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The spectrum is a key environmental factor, and light-emitting diodes (LEDs) can influence the growth and development of
crustaceans by altering the composition of the spectrum. This study conducted a 30-day experiment to investigate the effects of five
LED spectra (red, yellow, blue, green, and white light) on the growth, antioxidant and immune enzyme activities, stress hormone
levels, and the expression of α-amylase (α-AMY), ecdysone receptor (EcR) and retinoid X receptor (RXR) genes in juvenile redclaw
crayfish (Cherax quadricarinatus). The results show that the survival rate of juveniles is markedly higher in the yellow and red-light
groups than in the other three groups (P<0:05). The green light group exhibits the lowest survival rate, yet it demonstrates the
highest weight gain rate and specific growth rate. Regarding enzyme activity and hormone levels, the yellow light group shows the
lowest malondialdehyde content, with higher superoxide dismutase and acid phosphatase activity than the other groups; no
significant differences are observed in lysozyme activity among the groups (P>0:05). The melatonin content in the green and
blue light groups is significantly higher than that in the other three groups (P<0:01). In terms of growth gene expression, the
expression of α-AMY, EcR, and RXR in juvenile C. quadricarinatus is regulated by the spectrum. In conclusion, when raised under
the yellow light spectrum, juvenile C. quadricarinatus displays elevated survival rates, rapid growth, and robust antioxidant and
immune defenses. This study provides important technical parameters for optimizing and enhancing the industrial cultivation of
juvenile C. quadricarinatus.

1. Introduction

The redclaw crayfish (Cherax quadricarinatus), originating
from streams in Australia and Papua New Guinea, belongs to
the order Decapoda and the family Parastacidae. It is a high-
value freshwater shrimp species that has gradually gained
popularity in aquaculture owing to its fast growth, adaptabil-
ity, and profitable outcomes [1]. According to the 2021 Food
and Agriculture (FAO) statistics, the total production of
redclaw crayfish in countries such as Australia, Cambodia,

Malaysia, and Indonesia was approximately 260 tons [2].
However, challenges regarding cultivating redclaw crayfish
persist, such as low egg-carrying capacity and the immaturity
of hatchery technology, which prevent the development of
large-scale and industrial production [3, 4]. Currently, efforts
have been made to explore factory-scale cultivation of redc-
law crayfish. However, the indoor cultivation process is char-
acterized by various instabilities due to the influence of
different environmental factors. Factors such as excessively
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high or low water temperatures and stocking densities can
lead to slow growth and significantly reduce the survival
rates of redclaw crayfish juveniles [5, 6]. Furthermore, main-
taining a salinity level between 0.1% and 2% in the water
environment enhances the survival and immunity of redclaw
crayfish juveniles [7]. Currently, research on the influence of
various environmental factors affecting factory-scale cultiva-
tion of redclaw crayfish remains limited.

In aquaculture, light exposure is closely tied to the
growth and survival of aquatic animals, and different spectra
play a vital role in their development [8–10]. For instance,
largemouth bass (Micropterus salmoides) experience a signif-
icant increase in body weight and exhibit better growth per-
formance in a blue-light environment [10]. Furthermore, the
impact of spectra on aquatic animals is species-specific [11].
In lower-order crustaceans, such as the giant freshwater
prawn (Macrobrachium rosenbergii), body length significantly
increases when raised under white and green light than blue,
yellow, and red light, suggesting that white and green light are
beneficial for its growth [12]. For the Pacific white shrimp
(Litopenaeus vannamei), their juvenile development period
shortens under yellow light, indicating the benefit of yellow
light on their growth [13]. In bivalves such as the discus abalone
(Haliotis discus hannai), the survival and specific growth rate
(SGR) of juveniles are markedly higher under red and orange
light than under green and blue light, enhancing their growth
performance [9]. The above research indicates that physiologi-
cal activities such as growth and development in aquatic ani-
mals are regulated by changes in the spectrum. However, the
mechanisms underlying physiological and biochemical regula-
tion in response to spectrum changes are currently being
explored in the scientific community.

Changes in spectra can trigger oxidative stress responses
within the bodies of aquatic organisms, resulting in altered
antioxidant enzyme activity and stress hormone levels
[14, 15]. For instance, under red light, juvenile yellowtail
clownfish (Amphiprion clarkii) had significantly higher serum
levels of superoxide dismutase (SOD), catalase (CAT), and
melatonin than those in other spectra, indicating that red
light-induced oxidative stress responses in these juvenile
fish [16]. In contrast, juvenile goldfish (Carassius auratus)
reared under blue light had significantly increased cortisol
levels, suggesting increased stress when cultivated under
blue light [17]. Besides inducing oxidative stress responses,
spectra also affect the expression levels of genes associated
with growth or molting in aquatic organisms. For example,
juvenile Nile tilapia (Oreochromis niloticus) raised under red-
light spectrum conditions exhibited significant upregulation
of the α-amylase (α-AMY) gene, promoting their growth [18].
Juvenile mud crabs (Scylla paramamosain) exposed to white
and blue light exhibited downregulation of the molting inhib-
itory hormone (MIH) gene and increased molting frequency
[19]. Currently, research on how light affects newly hatched
redclaw crayfish juveniles lasts only 14 days. Given that the
factory-scale cultivation period for redclaw crayfish juveniles
is approximately 30 days (with the total body length ranges
from 3 to 5 cm), this research requires further refinement
[20]. Hence, the objective of this study was to examine that

five distinct spectral conditions impact the survival, growth
performance, pertinent enzyme activity, and gene expression
levels associated with the growth and development of juvenile
redclaw crayfish during a 30-day rearing period. The goal is to
better understand the mechanisms underlying the physiolog-
ical and biochemical responses ofC. quadricarinatus juveniles
to spectral regulation.

2. Materials and Methods

2.1. Experimental Operation

2.1.1. Experiment Preparation. After cleaning and disinfect-
ing the aquariums used in the experiment, preaerated recir-
culating water was added. The dissolved oxygen in the water
ranged from 7.25 to 8.66mg/L, with a pH range of 7.80–8.27,
while the temperature was consistently kept at 30Æ 0.5°C.
We introduced nontoxic water conditioner tablets (provided
by XianDe Biological Technology Co., Ltd., Guangzhou,
China) into the filtration tank to improve the water quality
[12]. The aeration system underwent cleaning using water
containing chlorine, and residual chlorine levels were mea-
sured in each aquarium after a 24-hr period [21]. The exper-
iment commenced when the residual chlorine level did not
exceed 0.005mg/L, at which point the experimental juveniles
were introduced. Environmental conditions were kept con-
sistent across all groups.

2.1.2. Experimental Design. The experiment utilized 510
healthy redclaw crayfish juveniles with an initial average
weight of 0.03Æ 0.01 g and an initial average length of 1.06
Æ 0.14 cm. These juveniles were sourced from Hengzhao
Lanlong Aquaculture Co., Ltd. (Jiangmen, China) and accli-
mated for 1 week at the Pearl River Fisheries Research Insti-
tute, Chinese Academy of Fishery Sciences (Guangzhou,
China). During this acclimation period, the juveniles were
housed in aquariums measuring 130 cm× 52 cm× 60 cm
each. The feeding regimen during this temporary rearing
period mirrored that of the formal experiment. Black plastic
film was applied to cover the outside of the tanks to prevent
external light sources from entering. The water depth in the
tanks was maintained at 45 cm, and we employed custom-
designed lighting fixtures to control the light spectrum for
each aquarium. These fixtures utilized 18W LED lights from
Yicai Optoelectronics Industry Co., Ltd. (Jiangmen, China),
positioned 30 cm above the water surface to ensure an illu-
mination intensity of 1,000 Lx below the water surface. We
designed five experimental groups with different visible light
spectra: red (wavelength: 615–650 nm), yellow (wavelength:
580–595 nm), white (wavelength: 450–465 nm), green (wave-
length: 495–530 nm), and blue (wavelength: 450–480 nm).
Each group consisted of three replicates, with each replicate
containing 34 juveniles. The experiment lasted for 30 days,
following a natural light cycle with light fixtures set to turn
on at 7:00AM and off at 7:00 PM, providing 12 hr of illumi-
nation daily. The juveniles were given commercial crayfish
feed (Tongwei Feed Co., Ltd., Chengdu, China) twice a day,
at 8:00 AM and 5:00 PM, consisting of crude protein (35%),
crude fat (12%), and moisture content (9%). One-third of the
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water was replaced after each feeding to clean waste, and
water quality parameters were regularly monitored using
an OctademW-II water quality analyzer (Octadem Technol-
ogy, Inc., Wuxi, China) to ensure water stability. Addition-
ally, water temperature and light intensity for aquaculture
were monitored using a TASI TA8121 light meter (TASI
Electronics, Inc., Suzhou, China).

2.2. Sample Collection and Determination

2.2.1. Growth and Survival Indicators. After 30 days of culti-
vation, 30 juvenile crayfish (3 replicates, 10 individuals/repli-
cate) were randomly selected from each group. The body
length and weight of juveniles in each group were measured
using the software TpsDig2 version 1.40 (F. James Rohlf,
Stony Brook University, Stony Brook, NY, USA) and a Met-
tler Toledo AL-204 precision balance (Mettler Toledo, Inc.,
Shanghai, China). Calculate the weight gain rate and total
length gain rate using the methods and formulas described
by Nie et al. [21]. Subsequently, nine redclaw crayfish were
chosen from each group for hemolymph, eyestalks, and hepa-
topancreatic tissue collection. These samples were flash-
frozen in liquid nitrogen and stored at −80°C for further
analysis, including assessments of antioxidant and immune
capabilities, melatonin, and cortisol levels.

2.2.2. Analysis of Antioxidant and Immune Capacity. The
collected hepatopancreatic samples were subjected to antioxi-
dant and immune enzyme activity assays. The activities of SOD
(A001-3-2), malondialdehyde (MDA) (A003-1-2), acid phos-
phatase (ACP) (A060-1-1), and lysozyme (LZM) (A050-1-1)
were determined using theWST-1 method, thiobarbituric acid
(TBA) reaction method, spectrophotometry, and turbidimetry,
respectively. The procedures followed the respective instruc-
tions provided in the commercial assay kits (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China).

2.2.3. Measurement of Melatonin and Cortisol. We collected
hemolymph and eyestalk samples to measure melatonin and
cortisol levels. The measurement procedure was as follows:
Hemolymph and eyestalk samples were mixed with phosphate-
buffered saline (w : v=1 : 9), and the mixture was homogenized
in a glass mortar containing liquid nitrogen. Afterward, the mix-
ture was centrifuged at 5,000x g for 5min at 4°C, and the super-
natant was collected for further analysis. For melatonin and
cortisol measurements, standard curves were prepared using

ELISA assay kits (Catalog No. YJ093369; YJ085236; Ji Chun
Industrial Co., Ltd., Shanghai, China). The standards were
prepared at six different concentrations: 0, 5, 10, 20, 40, and 80
pg/mL for melatonin and 0, 12.5, 25, 50, 100, and 200ng/mL for
cortisol. Subsequently, microplates were incubated in a 37°C
incubator for 30min, and unbound components were washed
away with a washing solution. The bound melatonin or cortisol
enzyme conjugates were then determined through a reaction
with the substrate tetramethylbenzidine in the presence of
peroxidase. Finally, the reaction was stopped by adding 100μL
of 0.5MH2SO4 at 37°C, and the absorbance was read at 450nm
using an absorbance Microplate Reader (SpectraMax 190,
Molecular Devices, San Jose, CA, USA).

2.3. Total RNA Extraction, cDNA Synthesis, and Quantitative
PCR (qPCR) Analysis. Total RNA in hepatopancreatic tissues
was extracted using Trizol Reagent (Invitrogen, Waltham,
MA, USA). RNA integrity was evaluated via 1% agarose gel
electrophoresis, and the concentration and purity were deter-
mined using a Nanodrop-2000 microspectrophotometer
(Thermo Fisher Scientific Inc., Waltham, MA, USA). To
remove genomic DNA, 1 µg of total RNA underwent DNase
I digestion with an enzyme from New England Biolabs (Ips-
wich, MA, USA) for 15min. Subsequently, first-strand cDNA
synthesis was conducted using the M-MLV reverse transcrip-
tase reagent kit (Invitrogen, Waltham, MA, USA) following
the manufacturer’s instructions. Primer sequences for target
and reference genes utilized in this study are provided in
Table 1. Real-time qPCR was performed using the Step One
Plus Real-Time PCR system (Applied Biosystems, Foster City,
CA, USA) to evaluate the expression levels of specific genes in
redclaw crayfish juveniles exposed to various light spectra. Each
qPCR reaction mixture contained 1 µL of cDNA (50ng/µL),
5 µL of iTaq Universal SYBR Green Supermix, 0.5 µL of each
primer (10 pmol/µL), and 3 µL of double-distilled water, mak-
ing a final volume of 10 µL. Cycling conditions for qPCR were
as follows: initial denaturation at 95°C for 3min, followed by 35
cycles of denaturation at 95°C for 40 s, annealing at 60°C for
45 s, extension at 72°C for 30 s, and a final extension step at
72°C for 10min. Melt curve analysis involved subjecting the
samples to 95°C for 5 s, 60°C for 30 s, and 95°C for 15 s to
obtain dissociation curves.

2.4. Statistical Analysis. The experimental data were analyzed
using GraphPad Prism version 8.0.2 (GraphPad Software,

TABLE 1: Primers used for qPCR in this study.

Gene Sequence (5′−3′) Product size (bp) Amplification efficiency (%) Sources

EcR
F: GGTTTCGGCACTCTTCAACG

208 99.45 OL963596.1
R: ACAGATTGCGACAAAAGCGG

RXR
F: AGGAGATGCCGTAACCAACA

171 97.11 KM016907.1
R: ATGCTTCGGTGTGAGAAGGA

α-AMY
F: CCGCTGGAGACAGATCTACG

199 98.23 OL963595.1
R: AACGTCACAGTAGGTGCCAG

β-Actin
F: CCCCATGCTATCTTGCGTCT

220 99.66 MN396754.1
R: CGTCAGGAAGCTCGTAGGAT
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Boston, MA, USA) with a one-way analysis of variance, fol-
lowed by Tukey’s post hoc test for multiple comparisons.
Results are presented as meanÆ SD. Differences were consid-
ered significant at P<0:05 and highly significant at P<0:01.

3. Results

3.1. Impact of Different Light Spectra on Juvenile Crayfish
Growth and Survival Rates. After being reared under different
spectral conditions for 30 days, the SGR of redclaw crayfish in
the green-light group wasmarkedly higher than that in the blue
and red-light groups (P<0:05), while its weight gain rate and
total length gain rate increase were markedly higher than those
in the white and blue-light groups (P<0:05) and markedly
higher than those in the red-light group (P<0:01).The survival
rates of juvenile redclaw crayfish in the yellow and red-light
groups were significantly higher than those in the blue and
white-light groups (P<0:05) and markedly higher than that
in the green-light group (P<0:01) (Table 2), with the highest
survival rate observed in the yellow-light group at 62%.

3.1.1. Effects of Different Light Spectra on the Antioxidant
Capacity and Immune Parameters of Juvenile Crayfish. In
the red-light group, the SOD activity in the hepatopancreas
of juvenile crayfish was significantly higher than that in the
blue, green, and white-light groups (P<0:05), with no signif-
icant differences observed among the other groups (P>0:05)
(Figure 1(a)). In the green-light group, the MDA content was
significantly higher than that in the red-light group (P<0:05)
and markedly higher than that in the yellow-light group
(P<0:01), while the blue and white-light groups were signif-
icantly higher than the yellow-light group (P<0:05), with no
significant differences observed among the other groups
(P>0:05) (Figure 1(b)). In the white-light group, the ACP
activity of juveniles was significantly higher than that in the
yellow-light group (P<0:05) and markedly higher than that
in the blue-light group (P<0:01); the red and green-light
groups were significantly higher than the blue-light group
(P<0:05), with no significant differences observed among
the other groups (P>0:05) (Figure 1(c)). Furthermore, no
significant differences in LZM enzyme activity were observed
between the various groups (P>0:05) (Figure 1(d)).

3.1.2. Effects of Different Light Spectra on Melatonin and
Cortisol Levels in Juvenile Crayfish. The melatonin levels of
juveniles in the green and blue-light groups were significantly
higher than those in the yellow-light group (P<0:01), and the
melatonin level in the yellow-light group was notably higher

than that in the red-light group (P<0:01). Notably, no signif-
icant differences were observed between the red and the
white-light groups (P>0:05) (Figure 2(a)). In the green-light
group, the cortisol levels were significantly higher than those
in the yellow and red-light groups (P<0:05), with the red-
light group significantly higher than the white-light group
(P<0:05), while the green, blue, and yellow-light groups
were markedly higher than the white-light group (P<0:01)
(Figure 2(b)).

3.1.3. Effects of Different Light Spectra on Gene Expression
Levels in Juvenile Crayfish. The results of the ecdysone recep-
tor (EcR) expression levels in juvenile redclaw crayfish under
different spectral groups showed that the white-light group had
significantly higher expression levels than the other four groups
(P<0:01). Specifically, the green-light group had significantly
higher expression levels than the yellow-light group (P<0:05),
while the blue-light group had markedly higher expression
levels than the yellow-light group (P<0:01), with no significant
differences observed among the other groups (P>0:05)
(Figure 3(a)). Comparisons of the retinoid X receptor (RXR)
expression levels among juvenile redclaw crayfish in different
spectral groups revealed that the red-light group had markedly
higher expression levels than the other four groups (P<0:01),
with no significant differences observed among the other four
groups (P>0:05) (Figure 3(b)). The results of α-AMY expres-
sion levels in juvenile redclaw crayfish under different spectral
groups showed that the expression levels in the yellow and
green-light groups were significantly higher than those in the
white and blue-light groups (P<0:05), and markedly higher
than those in the red-light group (P<0:01), with no significant
differences observed among the other groups (P>0:05)
(Figure 3(c)).

4. Discussion

Spectra directly impact the growth, development, and sur-
vival of crustaceans [12, 22]. Different crustacean species
exhibit varying degrees of photosensitivity [23, 24], which
may be closely related to their environmental niches during
different developmental stages [25–27]. Previously, Cheng
et al. [20] found that within 14 days post-hatching, juvenile
redclaw crayfish exhibited higher survival rates under red
light and experienced accelerated growth rates under blue
light but demonstrated decreased survival rates and slower
growth under green light [20]. However, findings from this
investigation reveal that under yellow light spectrum cultiva-
tion conditions, the survival rate of juvenile redclaw crayfish

TABLE 2: Corresponding growth index under different spectra.

Light color Survival rate (%) Final weight (g) Weight gain rate (%) Final length (cm) Total length gain rate (%) SGR (%/day)

Red 60.33Æ 11.37a 0.35Æ 0.10 1,084.00Æ 65.39c 2.16Æ 0.28 103.00Æ 16.09c 0.08Æ 0.00b

Yellow 62.00Æ 11.79a 0.46Æ 0.06 1,524.00Æ 358.10ab 2.50Æ 0.12 137.00Æ 19.47ab 0.09Æ 0.01ab

Blue 48.67Æ 14.15bc 0.41Æ 0.13 1,295.00Æ 155.00bc 2.41Æ 0.32 126.70Æ 10.60bc 0.09Æ 0.00b

Green 42.67Æ 6.43c 0.68Æ 0.26 2,158.00Æ 98.78a 2.97Æ 0.35 180.00Æ 20.88a 0.10Æ 0.00a

White 47.67Æ 8.33bc 0.47Æ 0.25 1,429.00Æ 393.50bc 2.39Æ 0.51 122.70Æ 23.29bc 0.09Æ 0.01ab

Note: Values are expressed as meansÆ SD (N= 30). Different superscript lowercase letters indicated significant differences between treatments (P <0:05). SGR,
specific growth rate.
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was highest after 30 days posthatching, with a higher SGR. Con-
versely, under green light spectrum cultivation regimes, juvenile
redclaw crayfish had the lowest survival rate but achieved the
highest final body weight and SGR. Despite no significant differ-
ence in survival rates between the red-light and yellow-light
groups, the average weight gain rate and total length gain rate
within the red-light groupwere notably lower compared to those
observed in the yellow and green-light groups. This may be due
to the different durations of the two experiments; this study
lasted 16 days longer than the experiment designed by Cheng
et al. [20]. Consequently, the continuous development of the
compound eyes of crustaceans and their corresponding changes
in sensitivity to different spectra and internal response mechan-
ismsmay occur, and the optimal light conditions for growthmay
also change accordingly [27]. Thismay also be due to differences
in water transparency caused by variations in the plankton and
organic matter content in the aquaculture water, resulting in
different survival and development effects of juvenile C. quadri-
carinatus under the same light conditions, as demonstrated in
the two studies, which warrants further investigations in the
future. Nevertheless, it is important tomention that in additional

studies concerning crustaceans, yellow light has been demon-
strated to enhance the survival rate of Pacific white shrimp
(L. vannamei) and expedite the growth of swimming crab
(Portunus trituberculatus) juveniles [13, 28]. Conversely, red
light has been found to be detrimental to the growth, develop-
ment, and survival of giant freshwater prawn (M. rosenbergii)
and Amazon river prawn (Macrobrachium amazonicum)
[12, 29]. To a certain extent, these studies illustrate that the
yellow light spectrum is advantageous for the growth and sur-
vival of larvae in most crustacean species, while red light nega-
tively impacts the normal life of many species.

The antioxidant capacity plays a crucial role in determin-
ing the growth performance of aquatic organisms. In aqua-
culture, alterations in the spectrum can trigger oxidative-
reductive reactions in crustaceans, leading to fluctuations
in the activity of antioxidant enzymes and the levels of oxi-
dative products [12, 19]. Among these, SOD and MDA serve
as vital markers for the antioxidant capacity of aquatic
organisms [30, 31]. The findings from our experiment reveal
that the SOD activity of juvenile redclaw crayfish under
green, blue, and white light spectra is markedly lower
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compared to that under the red light spectrum. SOD is a critical
antioxidant enzyme that maintains the oxidative–reductive bal-
ance of the body by scavenging harmful superoxide anion radi-
cals [32]. The markedly higher SOD in the red-light group than
that in the other groups indicates that individuals living under
red light may be constantly facing oxidative–reductive imbal-
ances, leading to excessive energy consumption, which affects
their growth [19]. MDA is the end product of lipid peroxidation
in organisms, which can cause cross-linking and polymerization
of macromolecules such as proteins and nucleic acids and exhi-
bits cytotoxicity. Its content reflects the oxidative level and stress
status within the organism [33]. In this experiment, the MDA
levels in the yellow-light group are lower compared to those in
the green, blue, and white-light groups. This suggests that juve-
nile redclaw crayfish living under yellow light conditions
maintain a more favorable oxidative–reductive balance and
experience lower stress levels. A series of reports have also indi-
cated that the reduction in SOD activity and the elevation in
MDA content is detrimental to the cellular oxidative–reductive
balance in crustaceans and have negative effects on normal phys-
iological metabolism [19, 34], which is also reflected in the
enzyme activity and growth results of this study. ACP is an
important nonspecific immune enzyme in crustaceans. In the
immune response, it forms a hydrolytic enzyme system to
degrade and eliminate foreign substances invading the body,
thereby achieving immune defense [35]. It was found that the
ACP activity levels in the white light spectrum cultivation envi-
ronment were the highest among the groups, indicating that
under different light spectrum cultivation conditions, juvenile
redclaw crayfish produced a series of stress responses. Further-
more, overall, yellow light may be beneficial to the oxidative-
reductive balance of cells in juvenile redclaw crayfish, positively
impacting physiological metabolism by avoiding damage to the
immune system and energy consumption.

Melatonin is a common and conserved biogenic amine
that is synthesized and secreted in organisms ranging from
unicellular organisms to mammals. In invertebrates, light
exposure can transmit photic information through the visual
ganglia, regulating melatonin synthesis and secretion [36, 37].
Melatonin holds considerable importance in upholding the
internal environment of crustaceans, regulating diverse bio-
logical functions such as reproduction, molting, limb regen-
eration, antioxidative stress, and plasma glucose homeostasis
[38]. For instance, the cleaner shrimp (Lysmata amboinensis),
reared under red light, perceives the red-light environment as
darkness, leading to a significant increase in melatonin levels
compared to blue light conditions, thus affecting its biological
rhythms [39]. On the contrary, our study findings reveal that
juvenile crayfish reared under blue and green light spectra
have the highest melatonin levels, while those reared under
red light have the lowest melatonin levels. Similar results have
been found in studies on fish melatonin, where Nile tilapia
(O. niloticus) exhibited decreased melatonin levels under red
light spectrum cultivation conditions, indicating a weaker
perception of red light and, consequently, poorer growth per-
formance [40]. Hence, different light spectra may have
species-specific effects on melatonin secretion and synthesis.
In juvenile crayfish reared under red light, melatonin

secretion and synthesis may be inhibited, indicating a weaker
sensitivity to red light, which in turn results in poor growth
performance under red light.

Cortisol is a vital and conserved stress hormone, and it is
considered one of the indicators reflecting the stress status of
animals, including crustaceans. Elevated plasma cortisol
levels, mediated by stress, can reduce the energy required
for muscle growth in animals, including crustaceans, leading
to growth inhibition and decreased survival rates [41–43].
Changes in light conditions represent a stressor for aquatic
animals, triggering stress responses and inducing cortisol
synthesis and release [19, 44–46]. Previous studies have
shown that juvenile mud crabs (S. paramamosain) exhibit
elevated cortisol levels under purple light spectrum cultiva-
tion conditions, indicating intensified stress, resulting in
decreased survival rates and slower growth rates [19]. How-
ever, our study revealed that juvenile crayfish reared under
green-light conditions had elevated cortisol levels, decreased
survival rates, the fastest growth rate, and the largest final
body weight. Thus, we hypothesized that elevated cortisol
levels do not necessarily inhibit the growth of aquatic ani-
mals and may even promote growth. Villamizar et al. [45]
reported that zebrafish (Danio rerio) raised under blue or
violet light conditions exhibited increased cortisol levels
and higher stress; however, they had high survival rates
and significantly accelerated growth rates [45]. Zou et al.
[46] reported that olive flounder larvae (Palichthys olivaceus)
raised under green-light conditions had the highest cortisol
levels, markedly surpassing those in the white-light group.
Although the larvae experienced increased stress, they
showed accelerated growth. However, the survival of larvae
reared under white and green light did not significantly differ
[46]. In summary, our results suggest that changes in light
spectra can regulate cortisol levels in juvenile crayfish. Ele-
vated cortisol levels in crayfish raised under green-light con-
ditions accelerated growth and reduced survival rates. An
appropriate increase in cortisol levels in the organism can
promote the growth of certain aquatic animals; however,
excessively high cortisol levels can inhibit both survival
and growth.

EcR, RXR, and α-AMY are associated with the molting
and digestive absorption capacity of crustaceans and serve as
indicators of their growth status [47–49]. EcR and RXR form
heterodimers that promote development, reproduction, and
molting in organisms [50]. α-AMY is involved in energy
production by hydrolyzing α-1,4-glycosidic bonds in poly-
saccharides such as starch, branched starch, and glycogen,
subsequently affecting nutrient absorption and metabolism
in the organism [51]. Reports indicate that light conditions
can influence the molting frequency, digestive absorption,
and gene expression related to these processes in crustaceans,
thus affecting their growth performance [19, 52]. In this
study, the group reared under red light exhibited the highest
RXR expression and the lowest α-AMY expression but had
the slowest growth rate. In contrast, the group exposed to
yellow light exhibited the highest expression of the α-AMY
and the lowest expression of the EcR, yet it displayed the
fastest growth rate. Moreover, the expression levels of the
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EcR and α-AMY were notably elevated in the white and
green-light groups, surpassing those in the other four groups
(P<0:01). These findings imply that the spectrum not only
induces alterations in the gene expression levels associated
with molting and digestion in redclaw crayfish juveniles but
also directly affects their growth performance. We speculate
that changes in the spectrum may lead to variations in the
expression levels of associated genes, thereby affecting the
growth rate of juveniles. Specifically, the yellow light spec-
trum increases the expression level of the α-AMY, thereby
promoting juvenile growth. This result suggests that the yel-
low light spectrum may have a positive impact on the inten-
sive farming of redclaw crayfish juveniles.

5. Conclusions

This study examined the impacts of five distinct light spectra
on the survival, growth, and pertinent physiological indica-
tors of juvenile redclaw crayfish. The findings demonstrate
that the survival rate of juvenile redclaw crayfish is highest in
the yellow and red-light groups and lowest in the green-light
group. Regarding antioxidant enzyme activity, juveniles in
the yellow-light group exhibited elevated levels of SOD and
ACP activity, along with the lowest MDA content. Further-
more, in terms of hormones, melatonin levels in juvenile
redclaw crayfish were markedly higher in the green and
blue-light groups compared to the other three groups (red,
white, and yellow light) (P<0:01), while cortisol levels in the
green-light group were markedly higher than that in the other
three groups (red, white, and yellow-light groups) (P<0:05).
Lastly, regarding gene expression levels, the expression of
RXR, α-AMY, and EcR was highest in the red, yellow, green,
and white-light groups, respectively. These results provide
valuable technical support for optimizing and enhancing
the factory farming of juvenile redclaw crayfish.
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