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This paper presents the various arrangements of grooving location of two-groove oil journal bearing for optimum performance.
An attempt has been made to find out the effect of different configurations of two groove oil journal bearing by changing groove
locations. Various groove angles that have been considered are 10∘, 20,∘ and 30∘. The Reynolds equation is solved numerically
in a finite difference grid satisfying the appropriate boundary conditions. Determination of optimum performance is based on
maximization of nondimensional load, flow coefficient, and mass parameter and minimization of friction variable using genetic
algorithm. The results using genetic algorithm are compared with sequential quadratic programming (SQP). The two grooved
bearings in general have grooves placed at diametrically opposite directions. However, the optimum groove locations, arrived at in
the present work, are not diametrically opposite.

1. Introduction

Journal bearings are used extensively in rotating machines
because of their low wear and good damping characteris-
tics. Fluid-film journal bearings are available to support a
rotating shaft in a turbo machinery system. A full circular
journal bearing has a much simple configuration but exhibits
instability at higher rotational speeds. It is relatively less
expensive compared to the multilobe bearings. It is well
known that whirl instability occurs at high speed in oil
journal bearing. Present day bearings, at over increasing
speeds and loads, confront the engineer with many new
problems. Excessive power losses reduce the efficiency of
the engine, and high bearing temperature poses a danger to
material of the bearing as well as the lubricant. Instability
arising mainly in the form of oil whip may ruin not only
the bearing but the machine itself. New bearing designs are
sought to meet the new requirements. A journal bearing fed
by two axial grooves has a wide practical application due to
its good load carrying capacity and ability to operate when
reversal of shaft rotation occurs [1]. These bearing usually
have the grooves positioned orthogonal to the predominant
load direction. Among the previous works on two axial

groove oil journal bearings; Klit and Lund [2] used finite
element method to find dynamic coefficients of plain circular
bearing with two 20∘ axial grooves. Gethin and Deihi [3]
studied the effect of loading direction on the performance
of a twin-axial groove cylindrical bore bearing. It has been
anticipated that, if the bearing is loaded into the groove,
its load carrying ability will be diminished, but the effect
on hydrodynamic lubricant flow and power loss is not so
obvious. If the positions of the grooves are arranged for
carrying a relatively higher load, then the likelihood of
bearing instability reduces, since the journal will run more
eccentrically. Again hydrodynamic leakage and friction are
affected by the direction of loading. So a question arises:
where the position of the groove should lie so as to give the
optimum load capacity, flow, friction, and critical speed. A
new technique for optimizing hybrid journal bearings was
presented by Rowe and Koshal [4]. The method involved the
comparison of the bearings to be optimized with a reference
bearing on the basis of load/total power, load/pumping
power, and load/flow. Lin and Noah [5] used genetic algo-
rithm to optimize the performance of a hydrodynamic
journal bearing. Hashimoto and Matsumoto [6] described
the optimum design methodology for improving operating
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characteristics of hydrodynamic journal bearings.The hybrid
optimization technique combining the direct search method
and the successive quadratic programming has been applied
to find the optimum design of elliptical journal bearings.
Boedo and Eshkabilov [7] described the implementation of
a genetic algorithm suitable for the optimal shape design
of finite-width, isoviscous, fluid film journal bearings under
steady load and steady journal rotation.Hirani [8] formulated
a problem to minimize temperature rise, power loss, and
oil flow. An evolution-based optimization methodology for
cylindrical journal bearings had been applied for journal
bearings.

David et al. [9] in their paper presented the basic concepts
of traditional genetic algorithm, its advantages with variety
of applications.The paper also pointed out advanced features
and future directions. McCall [10] presented genetic algo-
rithms (GAs), a heuristic search and optimization technique
inspired by natural evolution. GAs have been successfully
applied to a wide range of real-world problems of significant
complexity. When there are hundreds of publications on
application of GAs, only couple of representative publications
are cited here.

It has been observed that GAs have been successfully
applied for optimizing bearing performance. However, the
performance of two-groove journal bearing has not been
optimized pertaining to location of groove positions with
multiple objectives. In view of this, an attempt has been
made in this paper to obtain an optimum configuration
of the two grooves positions around the circumference of
the hydrodynamic journal bearing for maximum oil flow,
minimum friction loss, maximum load bearing capacity, and
maximum critical speed vis-à-vis mass parameter, a function
of speed.

1.1. Oil Flow. The oil flow rate depends on several factors,
such as the viscosity of the lubricant, the geometry (length,
diameter, and radial clearance) of the bearing, operating
eccentricity, the inlet oil pressure, the arrangement of feeding
sources, and groove location of the bearing. The pressure
developed in the film due to journal motion also contributes
to the flow. An adequate oil flow takes away frictional heat
and does not allow rapid rise in temperature.

1.2. Friction Loss. The calculation of friction loss within a
bearing oil film is an integral part of the design of the bearing.
The friction loss appears as heat, raises the temperature of the
lubricant and lowers its viscosity, which is a key parameter
of the bearing analysis. Therefore, the accurate prediction
of friction loss is desired. The friction force is calculated by
integrating shear stress over the journal surface. It is desired
to keep the friction loss at minimum.

1.3. Load Carrying Capacity. The load carrying capacity of
the bearing within a bearing is developed due to pressure
developed in the film. For a more accurate analysis, careful
consideration of film extent needs to be included. This is
expected to influence hydrodynamic leakage significantly and
load carrying ability under some circumstances. If the feeding

groove (in which pressure is zero) falls in the load carrying
film, this part of the bearing makes no contribution to the
load-carrying ability. Thus the location of the groove plays a
role in determining the load carrying ability of the bearing.

1.4. Critical Speed of Instability. Plain circular bearing is
mostly replaced by some other bearings, as plain bearing does
not suit the stability requirements of high-speed machines
and precision machine tools. Grooved circular bearings and
multilobe bearings with two lobes, three lobes, and four
lobes are commonly used. The critical mass parameter (a
measure of stability) is a function of speed. The higher the
critical speed is, the higher the stability limit is. The larger
the eccentricity ratio is, the more stable the shaft is. If the
eccentricity ratio is larger than 0.8, in particular, the shaft is
always stable. In engineering analysis it is essential to know
the critical speed at which oil whirl occurs and avoid it during
operation. It has been found that severe whirl occurs when
the shaft speed is approximately twice the bearing critical
frequency.

1.5. Selection Procedure. To facilitate the optimum bearing
design in the present paper, the nondimensional values
of flow coefficient, load, and mass parameters along with
friction variables for different configurations in groups are
estimated. The optimum performance is determined on the
basis of maximization of flow, load, mass parameter, and
minimization of friction variable.

2. Theory

TheReynolds equation in two dimensions for an incompress-
ible fluid is the governing equation. It can be written in a
dimensionless form as
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differential equations in 𝑝
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are obtained as shown
in the following:
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Boundary conditions used for the steady state pressure and
dynamic pressure distribution are as follows:
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where, 𝑝
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and 𝜃
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The nondimensional steady state load components as well

as the nondimensional steady state load are given by
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Equation (4) is solved for the steady state pressure distri-
bution (𝑝

0

), discretizing in a finite difference grid of size
88 × 14 and using Gauss-Seidel method with successive
overrelaxation (SOR) technique satisfying the boundary
conditions. The convergence criterion adopted for pressure
calculation is |1 − ∑𝑝old/∑𝑝new| ≤ 10
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The friction variable is given by
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It is found that the fluid film, which supports the bearing, is
equivalent to a springmass damping system. Since the journal
executes small harmonic oscillations about its steady state
position, the dynamic load carrying capacity can be expressed
as a spring and a viscous damping force. The stiffness and
damping coefficients are given by
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2.1. Mass Parameter and Whirl Ratio. The nondimensional
linearised equations of journal motion can be written as [11]
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Substituting the above nondimensional terms in the equa-
tions of motion (see (15)), a characteristic equation is formed
to find a non-trivial solution. Solving the characteristic
equation, the following expressions for the mass parameter,
𝑀, and the whirl ratio, 𝜆, are arrived at
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3. Optimization Techniques

It has been found that the location of the groove has an
influence on flow (𝑞

𝑍

), frictional variable (𝜇), load carrying
capacity (𝑊), and mass parameter (𝑀). Genetic algorithm
(GA) is the most popular stochastic method used to find the
optimum solution for all kinds of problems.Themost striking
difference between GAs and many traditional optimization
methods is that GAs work with a population of points instead
of a single point. On the other hand, since GAs require
only function values at various discrete points, a discrete
or discontinuous function can be handled with no extra
burden. This allows GAs to be applied to a wide variety of
problems. Another advantagewith a population-based search
algorithm is that multiple optimal solutions can be captured
in the population easily, thereby reducing the effort to use the
same algorithm many times. Genetic algorithms perform a
multiple directional search by maintaining a population of
potential solutions. The population-to-population approach
attempts to make the search escape from local optima [6].
GAs are very helpful when the developer does not have
precise domain expertise because GAs possess the ability to
explore and learn from their domain.

3.1. Multiobjective Problem Formulation. The problem is
framed with four objectives. The variables used in the prob-
lem are in case-I starting angle of first groove (𝜃

1
), starting

angle of second groove (𝜃
2
). The optimum configurations

obtained for an eccentricity ratio range from 0.1 to 0.9 in
this case. In case-II, the eccentricity ratio (𝜀), starting angle
of first groove (𝜃

1
), and starting angle of second groove (𝜃

2
)

are variables and act as chromosome, the groove angles being
10∘ in both cases. It has been found that for 10∘ groove angle
the pressure development as well as load carrying capacity is
higher in comparison with 20∘ and 30∘. The objectives are
minimization of friction variable (𝜇), Equation (12), maxi-
mization of load capacity (𝑊), Equation (10), flow coefficient
(𝑞
𝑍

), Equation (11), maximization of mass parameter (𝑀),
and Equation (17); objective function framing is same for
both cases, and variable bounds are shown in Table 1.

Table 1: Variable bounds for the bearing problem.

Case Variable Lower
bound

Upper
bound

I Starting angle of first groove 0∘ 180∘

Starting angle of second groove 170∘ 350∘

II
𝜀 0.1 0.9
Starting angle of first groove 0∘ 180∘

Starting angle of second groove 170∘ 350∘

Mutation is applied over the population 

Reproduction is applied over the population 

Choose population size, maximum number

and mutation probability 

Generate initial population  

Crossover is then applied over the population 

Elite preservation 

Print result

Stop

Start

of generations (Nmax ), crossover probability,

N = 1

N = N + 1

N > Nmax

Figure 1: Flow chart for real-coded genetic Algorithm.

3.2. Real-Coded Genetic Algorithm Computational Procedure.
In this problem three variables called genes will form a chro-
mosome. A set of chromosome is called population. With
uniform probability distribution all chromosomes in the
population are initialized. The population of each generation
will have feasible design variables (chromosome) in terms of
their allowable ranges but may be infeasible otherwise. The
main steps involved in the genetic algorithm are discussed
below and shown in flow chart (Figure 1).

Real-oded GA comprises of mainly six steps as follows.

Step 1. There are mainly four user-defined parameters in the
program, population size, maximum number of generation,
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cross over probability, and mutation probability. The best
value of population size is 50. It is found that the program is
converging very fast with these values. Cross over probability
and mutation probability are more sensitive parameters for
this program.

Step 2. Second stage of program is to initialize the popula-
tion size. So, 50 chromosomes are initialized using random
probability for each variable span.

Step 3. The selection operator involves randomly choosing
members of the population to enter a mating pool. The oper-
ator is carefully formulated to ensure that better members of
the population (with higher fitness) have a greater probability
of being selected for mating, but that worse members of the
population still have a small probability of being selected.
Having some probability of choosing worse members is
important to ensure that the search process is global and does
not simply converge to the nearest local optimum. Selection
is one of the important aspects of the GA process, and there
are several ways for the selection.

Step 4. Recombination is carried out through crossover and
mutation operation in GA. The crossover operator is a
method for sharing information between chromosomes. It
ensures that the probability of reaching any point in the
search space is never zero. The crossover operator is the
main search operator in the GA. The search power of a
crossover operator is defined as a measure of how flexible
the operator is to create an arbitrary point in the search
space. Crossover is useful in problems where building block
exchange is necessary. It has been found that GAs may
work well with large crossover probability and with a small
mutation probability. A single point crossover preserves the
structure of the parent string to the maximum. From a set of
crossover operator, linear, blended crossover, and simulated
binary crossover operators, it is found that, from trial run,
the simulated binary crossover gives better convergence in
limited time.

Step 5. From biological view, mutation is any change of DNA
material that can be reproduced. From computer science
view, mutation is a genetic operator that follows crossover
operator. It usually acts on only one individual chosen based
on a probability or fitness function. One or more genetic
components of the individual are scanned. And this compo-
nent is modified based on some user-definable probability or
condition. Without mutation, offspring chromosomes would
be limited to only the genes available within the initial
population.Mutation should be able to introduce new genetic
material as well as modify the existing one. With these new
gene values, the genetic algorithm may be able to arrive
at a better solution than was previously possible. Mutation
operator prevents premature convergence to local optima by
randomly sampling new points in the search space. There
are many types of mutation, and these types depend on
the representation itself. Random mutation finds a better
suitability with the existing problem.

𝜃

X

Z

Figure 2: Hz-Hz configuration of two-groove oil journal bearing.

𝜃

X

Z

Figure 3: Up-Up configuration of two-groove oil journal bearing.

Step 6. Elite preservation forms a new population from
the initial population and mutated one. This operator is
responsible for convergence of the fitness by allowing better
value to pass to the next generation.

4. Results and Discussion

The groove position located around the circumference is
grouped as follows.

Group-I: Hz-Hz configuration: grooves are placed in
a horizontal position 180∘ apart, that is, diametrically
opposite to each other (Figure 2).
Group-II: Up-Up configuration: both grooves are
placed (5∘ to 80∘) above the horizontal position
(Figure 3), and groove position is varied at 5∘ interval.
Up-Up-10 configuration means that both grooves are
10∘ above the horizontal as shown in Figure 3.
Group-III: Up-Hz configuration: the left groove is (5∘
to 80∘) above the horizontal position, and the other
groove is in horizontal position (Figure 3). Groove
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𝜃
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Figure 4: Up-Hz configuration of two-groove oil journal bearing.

𝜃

X

Z

Figure 5: Dn-Dn configuration of two-groove oil journal bearing.

position is varied at 5∘ interval (Figure 4). Up-10Hz
configuration means that the left groove is 10∘ above
the horizontal and the right groove is horizontal as
shown in Figure 4.

Group-IV: Dn-Dn configuration: both grooves are
placed (5∘ to 80∘) below the horizontal position
(Figure 5), and groove position is varied at 5∘ interval.
Dn-Dn-10 configuration means that both grooves are
10∘ below the horizontal as shown in Figure 5.

Group-V: Hz-Up configuration: the left groove is in
horizontal position, and the other groove is (5∘ to
80∘) above the horizontal position (Figure 6) groove
position is varied at 5∘ interval (Group-V). Hz-Up-10
configuration means that the left groove is horizontal
and the right one is 10∘ above the horizontal as shown
in Figure 6.

Group-VI: Dn-Up configuration: one of the grooves
is (5∘ to 80∘) below the horizontal position (the left
one), and the other groove (the right one) is (5∘ to
80∘) above the horizontal position; groove position is

𝜃

X

Z

Figure 6: Hz-Up configuration of two-groove oil journal bearing.

varied at 5∘ interval (Figure 7). Dn-10-Up-10 config-
uration means that the left one is 10∘ down and the
right groove is 10∘ above the horizontal as shown in
Figure 7.
Group-VII: Dn-Hz configuration: the left groove is (5∘
to 80∘) below the horizontal position, and the other
groove is in horizontal position (Figure 8); groove
position is varied at 5∘ interval (Figure 8). Dn-10Hz
configuration means that the left groove is 10∘ below
the horizontal and the right one is horizontal as
shown in Figure 8.
Group-VIII: Hz-Dn configuration: the left groove is in
horizontal position, and the other groove is (5∘ to 80∘)
below the horizontal position; groove position is var-
ied at 5∘ interval (Figure 9). Hz-Dn-10 configuration
means that the left groove is horizontally placed while
the right one is 10∘ below the horizontal as shown in
Figure 9.
Group-IX: Up-Dn configuration: the left groove is
(5∘ to 80∘) above horizontal position, and the other
groove is (5∘ to 80∘) below the horizontal position;
groove position is varied at 5∘ interval (Figure 10).Up-
10-Dn-10 configuration means that the left groove is
10∘ above the horizontal and the right one is 10∘ below
the horizontal as shown in Figure 10.

To ascertain the size of the groove for better performance,
a comparison of nondimensional load is made for different
groove angles as shown in Table 2. It has been observed that
the load carrying capacity is slightly higher with 10∘ groove
angles in comparisonwith 20∘ and 30∘ groove angles (Table 2)
in case of two axial groove bearings. Therefore, 10∘ groove
angles are considered throughout the analysis.

A code has been developed to calculate the steady state
and dynamic characteristics for given values of 𝐿/𝐷 ratios
and groove locations (group-I to group-IX), which is sub-
sequently used for obtaining optimum groove locations for
different objective functions. An optimum groove location
has been obtained depending on maximization of load, flow
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Figure 7: Dn-Up configuration of two-groove oil journal bearing.
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Figure 8: Dn-Hz configuration of two-groove oil journal bearing.
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Figure 9: Hz-Dn configuration of two-groove oil journal bearing.
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Figure 10: Up-Dn configuration of two-groove oil journal bearing.

Table 2: Comparison of nondimensional load values using 10∘, 20∘,
and 30∘ groove angles.

𝜀
𝑊

10∘ groove 20∘ groove 30∘ groove
0.200 0.077 0.074 0.0715
0.400 0.1865 0.181 0.175
0.600 0.406 0.399 0.389
0.800 1.135 1.123 1.107

Table 3: Comparison of GA and SQP results.

𝜀
Objective function value (minimum friction variable)

GA results SQP results
0.100 25.841 25.841
0.200 12.575 12.575
0.300 7.991 7.991
0.400 5.603 5.603
0.500 4.050 4.050
0.600 3.023 3.023
0.700 2.146 2.146
0.800 1.501 1.501
0.900 0.358 0.358

and mass parameter, and minimization of friction with the
help of Genetic Algorithm (GA) toolbox of MatLab. The
obtained results from (GA) have been compared with the
results obtained using sequential quadratic programming
(SQP).

The optimum value of fitness function obtained cor-
responding to minimization of friction variable has been
tabulated for both GA and SQP in Table 3.

Similarly maximum load, maximum flow, and maximum
mass parameter values are also found tomatch bothmethods.
It has been observed as stated above that the results using
both methods are found to be the same. However, GA has
been used in this work as GA, being a heuristic search and
optimization technique inspired by natural evolution, has
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At 𝜀 = 0.1

𝜃1 = 0.691, 𝜃2 = 295.965

At 𝜀 = 0.2
𝜃1 = 0.529, 𝜃2 = 311.274

At 𝜀 = 0.3
𝜃1 = 0.247, 𝜃2 = 290.241

At 𝜀 = 0.4
𝜃1 = 0.833, 𝜃2 = 325.6

At 𝜀 = 0.5
𝜃1 = 0.492, 𝜃2 = 278.958

At 𝜀 = 0.6
𝜃1 = 0.246, 𝜃2 = 324.352 At 𝜀 = 0.7

𝜃1 = 0.594, 𝜃2 = 321.648 At 𝜀 = 0.8
𝜃1 = 0.161, 𝜃2 = 247.008

At 𝜀 = 0.9
𝜃1 = 0.417, 𝜃2 = 345.25
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Optimum values of friction variables at various eccentricity ratios

Figure 11: Variation of friction variable at optimum grooving location for different 𝜀.

been successfully applied to a wide range of real-world prob-
lems of significant complexity [3, 9]. It has been suggested
that heuristic optimization provides a robust and efficient
approach for solving complex real-world problems [5].

Initially a single objective function has been taken up.The
generic algorithm convergence rate to true optima depends
on the probability of crossover and mutation, on one hand,
and the maximum generation, on the other hand. In order to
preserve a few very good strings and reject low-fitness strings,
a high crossover probability is preferred.Themutation opera-
tor helps to retain the diversity in the population but disrupts
the progress towards a converged population and interferes
with beneficial action of the selection and crossover. There-
fore, a low probability, 0.001–0.1, is preferred. The genetic
algorithm updates its population on every generation, with
a guarantee of better or equivalent fitness strings. For well-
behaved functions, 30–40 generations are sufficient. For steep
and irregular functions, 50–100 generations are preferred [2].
Considering these factors, a population size of 50, mutation
probability of 0.1, and a cross over probability of 0.8 have been
selected.

The optimum groove locations for minimum nondimen-
sional friction variable, nondimensional load, nondimen-
sional flow, and mass parameter at different 𝜀 are shown in
Figures 11, 12, 13, and 14. 𝜃

1
and 𝜃

2
are the starting positions

of first and second groove, respectively, in degrees.
From the results shown in Figures 11 through 14, it has

been observed that first groove location remains near 0∘,
whereas the second groove location varies with eccentricity
ratios in all the cases. Variations of the second groove location
are different for different objective functions.

Table 4: The optimum configurations combining all the objective
functions at a time.

𝜀 𝜃1 𝜃2

0.100 0.346 336.325
0.200 0.141 196.512
0.300 1.238 208.919
0.400 0.469 240.390
0.500 0.281 241.176
0.600 0.382 231.287
0.700 0.785 222.092
0.800 0.476 343.712

Similarly by combining all the objective functions at
a time the optimum configurations obtained is tabulated
(Table 4).

It has been observed from the tabulated results in Table 4
that the staring position of the first groove at different
eccentricity ratios for multiobjective function remains near
to 0∘, whereas second groove location varies for different
eccentricity ratios.This indicates that second groove location
is more sensitive compared to the first groove location.

If the three variables, namely, eccentricity ratio (𝜀),
starting angles of the first groove (𝜃

1
), and the second groove

(𝜃
2
), are taken as chromosome (Table 5), then the optimum

results obtained for friction, flow, load, and mass parameter
are shown in Figures 15, 16, 17, and 18. The figures include
plots of best fitness as well as mean fitness. Genetic algorithm
works on a population of individuals. So, mean is the mean
fitness for the entire population at a particular iteration.
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At 𝜀 = 0.1
𝜃1 = 0.561, 𝜃2 = 334.923

At 𝜀 = 0.2
𝜃1 = 0.913, 𝜃2 = 324.352

At 𝜀 = 0.3

𝜃1 = 0.397, 𝜃2 = 322.764

At 𝜀 = 0.4
𝜃1 = 0.421, 𝜃2 = 287.192

At 𝜀 = 0.5

𝜃1 = 0.352, 𝜃2 = 308.2

At 𝜀 = 0.6
𝜃1 = 0.913, 𝜃2 = 324.352

At 𝜀 = 0.7
𝜃1 = 3.381, 𝜃2 = 273.011

At 𝜀 = 0.8

𝜃1 = 0.471, 𝜃2 = 300.526

At 𝜀 = 0.9

𝜃1 = 0.143, 𝜃2 = 248.747

Optimum load capacity at various eccentricity ratios
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𝜃1 = starting position of first groove (degrees)
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Figure 12: Variation of optimum nondimensional load at different eccentricity ratios.

Table 5: Variable bounds for the bearing problem.

Variable Lower bound Upper bound
𝜀 0.100 0.900
Starting angle of first groove (𝜃1) 0∘ 180∘

Starting angle of second groove (𝜃2) 170∘ 350∘

Table 6: Optimum location considering different objectives.

Optimum location for objectives 𝜀 𝜃1 𝜃2

Minimum friction variable 0.900 0 232.906
Maximum flow 0.899 5.660 301.960
Maximum load carrying capacity 0.899 0.626 308.230
Maximum mass parameter 0.811 0.890 308.230
Optimization of the combined
objectives 0.268 3.670 349.990

Again by combining all the objective functions at a
time the fitness value plot has been obtained as shown in
Figure 19. Here weighted sum method has been used to
combine all the objectives. There are three objectives to be
maximized when one has to be minimized. The objectives to

be maximized are made negative, and then the weighted sum
of all the four objective functions has been taken making the
multiobjective problem of minimization type. Since there are
four parameters weights equal to 0.25 is used.

The optimum locations for each objective function
including that of multi-objective function have been shown
in Table 6. From the above analysis, it has been observed that
groove locations for various objective functions are different.
The first groove varies between 0∘ to 5.66∘, and the second
groove locations for maximum load carrying capacity and
maximum mass parameter are the same. Second groove
location for minimum friction variable is the least and for
multiobjective function is the highest. Another interesting
observation is that when the corresponding eccentricity
ratios for individual objective functions are high enough, it
is much less for multiobjective function.

After carefully looking at the results presented above, it
appears that one may get near optimal results by placing a
single groove and eliminating the second groove entirely. In
view of this, an attempt has been made to find the optimum
groove location for a single-grove bearing and compared
with two-groove cases for each of the objective functions as
presented in Table 7. Since the results are found to be quite
interesting, therefore, it would be pertinent to go through
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Optimum value flow variable at various eccentricity ratios
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Figure 13: Variation of flow at optimum grooving location for different eccentricity ratios.
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Figure 14: Variation of mass parameter at optimum grooving location for different eccentricity ratios.
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Figure 15: Fitness value considering friction variable as objective
function.
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Figure 16: Fitness value considering flow as objective function.

relevant literature first and then taking up the study to find
whether single groove or two grooves would enhance the
bearing performance. The authors would like to keep this for
future study in detail.

A dimensional example has been shown below to demon-
strate how to convert the nondimensional parameters to
dimensional parameters.

Let 𝐷 = 100mm, 𝑁 = 3000 rpm, 𝑊 = 15 kN, 𝐿/𝐷 =
1.0, 𝐶/𝑅 = 0.001.
So, 𝐶 = 50 × 10−6m.
Taking minimum film thickness as ℎ

𝑜
= 25 × 10−6m,

one gets ℎ
𝑜
/𝐶 = 0.5.

Hence, 𝜀 = 0.5.
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Figure 17: Fitness value considering load as objective function.
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Figure 18: Fitness value considering mass parameter as objective
function.
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Table 7: Comparison of optimum locations of grooves for two-groove and single-groove bearings.

Comparison Objective function 𝜀 𝜃1 𝜃2

For two groove Minimum friction variable 0.900 0 232.906
For single groove 0.100 180 —
For two groove Maximum flow 0.899 5.66 301.96
For single groove 0.100 180 —
For two groove Maximum load 0.899 0.626 308.23
For single groove 0.657 349.038 —
For two groove Maximum mass parameter 0.811 0.890 308.23
For single groove 0.704 223.435 —
For two groove Optimization of all the combined objectives 0.268 3.67 349.99
For single groove 0.657 349.038 —

Table 8: Conversion of nondimensional results to dimensional ones.

Eccentricity ratio Objective function Optimum groove
locations Present nondimensional result Dimensional values

0.5
Maximization of flow 𝜃1 = 0.968

𝜃2 = 314.392 0.8329 (optimum flow variable) Flow,
Q = 3.271 × 10−5 m3/s

Minimization of friction 𝜃1 = 0.492
𝜃2 = 278.95 4.050 (optimum friction variable) Coefficient of Friction,

𝜇 = 4.050 × 10−3

For 𝜀 = 0.5, optimum friction variable and optimum flow
variables are shown in Table 8 along with optimum groove
locations. These non-dimensional results are converted to
dimensional parameters, namely, flow inm3/s and coefficient
of friction by using the above data. These values may further
be used to estimate the friction force, temperature rise, and
so forth.

5. Conclusion

From the results presented here, it can be inferred that the
second groove location is sensitive to the type of objective
function whereas the first groove is more or less the same
for any objective function. The practice and the notion of
convenience of keeping groove positions 180∘ apart need
to be thoroughly looked into as the present results show
that optimum groove locations are not 180∘ apart for any
of the objective functions considered in the present work.
Experimental verification of the present result may lead to
a new approach of production of bearings with optimum
groove locations; however, it is beyond the scope of the
present work and hopefully experimentalists have a problem
in hand.

Appendix

For the purpose of validation of results the steady state
characteristics of two-groove oil journal bearing having 20∘
groove angles placed in horizontal position for 𝐿/𝐷 = 1 are
compared with the published results [2] as shown in Table 9.
The present results are found to be fairly in good agreement
with [2].

Table 9: Comparison of present results with [2] for 𝐿/𝐷 = 1 and
20∘ axial groove for groove in the horizontal position.

𝜀
𝑆

Present [Ref]
𝜙

Present [Ref]
0.103 1.453 [1.470] 75.860 [75.990]
0.150 0.980 [0.991] 70.462 [71.580]
0.224 0.629 [0.635] 63.4598 [63.540]
0.352 0.352 [0.358] 56.100 [55.410]
0.460 0.232 [0.235] 49.925 [49.270]
0.559 0.157 [0.159] 45.1075 [44.330]
0.650 0.106 [0.108] 40.120 [39.720]
0.734 0.070 [0.071] 35.432 [35.160]
0.773 0.0562 [0.056] 33.160 [32.860]
0.811 0.043 [0.044] 30.614 [—]
0.883 0.023 [0.024] 25.142 [25.020]

Notations

𝐶: Radial clearance (m)
𝐷: Diameter of the journal (m)
𝐿: Length of the bearing (m)
𝑅: Bearing radius (m)
𝑒: Eccentricity (m)
𝜀: Eccentricity ratio = 𝑒/𝐶
𝜂: Coefficient of absolute viscosity

of the lubricant (Pa-s)
𝜇, 𝜇: Coefficient of friction, friction

variable = 𝜇(𝑅/𝐶)
𝑁: Speed of the journal in r.p.s
𝜙: Bearing attitude angle
ℎ: Film thickness (m)

= 𝐶(1 + 𝜀 cos 𝜃)



Advances in Tribology 13

ℎ: Nondimensional film thickness
= ℎ/𝐶

𝜃
1
: Position of starting of the groove

𝜃
2
: Position of end of the groove

𝑈: Sliding speed
𝑝: Steady state pressure (Pa)
𝑝: Nondimensional steady state

pressure = 𝑝𝐶2/6𝜂𝑈𝑅
𝑊: Load carrying capacity (N)
𝑊: Nondimensional load carrying

capacity = 𝑊𝐶2/6𝜂𝑈𝑅2𝐿
𝑋: Vertical direction
𝑍: Horizontal direction
𝑊
𝑋
: Vertical component (in𝑋

direction) of the resultant load
𝑊
𝑍
: Vertical component (in 𝑍

direction) of the resultant load
𝑃: Load per unit bearing area

= 𝑊/𝐿𝐷

𝑆: Sommerfeld number
= (𝜂𝑁/𝑃)(𝑅/𝐶)

2

𝑞
𝑧

: Nondimensional flow coefficient,
(𝑞
𝑧

= 2𝑄/𝑈𝐿𝐶)

𝑝
1

, 𝑝
2

: Perturbed pressures
𝜀
1
, 𝜙
1
: Perturbed eccentricity ratio and

attitude angle around the steady
state value 𝜀

0
, 𝜙
0

𝐾
𝑋𝑋

,𝐾
𝑍𝑍

, 𝐾
𝑋𝑍

,𝐾
𝑍𝑋

: Stiffness coefficients (N/m)
𝐾
𝑋𝑋
, 𝐾
𝑍𝑍

,𝐾
𝑋𝑍

,𝐾
𝑍𝑋

: Nondimensional stiffness
coefficients = 𝐾

𝑖𝑗
𝐶/𝑊, where

𝑖 = 𝑋, 𝑍 and 𝑗 = 𝑋,𝑍
𝐷
𝑋𝑋

,𝐷
𝑍𝑍

,𝐷
𝑋𝑍

,𝐷
𝑍𝑋

: Damping coefficient (N⋅s/m)
𝐷
𝑋𝑋

,𝐷
𝑍𝑍

,𝐷
𝑋𝑍

,𝐷
𝑍𝑋

: Nondimensionaldamping co
efficient = 𝐶

𝑖𝑗
𝐶𝜔/𝑊, where

𝑖 = 𝑋, 𝑍 and 𝑗 = 𝑋,𝑍
𝑡: Time (s)
𝜔, 𝜔
𝑝
: Journal rotational speed (rad/s),

frequency of journal vibration
𝜏: Nondimensional time, 𝜏 = 𝜔

𝑝
𝑡

𝜆: Whirl ratio = 𝜔
𝑝
/𝜔

𝑀,𝑀: Rotor mass (kg), mass parameter,
𝑀 = 𝑀𝐶𝜔

2

/𝑊

( )
0
: Steady state value.
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