SUPPORTING INFORMATION

Graphene Oxide/Fe₃O₄/Chitosan–Coated Non–woven Polyester Fabric Extracted from Disposable Face Mask for Enhanced Efficiency of Organic Dye Adsorption

Hoang V. Tran^{1,*}, Nhan T. Hoang¹, Thu D. Le¹, Luyen T. Tran¹, Hue T. M. Dang¹

¹ School of Chemical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi, Vietnam

Dye	Molecular structure	Type of	Chemical and physical	Applications	Harmful in waste	Refs.
		organic dyes	properties		water	
Metylen blue (MB)	H ₃ C N CH ₃ Cl Cl CH ₃ Cl CH ₃	Cation	$M_w = 319.85 \text{ g mol}^{-1}$, solubility in water (pH 7; 25 ° C): 33.5 g l ⁻¹	Colorant for dyeing, leather, wood, printing ink, chemical field, biomedicine, aquaculture.	Cause eye, skin diseases, even cancer, prevent of oxygen absorption of aquatic organism.	[1-3]
Methyl Orange (MO)	Acidic environment $(H_{5}C)_{2}N$ \longrightarrow $N = N \longrightarrow SO_{3}$ Neutral and base $(CH_{3})_{2}N$ \longrightarrow $N = N \longrightarrow SO_{3}$	Cation/anion Anion	$M_w = 327.34 \text{ g mol}^{-1}$, Solubility in water (pH 7; 25°C): 5 g l ⁻¹	Indicator , dyeing animal fiber, wool, silk, synthetic fiber.	Strong toxicity, causing skin diseases in contact, affect many organs and in some cases it can cause deaths.	[4, 5]
Congo Red (CR)	Acidic environment $\downarrow \downarrow $	Cation Anion	$M_w = 696.67 \text{ g mol}^{-1};$ solubility in water (pH 7; 25 °C): 25 g l ⁻¹	Indicator, use in paper, textile, rubber, gram staining.	Causes skin disease, cancer, reduce oxygen and sunlight absorption	[6-9]
Moderacid red (RS)	SO_3Na SO_3Na NaO_3S $rac{}{}$ SO_3Na NH $rac{}{}$ SO_3Na	Anion	$M_w = 604.48 \text{ g mol}^{-1};$ solubility in water (pH 7; 25°C): 80 g l ⁻¹	Dyeing for wool, nylon, plastic, paper, food coloring, cosmetic, animal feed.	May cause tumors, allergies, respiratory problem.	[4, 10-12]

 Table IS.1. Molecular structure and some specific properties of MB, MO, CR and RS

1. Characterizations of synthesized graphene oxide (GO)

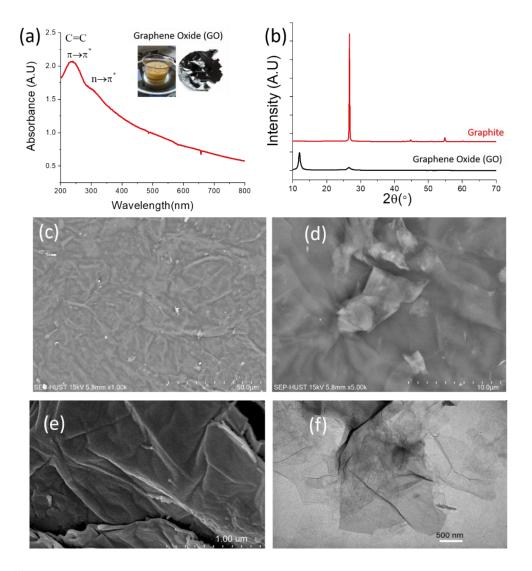
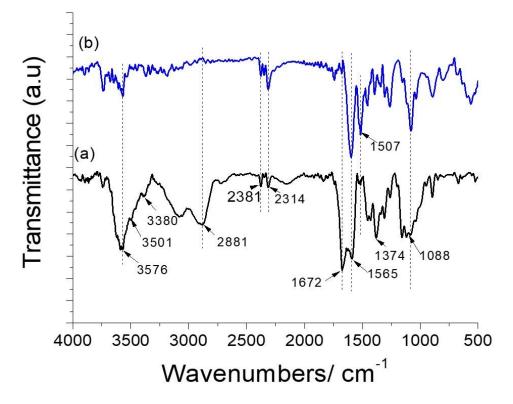
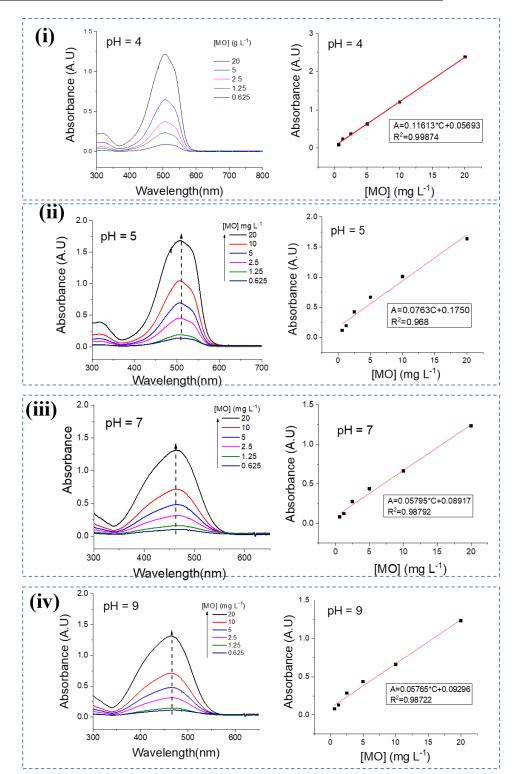
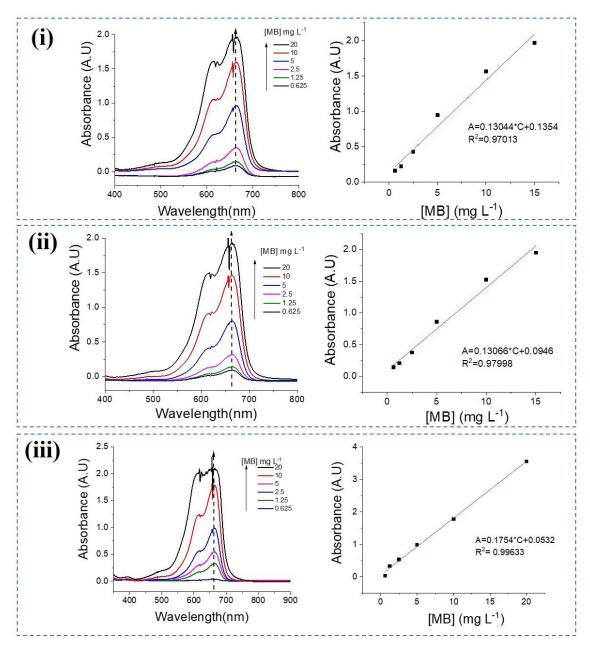


Figure SI.1. Characterizations of GO: (a) UV-Vis spectrum (inserted figure: digital photo of

GO solution and GO flakes); (b) XRD; (c, d) SEM; (e) FE-SEM and (f) TEM images

2. FT-IR of CS and GFC


Figure SI.2. FT-IR spectra of: (a) chitosan (CS) and (b) graphene oxide/Fe₃O₄/chitosan

(GFC)

2. Calibration curve for determine methyl orange (MO) concentration

Figure SI.3. (right) UV-Vis spectra of MO solution at various MO concentrations and (left) corresponding calibration curves for [MO] determination at various pH: (i) pH = 4, (ii) pH = 5, (iii) pH = 7 and (iv) pH = 9

3. Calibration curve for determine methylene blue (MB) concentration

Figure SI.4. (right) UV-Vis spectra of MB solution at various MB concentrations and (left) corresponding calibration curves for [MB] determination at various pH: (i) pH = 5, (ii) pH = 7 and (iii) pH = 9

4. Calibration curve for determine congo red (CR) concentration

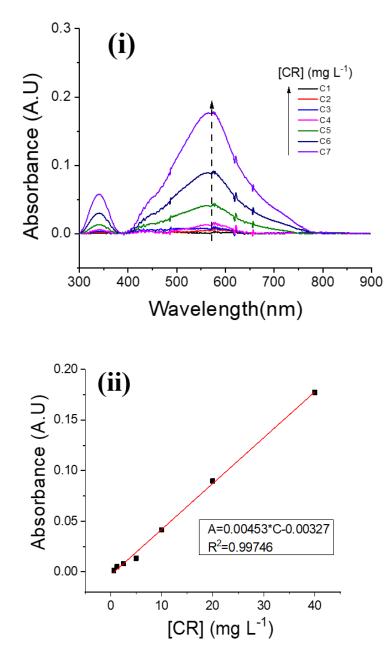


Figure SI.5. (i) UV-Vis spectra of CR solution at various CR concentrations and (ii) corresponding calibration curves for [CR] determination at pH = 4

5. Calibration curve for determine moderacid red (RS) concentration

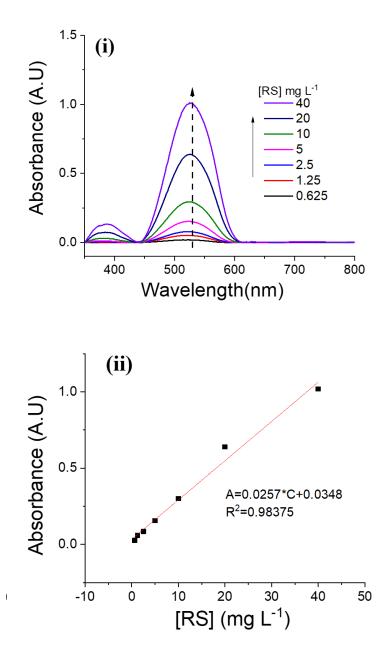
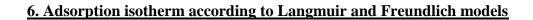



Figure SI.6 (i) UV-Vis spectra of RS solution at various RS concentrations and (ii) corresponding calibration curves for [CR] determination at pH = 4

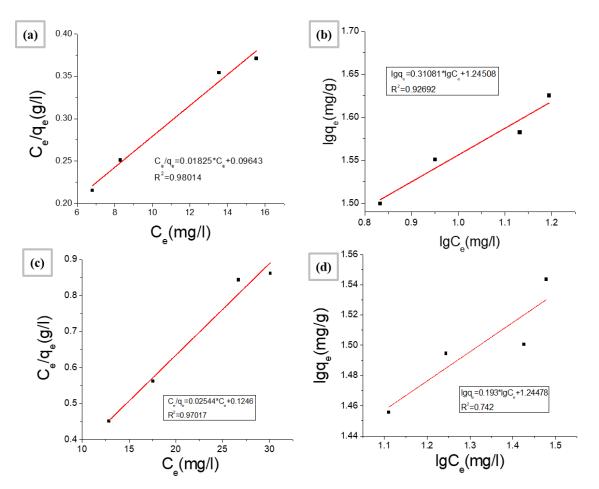


Fig. SI.7. Adsorption isotherm according to (a, c) Langmuir and (b, d) Freundlich models of MB on (a, b) GFCs/NWPFs and (c, d) bulk GFCs, respectively.

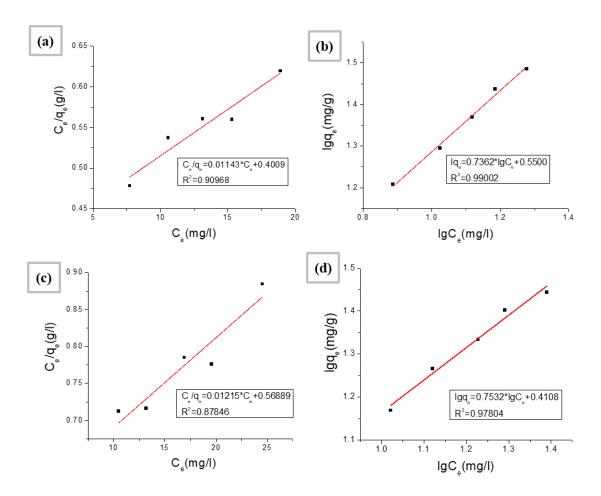


Fig. SI.8. Adsorption isotherm according to (a, c) Langmuir and (b, d) Freundlich models of MO on (a, b) GFCs/NWPFs and (c, d) bulk GFCs, respectively.

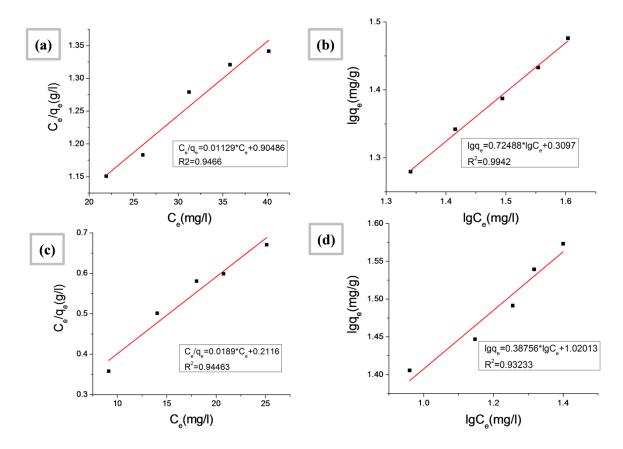


Fig. SI.9. Adsorption isotherm according to (a, c) Langmuir and (b, d) Freundlich models of CR on (a, b) GFCs/NWPFs and (c, d) bulk GFCs, respectively.

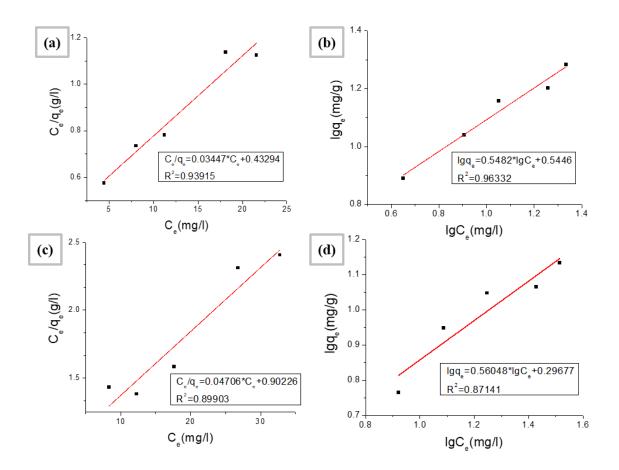


Fig. SI.10. Adsorption isotherm according to (a, c) Langmuir and (b, d) Freundlich models of RS on (a, b) GFCs/NWPFs and (c, d) bulk GFCs, respectively.

References

- [1] H. V. Tran, L. T. Bui, T. T. Dinh, D. H. Le, C. D. Huynh, A. X. Trinh, Graphene oxide/Fe3O4/chitosan nanocomposite: a recoverable and recyclable adsorbent for organic dyes removal. Application to methylene blue, Materials Research Express, 4 (2017) Article number 035701.
- [2] Z. Zhang, J. Kong, Novel magnetic Fe₃O₄@ C nanoparticles as adsorbents for removal of organic dyes from aqueous solution, Journal of Hazardous Materials, 193 (2011) 325-329.
- [3] L. Fan, C. Luo, M. Sun, H. Qiu, X. Li, Synthesis of magnetic β-cyclodextrinchitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal, Colloids and Surfaces B: Biointerfaces, 103 (2013) 601-607.
- [4] W. Song, B. Gao, X. Xu, L. Xing, S. Han, P. Duan, W. Song, R. Jia, Adsorption– desorption behavior of magnetic amine/Fe3O4 functionalized biopolymer resin towards anionic dyes from wastewater, Bioresource technology, 210 (2016) 123-130.
- [5] R. Jiang, Y.-Q. Fu, H.-Y. Zhu, J. Yao, L. Xiao, Removal of methyl orange from aqueous solutions by magnetic maghemite/chitosan nanocomposite films: adsorption kinetics and equilibrium, Journal of Applied Polymer Science, 125 (2012) E540-E549.
- [6] M. Hernández-Zamora, F. Martínez-Jerónimo, Congo red dye diversely affects organisms of different trophic levels: a comparative study with microalgae, cladocerans, and zebrafish embryos, Environmental Science and Pollution Research, 26 (2019) 11743-11755.

- [7] N. T. Nguyen, N. T. Nguyen, V. A. Nguyen, In Situ Synthesis and Characterization of ZnO/Chitosan Nanocomposite as an Adsorbent for Removal of Congo Red from Aqueous Solution, Advances in Polymer Technology, Volume 2020 (2020) Article ID 3892694.
- [8] J. Xu, D. Xu, B. Zhu, B. Cheng, C. Jiang, Adsorptive removal of an anionic dye Congo red by flower-like hierarchical magnesium oxide (MgO)-graphene oxide composite microspheres, Applied Surface Science, 435 (2018) 1136-1142.
- [9] W. Zhang, H. Li, X. Kan, L. Dong, H. Yan, Z. Jiang, H. Yang, A. Li, R. Cheng, Adsorption of anionic dyes from aqueous solutions using chemically modified straw, Bioresource Technology, 117 (2012) 40-47.
- [10] H. V. Tran, H. V. Nguyen, D. V. Vu, T. D. Le, B. T. Nguyen, D. H. Le, Carbon coated MFe2O4 (M=Fe, Co, Ni) magnetite nanoparticles: A smart adsorbent for direct yellow and moderacid red dyes, Korean Journal of Chemical Engineering, In Press (2021).
- [11] Y.-R. Zhang, P. Su, J. Huang, Q.-R. Wang, B.-X. Zhao, A magnetic nanomaterial modified with poly-lysine for efficient removal of anionic dyes from water, Chemical Engineering Journal, 262 (2015) 313-318.
- [12] C. Fernández, M. S. Larrechi, M. P. Callao, An analytical overview of processes for removing organic dyes from wastewater effluents, TrAC Trends in Analytical Chemistry, 29 (2010) 1202-1211.