding to the E2-E3 com-
plex to ubiquitinate it [26]; the SOCS-box domain is involved
in the formation of the E3 ligase complex, which promotes
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FIGURE 4: Syntenic analyses of spotted seabass SOCS family members compared with other animals SOCSs: (a) syntenic analyses of spotted
seabass SOCSs type II subfamily members; (b) syntenic analyses of spotted seabass SOCSs type I subfamily members.
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degradation of the proteome by activating the cytokine recep-
tor complex [27]. The functional, structural domains of spot-
ted seabass SOCSs, including the SH2 and SOCS-box domains,
were found to be highly conserved, similar to other fish studies.
Moreover, researchers have identified a potentially conserved
motif in the mouse SOCS gene family, which they named
the PEST motif [28]. Subsequent research discovered PEST
sequences in the SOCS genes of fish [21, 28]. However, the
KIR and PEST motifs contained in spotted seabass SOCSs
were not predicted using the SMART software; further studies
are required to investigate the KIR and PESTmotifs contained
in spotted seabass SOCSs and their primary functions.

According to Van et al. [29], vertebrates underwent two
rounds of whole-genome duplication (WGD) early in their
evolution, resulting in the presence of 12 members of the
SOCS gene family [30–32]. After the thirdWGD, the number
of members increased to 15 members [16]. Wang et al. [33]
suggested that these additional members may have arisen from
species-specific gene duplication events. Currently, all SOCS
genes after the third replication in rainbow trout are known to
have undergone the fourth WGD, of which 26 SOCS genes
were expressed [33] (Table S2). In recent research, it was

observed that SOCS1 and SOCS3 of the hybrid yellow catfish
“Huangyou-1” (♂Pelteobagrus vachelli×♀P. fulvidraco) clus-
tered together in a single branch [34], similar to the phenome-
non observed in Soiny Mullet [5], and the high degree of
homology between genes suggests the possibility of similar
functions. The SOCS genes in fish are highly conserved with
other higher vertebrates, particularly with SOCS5 and SOCS6,
which show over 60% homology with other higher vertebrates
[11]. The same situation was found in the spotted seabass. It is
also worth mentioning that the spotted seabass SOCSs genes
exhibit the highest overall homology with the SOCSs gene of
the Stickleback based on the phylogenetic evolutionary num-
bers, indicating that the spotted seabass and Stickleback may
have originated from the same ancestor.

SOCSs in spotted seabass have a typical exon–intron
structure. The position of all spotted seabass SOCS genes on
the locus, the order of upstream and downstream genes, and
exon–intron structure similar to SOCSs in other species [35].
For example, spotted seabass SOCS1 and SOCS3a are found
on the same chromosome (chromosome 12), and grass carp
SOCS1 and SOCS3a were also on chromosome 2 [14], sug-
gesting a close functional relationship between SOCS1 and
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FIGURE 5: Expression pattern of spotted seabass SOCSs family genes in various tissues in healthy spotted seabass. Brain, gill, head kidney,
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SOCS3a. However, further investigation is needed to deter-
mine whether the functions of other closely located genes,
such as SOCS2 and SOCS3b (chromosome 24) and SOCS7
and CISH (chromosome 2), are similar. The majority of spot-
ted seabass SOCSs genes have 1–3 exons, except for SOCS7,
which is also found in all other fish [11, 14, 20, 36]. Therefore,
it can be concluded that the gene structure of SOCSs in fish is

highly conserved throughout the course of evolution. Mean-
while, this also suggests that the addition and deletion of
exons in SOCS genes during genetic evolution may have con-
tributed to their functional diversification. The gene structure
of spotted seabass SOCSs is highly conserved in evolutionary
terms, both compared to lower fish and higher vertebrates,
indicating their biological importance.
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Gene linearity analysis of the neighboring genes of the
spotted seabass SOCS genes with humans, mice, and five
model fish species revealed that, though these genes differ
greatly in humans and mice, the upstream and downstream
genes of SOCSs in spotted seabass are highly similar to those
of other fish species, suggesting their evolutional conserva-
tion in fish. There are two genes for SOCS3 and SOCS5 in
fish, SOCS3a and SOCS3b, SOCS5a and SOCS5b, respec-
tively. This implies that more replication events might have
occurred during gene duplication in fish SOCS3 and SOCS5,
leading to the production of multiple genes within a taxon
[37]. In the present study, spotted seabass SOCS3 has also
been verified to possess SOCS3a and SOCS3b, both SOCS3a
and SOCS3b have different genes on the locus, but they are
clearly related to human and mouse SOCS3, which share
structural similarities with the SOCS3a and SOCS3b genes
in zebrafish, confirming that SOCS3a and SOCS3b arose
from the duplication of SOCS3 during the evolutionary pro-
cess. The SOCS5b was identified in this study, showing a
structural resemblance to SOCS5b in various fish species.
This is direct evidence that we obtained the SOCS5b gene
from the spotted seabass. However, there is no evidence to
suggest that the SOCS9 obtained in this experiment can be
used as a message for SOCS5a. Previous analyses have sug-
gested that SOCS family members may have originated from
a single ancestral gene through specific gene duplication,
which is further supported by linearity analysis that clarifies
homologous relationships and bridges gaps in phylogenetic
evolutionary trees.

The various members of the SOCSs in spotted seabass
exhibited diverse expression patterns across the eight selected
tissues. CISH, SOCS1, and SOCS3a in spotted seabass dis-
played expression patterns similar to those of SOCS1 and
SOSC3 in Nile tilapia [19] and SOCS1 in yellow catfish [34],
with the highest expression levels observed in the gill. The gill
are the primary sites of pathogen invasion in fish, and they
contain IgT, which plays a crucial role in pathogen-specific
immune responses following exposure [38]. This suggests
that CISH, SOCS1, and SOCS3a likely play crucial roles in the
innate and molecular immunity of spotted seabass. In contrast,
SOCS2, SOCS3b, and SOCS8 had the highest expression levels
in the muscle. It has been demonstrated that SOCS2 has a dual
regulatory effect on the growth hormone (GH) signaling path-
way, promoting the pathway at high levels of expression and
inhibiting it at low levels [39, 40]. Experimental results in other
fish have shown different expression patterns for the same
genes. For example, the swamp eel has higher expression levels
of SOCS2 in the head kidney and brain, but lower expression in
muscle, while both fish species have similar expression patterns
for SOCS3b [22]. This indicates that even for the same gene,
expression patterns can vary between different species. Further-
more, studies have found that the expression level of SOCS7
affects GH signaling, which may explain its high expression in
muscle tissue [41]. SOCS5b, SOCS6, and SOCS7 in spotted
seabass showed the highest expression levels in the brain, indi-
cating their potential role in regulating the central nervous sys-
tem. SOCS4 in spotted seabass exhibited high expression levels
in the skin and muscle, indicating their involvement in negative

feedback regulation of epidermal growth factor receptor (EGFR)
signaling [42]. SOCS8 is often referred to as CISHb and SOCS9
as SOCS5b in teleost fishes [5, 30]. However, the functions of
these two genes require further investigation to better under-
stand their biological significance.

After E. tarda stimulation, spotted seabass SOCS4 dem-
onstrated a similar expression pattern in the gill, head kid-
ney, and intestine, and all three tissues showed upregulation
at 48 hr. In contrast, the spleen showed a downregulation
after injection. This is unlike SOC4 expression in the Tongue
sole, where the spleen showed upregulation at 48 hr but
downregulation in other tissues [18]. SOCS7 in Tongue
sole was also upregulated by E. tarda, but it showed a decrease
at 12 hr following V. harveyi infection [18], suggests that dif-
ferent stimuli may have opposite results for the same gene in
the same species. Of all the 12 SOCS genes in channel catfish,
only SOCS1a, SOCS3a, and CISH were observed to be upre-
gulated during the early phase after E. ictaluri infection [17],
whereas SOCS6 and SOCS9 were upregulated in the spleen
12 hr after E. tarda injection, with SOCS5 and SOCS6 being
downregulated after 3 hr in Japanese flounder [20]. In our
study, we observed a significant or considerable downregula-
tion of SOCS6 and SOCS9 mRNA expression in the spleen at
12 hr postinjection. These findings indicate that the expres-
sion of SOCSs in teleost fish may be species-specific and time-
dependent. Notably, SOCS5b and SOCS9, being homologous
genes, showed different expression patterns. This suggests
that the occurrence of gene duplication events during evolu-
tion has led not only to structural changes in genes but also to
functional differences.

Following LPS stimulation, most of the spotted seabass
SOCS family members were observed to be upregulated in
the four immune tissues at all time points from 6 hr postin-
jection compared to the control group injected with PBS.
Similarly, in other studies, all members of the pike SOCS
family were highly expressed after stimulation by S. dysgalac-
tiae [5]. Additionally, Japanese flounder exhibited significant
mRNA elevations for SOCS1, SOCS3, SOCS5, SOCS6, and
SOCS5b during the early stages of bacterial infection [20].
Our results suggest that SOCS proteins have a dual function
in bacterial-induced inflammatory response, exhibiting a pro-
longed and early response. Furthermore, these results imply
that spotted seabass SOCS genes have distinct roles in regulat-
ing immune responses during bacterial infections with varying
mechanisms. The substantial reduction in SOCS5b expression
after stimulation was attributed to its elevated expression in the
brain tissue, indicating its possible involvement in regulating
neural centers and inhibition of diverse neural activities in
response to infection. However, the function and mechanism
of SOCS5b are still not well understood. Recent studies have
shown that SOCS5b in redlip mullet (Planiliza haematochei-
lus) can inhibit viral hemorrhagic septicemia virus infection
and EGFR expression but increase the expression of pro-
inflammatory cytokines (IL-1β and IL-8) and antiviral genes
(ISG-15 and IFN) when overexpressed [8]. Since most of spot-
ted seabass SOCSs genes show an overall upregulation after
LPS stimulation, suggesting that spotted seabass SOCSs are
important regulators of immunity in spotted seabass.
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