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Tis study aims to increase the accuracy of autism spectrum disorder (ASD) diagnosis based on cognitive and behavioral
phenotypes through multiple neuroimaging modalities. We apply machine learning (ML) algorithms to classify ASD patients and
healthy control (HC) participants using structural magnetic resonance imaging (s-MRI) together with resting state functional
MRI (rs-f-MRI and f-MRI) data from the large multisite data repository ABIDE (autism brain imaging data exchange) and
identify important brain connectivity features. Te 2D f-MRI images were converted into 3D s-MRI images, and datasets were
preprocessed using the Montreal Neurological Institute (MNI) atlas. Te data were then denoised to remove any confounding
factors. We show, by using three fusion strategies such as early fusion, late fusion, and cross fusion, that, in this implementation,
hybrid convolutional recurrent neural networks achieve better performance in comparison to either convolutional neural
networks (CNNs) or recurrent neural networks (RNNs).Te proposedmodel classifes subjects as autistic or not according to how
functional and anatomical connectivity metrics provide an overall diagnosis based on the autism diagnostic observation schedule
(ADOS) standard. Our hybrid network achieved an accuracy of 96% by fusing s-MRI and f-MRI together, which outperforms the
methods used in previous studies.

1. Introduction

Millions of neurons are responsible for coordinating each
part of the human body and brain. When brain networks are
incorrectly connected to coordinate activities, certain dis-
orders in the human body arise [1, 2]. Some of the most
common neurodevelopmental disorders are autism spec-
trum disorder (ASD) [3], schizophrenia [4], attention defcit
hyperactivity disorder (ADHD) [5], epilepsy [6], Parkinson’s
disease [7], obsessive-compulsive disorder [8], and bipolar
disorder (BD) [9].

ASD refers to a range of neurodevelopmental disorders
with behavioral and cognitive impairments that place a huge
burden on patients, families, and society. Identifying ASD
patients directly in comparison to healthy controls is im-
portant for early detection and intervention. ASD’s exact

cause is still unknown [10]. Due to lack of knowledge of
neuropathology, symptom-based diagnosis often results in
poor treatment.

Early accurate diagnosis of ASD is pivotal to develop
specialized interventions [11]. Due to its complex nature and
highly heterogeneous symptoms, the diagnosis of ASD is
very challenging [12].

Neuroimaging is an attractive noninvasive modality to
cross the gap between environment, genes, and cognitive
and behavioral phenotypes in ASD. Several studies in
neuroimaging have used diferent techniques such as
structural and functional magnetic resonance imaging
(MRI) [12–17]. Similar studies have contributed to our
understanding of brain changes in ASD subjects on struc-
tural and functional connectivity levels. Functional con-
nectivity has been used to presage early autism diagnosis and
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restrict correlations within specifc neural circuits across
blood oxygenated level-dependent (BOLD) signals at dif-
ferent brain regions [18].

A number of studies have aimed to diagnose ASD based
on structural magnetic resonance imaging (s-MRI) and
functional magnetic resonance imaging (f-MRI) data [1]. In
an earlier study, McKeown et al. anatomized f-MRI data into
spatial components by blind separation [19]. Later, Uddin
et al. presented a model using logistic regression classifer
and independent component analyses in order to difer-
entiate between diseased and health patient groups [20].
S-MRI data delineate the structural properties of the brain
and have received attention from researchers [21–26].
Another study proposed a new model for distinguishing
between ASD positive and negative individuals grounded on
the features of s-MRI and f-MRI data using histogram of
oriented gradients [27].

Te goal of the present study is to formulate an efective
machine learning (ML) architecture to enhance the efec-
tiveness of ASD diagnosis. We aim to classify ASD patients
and HC participants using s-MRI in conjunction with rs-
f-MRI data from a large multisite data repository, namely,
ABIDE (autism brain imaging data exchange). Te dataset is
phenotypically rich and consists of diferent modalities from
an important clinical population. We also aim to identify
signifcant brain connectivity features via functional con-
nectivity classifcation of ASD patients and HC participants.
We apply deep learning to identify ASD patients, grounded
on the patient’s brain blood oxygen level-dependent (BOLD)
activation patterns. Multimodality fusion on s-MRI and f-
MRI improves classifcation performance over the existing
methods in our implementation. Te proposed multi-
modality hybrid method achieves state of the art accuracy of
96% in distinguishing ASD from HC individuals. We
benefted from the combination of convolutional neural
networks (CNNs), which has strong modeling, and feature
extraction power and recurrent neural networks (RNNs),
which fused and ordered time series data. Furthermore,
there are also privileges of the dataset and the atlas used for
preprocessing.

2. Materials and Methods

2.1.DataDescription. In the present study, both T1 weighted
structural MRI and T2 weighted functional MRI data are
obtained from image and data archive powered by labora-
tory of neuro imaging (LONI) [28] from ABIDE [29]. All
data were used under the direction and approval of the
respective institutions’ ethics boards. ABIDE is based on
a collaboration of 17 international imaging sites that have
aggregated and are openly sharing neuroimaging data from
539 individuals sufering from ASD and 573 typical HC [30]
in the neuroimaging informatics technology initiative
(NIfTI) format. Te data collected from these 1112 subjects
consist of structural and resting state functional MRI data
along with an extensive array of phenotypic information. All
subjects have been selected by evaluating phenotypic in-
formation like age, gender, and intelligence. It is known that
the scanning infrastructure in each imaging site used

diferent parameters such as repetition time (TR), echo time
(TE), number of voxels, number of volumes, openness or
closeness of the eyes, and protocols for the data.

Fivefold cross validation strategy was used to evaluate
the performance. In detail, each source was split into fve
subsets with an approximately equal number of subjects. We
used four subsets of the data for training and the other for
validation to select the model each time.Ten, we conducted
the adaptation process on time series cross validation. Te
augmented validation data were used during adaptation
process.

In this study, we used the statistical parametric mapping
(SPM) software version 12 (SPM12) built in MATLAB and
computation, display, and analysis of connectivity (CONN)
toolbox. SPM integrated toolbox was developed [31] as an
extension to SPM for incorporating morphometric voxel-
based (VBM), seed-based (SBM), or region of interest
(ROI)-based neuroimaging methods.

F-MRI is a noninvasive technique to assess brain
functions by using signal changes [14]. A group of small
cubic elements referred as voxels represent the brain volume
of f-MRI data. F-MRI consists of time series data extracted
from each voxel by keeping track of its activity over time.Te
time series represent the signal measured at each voxel. Rs-
f-MRI is used for analyzing brain disorders implementing f-
MRI techniques while the subject is in a resting state. Te
major approach explored for discriminating between typi-
cally and autistic developed brains was shape and volumetric
based analysis of s-MRI. S-MRI is generally classifed as an
anatomical study consisting of two categories of features,
namely, shape features and volumetric features.

Te heterogeneity of disorders of autistic individuals has
increased the need for personalized approaches to analyze
and prognosticate both functionally and anatomically for
each autistic subject. Hence, in the present study, we
combined s-MRI and f-MRI data with the aim of achieving
better diagnostic accuracy and suggesting optimum treat-
ment plan for every autistic subject. We analyze our results
to ascertain that they ft better with autism diagnostic ob-
servation schedule (ADOS). Correlation is analyzed among
all subjects for trait score diferences and ADOS total scores
to extract features of autism severity.

2.2. Data Preprocessing. Neuroimages display thousands of
cortical and subcortical areas, providing information on
structures and functions. Brain atlases are used to divide
brain images into a limited number of regions of interest
(ROI) in order to overcome complexity [32]. Figure 1 depicts
the overall pipeline of the approach we propose. For each
modality, data preprocessing is necessary in order to avoid
the risk of scanner bias and the efect of heterogeneity of
protocols. In addition, the steps of denoising, fusion, and
analysis to evaluate hybrid deep learning methods and
correlation with ADOS total score are explained in the
following sections.

First, in order to convert 2D f-MRI to 3D s-MRI, we used
ROI percolation Harvard-Oxford atlas. Ten, our pre-
processing pipeline consisted of functional realignment and
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unwarp; slice-timing correction; outlier identifcation; direct
segmentation and normalization; and functional smoothing
within Montreal Neurological Institute (MNI) atlas. Tere
are many studies using various atlases such as Harvard-
Oxford (HO), Craddock 200 (CC200), Craddock 400
(CC400), Automated Anatomical Labeling (AAL), Eickhof
Zilles (EZ), Talaraich and Tournoux (TT), and Dosenbach
160 [1]. For the context of the present study, we downloaded
the time series for the brain areas specifed in MNI standard
brain atlas [33]. In our literature review, we have realized
that theMNI atlas has rarely been used with the large volume
and diferent modality of ABIDE dataset. It is included in
diferent neuroimaging analysis packages, including the
statistical parametric mapping package (SPM). We have
selected MNI atlas in order to perform comparisons across
subjects and studies, particularly of subcortical data, which is
accurately aligned by nonlinear volume registration in
comparison to cortical data. In addition to that MNI atlas
overcomes the neuroimage diferences in shape, size, and
relative orientation. Te advantage of MNI atlas is that it
focuses on disorders and artifacts on neuroimaging data
used to analyze its functional and structural connectivity
from the top portion of the brain to the bottom portion of
the cerebellum [34].

Preprocessing is a signifcant step to remove the efects of
diferent scanners, artifacts, or partial volume efects and the
variability between subjects that may stem from data ac-
quisition. In order to reduce execution time and achieve
better accuracy, preprocessing of neuroimages generally
consists in performing a fxed set of operations on the data.
We used the CONN [35] functional connectivity toolbox
that works with MATLAB/SPM. In order to reduce physi-
ological and other noise sources, additional removal of
movement and temporal covariates, temporal fltering and
windowing of the residual BOLD contrast signal, frst level
estimation of multiple standard f-MRI and s-MRI measures,
and second-level random-efect analysis, CONN provides

a method as well as component based noise correction.
Although global signal regression could also have been
considered, the component based noise reduction method
allows for interpretation of inverse correlations because
there is no global regression signal in our implementation.
Te toolbox implements f-MRI and s-MRImeasures, such as
estimation of seed-to-voxel and ROI-to-ROI functional
correlations, as well as semipartial correlation and bivariate/
multivariate regression analysis for multiple ROI sources,
graph theoretical analysis, and novel voxel-to-voxel analysis
of functional connectivity.

In the course of functional realignment and unwarp, all
neuroimages that belong to a subject are oriented in ref-
erence to the frst image of the time series of that subject.Te
purpose of slice-timing correction is to set the time series of
the voxel so that all the voxels in each image have a common
reference time. Outlier identifcation scans are identifed
based on the observed global BOLD signal and the amount
of subject motion. Te change in the global BOLD signal at
any time is calculated as the change in the average BOLD
signal within SPM’s global mean mask scaled to standard
deviation units. In addition, we employ the relative prob-
ability densities of gray matter (GM), white matter (WM),
and cerebrospinal fuid (CSF) in MNI space as inputs to the
hybrid method. Terefore, direct segmentation provides
segmentation into GM, WM, and CSF tissue classes. Also,
direct normalization iteratively performs tissue classifcation
from intensity values from functional and structural refer-
ence images and estimates nonlinear spatial transformations
that approximate posterior and anterior tissue probabilities
until convergence. Finally, data are smoothed in order to
clean images of nonbrain artifacts from the series of voxels.
Tis consists in averaging the neighbor voxel signals, as
blood supply and its functions are usually close among
neighboring brain voxels. Without disturbing the BOLD
signal, temporal fltering eliminates redundant components
from time series of voxels [36, 37].
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Figure 1: Overall pipeline of the proposed approach.
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2.3. Data Denoising. Using neuroimages in order to di-
agnose ASD is challenging due to the noise redounded from
the image recording process. Consequently, there are many
fltering approaches such as NLM flters, wavelet based
flters, and band-pass flters, to extract the noise [38]. In this
study, we prefer band-pass fltering for denoising the
pipeline to reduce unwanted phase shifts.

MATLAB signal processing toolbox is particularly useful
to flter signals with flter design parameters such as flter
type, flter order, and attenuation. It combines two steps that
use linear regression of potential artifacts in the BOLD signal
and temporal band-pass fltering. BOLD signals are fore-
casted and removed separately for each voxel and for each
subject due to factors identifed as potential confounding
efects. Working with this fltering, we resample all data to
ensure equally spaced points for comparison into subjects.
To that end, we use MATLAB function resample, which
applies an antialiasing band-pass flter to the time series and
compensates for the delay introduced by the flter. Tis
function resamples the input sequence, the raw head motion
in our case [39].

Inhomogeneity correction is applied to increase accuracy
of artifacts in images created by nonhomogeneous brain
tissues. Various techniques such as histogram matching are
available for normalizing the volume of images [38].

While minimizing the efects of noise sources such as
head movement and physiological variations, temporal
frequencies below 0.008Hz or above 0.09Hz are removed
from the BOLD signal using a band-pass flter [40].

Figure 2 shows a sample of denoising output obtained
from our dataset. Functional connectivity (FC)measures can
be best classifed by estimating the distribution of FC values
between randomly selected pairs of points within the brain
before and after denoising in order to minimize the efect of
artifactual factors. After preprocessing pipeline but before
denoising considering the BOLD signal, FC distributions
show large intersession, intersubject variability with degrees
of positive biases including large scale physiological, and
subject motion efects. After denoising, FC measures orient
approximately centered in the positive side with consider-
ably reduced intersession and intersubject variability.

2.4. Classifcation Methods. Investigating another line of
research [41], the newly proposed cross fusion fully con-
volutional neural network (FCN) performed best among the
multimodality and fusion networks. Based on that fnding,
three alternative fusion strategies were considered in the
present work: early, late, and cross fusion, as shown in
Figure 3.

For early fusion (Figure 3(a)), the preprocessed f-MRI
and s-MRI neuro images are combined for each subject thus
producing a tensor. Tis input tensor is processed using the
model network. For late fusion (Figure 3(b)), parallel
streams process the f-MRI and s-MRI images independently
before being fed into the model network. Te output is fed
through the neural network that carries out information
fusion. For cross fusion (Figure 3(c)) which we propose,
there are two processing branches connected by trainable

scalar cross connections. Te purpose of the process is to
provide the functional connectivity matrix (FCM) in-
formation with cross-trainable fusion parameters rather
than limiting the features to a single plane. Te diference
between cross fusion and studies in the related literature is
the usage of hyper parameters. To overcome dimensional
diferences of feature matrices that belong to diferent neuro
images during the pairwise comparison, training is carried
out with a selected value of the parameter α (Figure 4). It was
observed through trial runs that higher α value required
almost prohibitive processing times and lower values
resulted in unacceptably blurred images. Tus, α� 0.05 was
selected to provide acceptable image quality with available
processing power. During training, the parameter is auto-
matically adjusted to integrate two diferent information
modalities f-MRI and s-MRI.

With the scalar crosslinks formed with A1 (α) and B1 (α)
in layer 1, N ∈ {0, 0.01, 0.02, . . ., 0.09, 1} probabilities of each
layer are calculated within the cross fusion. α controls the
gradient range. To further demonstrate the efects of α on
fusion results, we have selected threshold of α� 0.05. Te
FCM image (Figure 4) shows areas where gray matter, white
matter, and CSF features are clustered.

Figure 4 left side shows a sample of preprocessed cross-
sectional volumes and right side shows their corresponding
feature maps. In addition, each subimage corresponds to
a single flter. Te convolutional flters are sensitive to
features of the preprocessed cross-sectional volumes of the
patients with a diagnosis of ASD.

To tackle the high dimensionality of the acquired fea-
tures, we selected tissue kind as a feature. In the literature,
several novel CNN or RNN models were constructed to
create diferent features with diferent confguration pa-
rameters. By taking inspiration from them, we selected only
diferent tissue area-related features. Te maps in Figure 4
are shown with the descriptive information of the clusters
obtained at the selected signifcance level.

After data preprocessing and denoising, the frst stage of
our framework consists of a CNN and an RNN in a hybrid
form. Te main idea of these networks is to use a con-
volutional layer. Both networks are used to detect spatial
dependencies in data within the help of the convolution layer
[42]. In order to analyze multidimensional time series, CNN
and RNN are useful [43]. Te advantage of this model lies in
the possibility of using a pretrained model.

CNN has three introductory layers referred as fully
connected convolution layer, pooling layer, and the fnal
convolution layer. First, the input signal is directly con-
nected to the convolution layer and a kernel is used for
convolution operation. In addition, operation results are
created as a feature map for the next layer. Between two
layers of convolution is a layer of pooling. In order to reduce
the size of feature mat, the pooling layer is used. Otherwise,
inside the same hidden layer, RNN sends feedback signals to
the other neurons within the related layer (Figure 5). Te
output of the CNN layer was created by selecting α pa-
rameter of 0.05 and given as input to the RNN layer. Ten,
the feature vector is formed with the RNN output. In the
fully connected layer, performance evaluation was made frst
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separately and then by combining subject together with
concatenation of data. At the last stage, classifer and output
process takes place and the model result is parsed as ASD
and HC.

We have used Matlab/SPM based cross platform soft-
ware on Windows environment on an Intel Core i7 pro-
cessor, a clock frequency of 3GHz, 32GB RAM, 500GB
Solid State Drive (SSD) computer. Training our network
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Figure 3: Framework of the fusion strategies. (a) Early fusion, (b) late fusion, and (c) cross fusion.

Figure 4: FCM images output from cross fusion with α� 0.05.

Figure 2: A sample of denoising output.
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took a little over 2 hours per epoch and around 2 days and
a half for the fully trained hybrid convolutional recurrent
neural networks. Number of iterations is the number of
passes, each pass processing data that belong to all subjects.
Our method takes on average 2-3minutes to segment the
data of a single subject from the ABIDE dataset (nearly two
days for all 1112 subjects). In high performance computing
environments, CONN can distribute our processing and
analyses in parallel across multiple nodes. Tis can result in
a very signifcant reduction in processing time.

For each pair of subjects, Pearson’s correlation coefcients
have been used with ADOS report. It is signifcant to have
multiplicity adjustments to control the false discovery rate
(FDR) for the test. In this study, we have applied the FDRwith
the threshold of 0.1 for correlation analysis [44].

 . Results

3.1. Summary Statistics. Tere is no public dataset available
consisting of data from diferent modalities such as elec-
troencephalography (EEG), difusion tensor imaging (DTI),
MRI, and f-MRI (resting state and task based), that belong to
the same individuals. Furthermore, there is a lack of ASD
subsyndromes data such as Asperger’s syndrome (AS) [45]
and pervasive developmental disorder, not otherwise
specifed (PDD-NOS) [46], and distribution rates according
to number of samples by gender are also low. For future
studies, availability of datasets that provide diferent mo-
dalities will help researchers to improve ASD detection
accuracy using ML and deep learning methods.

We observed that the combination of ML classifers with
other clinical features of ASD improved the accuracy of ASD
diagnosis. Te current sample size identifes relatively rel-
evant brain regions at high risk for ASD, suggesting that this
method can be extended to large and more heterogeneous
ASD populations. Using s-MRI and f-MRI modalities in

conjunction, we have shown that a higher level of diagnosis
accuracy can be achieved.

For each subject, local diagnosis accuracy for both s-MRI
and f-MRI feature matrices is calculated. Table 1 shows the
accuracy, sensitivity, and specifcity obtained for s-MRI and
f-MRI when using all features. Accuracy measures the
proportion of correct predictions made by the model. It is
defned as the ratio of the number of correct predictions to
the total number of predictions made. Sensitivity measures
the proportion of actual positives that are correctly identifed
as positive by the model. It is defned as the ratio of the
number of true positives to the total number of actual
positives. And also, specifcity measures the proportion of
actual negatives that are correctly identifed as negative by
the model. It is defned as the ratio of the number of true
negatives to the total number of actual negatives. Table 2
shows the accuracy achieved by diferent fusion (early, late,
and cross) strategies. As can be seen, cross fusion with ADOS
yielded the highest accuracy among the other fusions. We do
not prefer late and cross fusion processes without ADOS
because the score obtained with ADOS is consistently higher
than that obtained without ADOS. Our results show that the
hybrid model, achieving classifcation performances of
96.02%, 92.83%, and 85.70% for the accuracy, sensitivity,
and specifcity, respectively, is signifcantly superior to the
single CNN and RNN models.

Our hybrid algorithm provides high accuracy and
specifcity when s-MRI and f-MRI are analyzed together.
Our model also fuses the s-MRI and f-MRI datasets, which

Filter CNN RNN FC layer 1 FC layer 2

α

Cl
as

sif
er

HC

ASD

64×64×8

64×64×8

Figure 5: Overall block diagram of a CNN-RNN used for ASD detection.

Table 1: Performance comparison among various ML methods applied on the ABIDE dataset.

CNN (%) RNN (%) Hybrid (CNN+RNN) without
ADOS (%)

Hybrid (CNN+RNN) with
ADOS (%)

Accuracy 67.65 60.30 92.89 96.02
Sensitivity 57.02 62.30 85.63 92.83
Specifcity 78.33 58.90 96.81 85.70

Table 2: Accuracies achieved with diferent fusion strategies.

Hybrid (CNN+RNN) With ADOS (%) Without ADOS (%)
Early fusion 95.44 92.89
Cross fusion 96.02 —
Late fusion 95.24 —
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provides an accuracy of 96.02% accuracy, higher than
alternatives.

We have investigated the efects of diferent s-MRI and f-
MRI parameters on the machine learning algorithm. Pro-
posed diagnosis may get better via both modalities, and we
have observed that the addition of s-MRI and f-MRI pa-
rameters in features specifc for ASD classifcation gives
a higher signifcant Pearson correlation at P= 0.001 than
benchmark data with ADOS total score. Tus, the current
data suggest that the approach of a localized diagnosis with
fusion of diferent modality datasets, fusion strategies, and
correlation to ADOS will greatly improve accuracy, sensi-
tivity, and specifcity.

In Table 3, we compare individual CNN, RNN, hybrid
CNN-RNN, and other recent machine learning methods
with similar studies, albeit on diferent datasets and diferent
diseases, based on the usage of neuroimaging data, in terms
of accuracy. Studies using CNN, only RNN, their combi-
nation, and other methods are shown. A study reports
a CNN study with a very high accuracy of 100 percent for
Alzheimer disease Hossesini-asl et al. [47], another one
presents a two-dimensional CNN with the high accuracy of
90.29 percent for hyperactivity disease [71], and other one
achieves an accuracy of 98.8 percent for Parkinson’s disease

[58]. Among the studies that utilized the Parkinson’s disease
dataset, the study achieved an accuracy of 82.89 percent
using both CNN and RNN, which is a hybrid method [65].
Researchers show the usefulness of ML techniques to
identify and predict generalized disease. Application of ML
technique in EEG of patients with epilepsy is very recent and
is emerging with promising results within balanced accuracy
of 98.13% [70]. In addition, in Table 4, we compare diferent
ASD studies in which machine learning methods have been
applied on diferent sets of neuroimaging data, diferent
modalities, and diferent ML methods. Another inspiring
publication showed that the computer-aided diagnosis
system was able to accurately distinguish between in-
dividuals with ASD and controls, achieving an accuracy rate
of 87.1% [15]. Yet another more recent work by the same
author [18] demonstrates the potential of using dynamic
functional connectivity analysis to identify brain regions
associated with specifc symptoms of ASD with 47 subjects
which is lower than we are. By identifying these regions, the
author aims to contribute the development of more targeted
and personalized interventions for individuals with ASD.
Many studies in the literature have focused on group level
diferences between individuals with ASD and typically
developing controls. While these studies have identifed

Table 4: Recent studies in the literature with ASD.

Studies Method Year Modality Accuracy (%)
Zhao et al. [12] SVM 2020 f-MRI 83
Mostafa et al. [72] LDA 2019 f-MRI 77.70
Liu et al. [73] DFC+MTFS 2020 rs-f-MRI 76.80
Wang et al. [74] MLP+ ensemble learning 2020 f-MRI 74.52
Sun et al. [75] No superparameter FCN 2021 rs-f-MRI 71.74
Shi et al. [76] Tree-way decision model 2021 f-MRI 71.35
Grana and Silva [77] SVC 2021 rs-f-MRI 71.10
Spera et al. [78] L-SVM 2019 rs-f-MRI 71
Reiter et al. [79] RF 2021 rs-f-MRI 67.81
Chaitra et al. [80] RCE-SVM 2020 f-MRI 67.30
Brahim and Farrugia [81] RBF-SVC 2020 rs-f-MRI 66.70
Sun et al. [82] RBF + SVM 2021 f-MRI 59.10
Kazeminejad and Sotero [83] NEG+MLP 2020 rs-f-MRI 58.70
Dekhil et al. [15] Correlation analysis 2021 rs-f-MRI 95–100
Dekhil et al. [18] k-NN, random forest 2019 s-MRI, f-MRI 81
Jamwal et al. [84] DBN 2022 s-MRI, f-MRI —
Traut et al. [85] Logistic regression, SVC 2022 s-MRI, f-MRI 79
Dadi et al. [86] K-means, wards algorithm, CanICA, DictLearn 2019 rs-f-MRI 86
Abraham et al. [87] K-means, wards algorithm, ICA 2017 rs-f-MRI 67
Gogoi et al. [88] VGG16, inception v3, ResNet50 2023 MRI 94
Han et al. [89] Cross, supervised, LOSO, Fed_DA, 2023 rs-f-MRI, s-MRI 69.37
Manikantan and Jaganathan [90] Graphical neural networks 2023 rs-f-MRI, s-MRI 69.45
Deng et al. [91] GAN 2023 f-MRI 71
Dhinagar et al. [92] Metalearning 2023 MRI 85.70
Artiles et al. [93] Multiple linear regression 2023 rs-f-MRI 76.40
Quiang et al. [94] Hierarchical FBN 2023 f-MRI 82.10
Jönemo et al. [95] 3D CNN 2023 rs-f-MRI 80
Kunda et al. [96] MIDA, ridge classifer, logistic regression, SVM 2023 rs-f-MRI 73
SVM: support vector machine; LDA: linear discriminant analysis; DFC: dynamic functionally connected; MTFS: multitask feature selection; MLP: multilayer
perceptron; FCN: functionally connected network; L-SVM: linear kernel support vector machine; RF: random forest; RCE: recursive cluster removal; RBF:
radial basis function; NEG: negative correlation matrix; k-NN: k-nearest neighbors; DBN: deep belief network; CanICA: canonical independent component
analysis; DictLearn: dictionary learning; ICA: independent component analysis; VGG: very deep convolutional networks; LOSO: leave one site out; Fed_DA:
federated domain adaptation; GAN: adversarial generation network; FBN: functional brain networks; CNN: convolutional neural network; MIDA: maximum
independence domain adaptation.
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some brain regions consistently associated with ASD, they
do not account for the variability in brain structure and
function that exist within the ASD population. Another
diference between our study and some related studies is the
use of a combination of s-MRI and f-MRI data. Te com-
bination of these two types of data allows for a more
comprehensive analysis of brain structure and function,
which may improve the accuracy of ASD diagnosis. Re-
searchers have developed several approaches for seizure
detection using ML classifers and statistical features
[88, 94]. A recent publication [84] demonstrates substantial
diference in the efciency and accuracy of various bio-
markers used for ASD diagnosis. Te diference in the
performance of various biomarkers is due to heterogeneity
of ASD. Our fusion of f-MRI and s-MRI data has improved
the accuracy of existing autism detection systems by com-
bining two modalities. Some studies in the literature have
investigated special biomarkers consisting of biological
molecules used for biomedical imaging and neuro-
modulation. In the present study, we did not investigate
biomarkers but rather focused on algorithmic enhancement
of accuracy. In addition, we combined CSF with WM and
GM. Our machine learning methodology and fusion strat-
egies are diferent from that applied by Jamwal et al.
achieving higher accuracy via a novel neural network
structure.

4. Conclusion

In general, it is difcult to generalize the fndings of studies
utilizing a small selection of samples. In addition, many
studies in related areas focus on diferent age populations,
thus limiting generalizability. Studies in the literature that
focus on gender diferences also inevitably reduce sample
sizes, leading to reduced statistical confdence. An important
challenge of neuroimaging datasets is the unavailability of
diferent modalities. By using the ABIDE dataset, we were
able to overcome these challenges, through utilizing s-MRI
and f-MRI data together for a large number of subjects.
Clinical studies have shown that using multimodality
techniques play a signifcant role in increasing the accuracy
of ASD diagnosis [97]. Our contribution can be summarized
as implementing diferent modality fusion with higher ac-
curacy and correlation with ADOS within a hybrid method
consisting of CNN and RNN.

Future direction in the path towards more efective ASD
diagnosis and treatment is expected to further exploit the
potential of hybrid ML algorithms for classifcation. Local
analysis of the brain regions is expected to enable clinicians
to deliver personalized treatments to autistic individuals.
And also, our cross fusion infrastructure will be provide
region based analysis of the brain, which we believe that it
can allocate subjects on the autism spectrum and help cli-
nicians deliver personalized treatments to individuals with
autism. Another possibility that has emerged with our ap-
proach is the integration of further imaging modalities such
as DTI and EEG data to diagnostic studies based on neu-
roimaging, in order to obtain a higher number of features
and using biomarkers to improve classifcation accuracy. In

addition, subcategorization of autistic disorders such as
Asperger and PDD-NOS via multimode neuroimaging may
become possible using the proposed hybrid ML approach.
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