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Te emergence of Omicron as the ffth variant of concern within the SARS-CoV-2 pandemic in late 2021, characterized by its rapid
transmission and distinct spike gene mutations, underscored the pressing need for cost-efective and efcient methods to detect viral
variants, especially given their evolving nature.Tis study sought to address this need by assessing the efectiveness of two SARS-CoV-2
variant classifcation platforms based on RT-PCR and mass spectrometry. Te primary aim was to diferentiate between Delta,
Omicron BA.1, and Omicron BA.2 variants using 618 COVID-19-positive samples collected from Bangkok patients between No-
vember 2011 andMarch 2022.Te analysis revealed that both BA.1 and BA.2 variants exhibited signifcantly higher transmission rates,
up to 2-3 times, when compared to the Delta variant. Tis research presents a cost-efcient approach to virus surveillance, enabling
a quantitative evaluation of variant-specifc public health implications, crucial for informing and adapting public health strategies.

1. Introduction

Omicron emerged as the ffth variant of concern (VOC) of
coronavirus disease (COVID-19) in November 2021,

replacing the predominant Delta variants. Omicron was frst
identifed on November 11, 2021, in Botswana, and on
November 14, 2021, in South Africa [1]. Omicron contains
more than 30 mutations on its spike protein, including 15
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mutations in the receptor-binding domain (RBD) that might
underlie its increased transmissibility and reduced vaccine
efcacy [2]. In April 2022, the World Health Organization
(WHO) announced the BA.1, BA.2, BA.3, BA.4, and BA.5
Omicron subvariants for surveillance [3]. Hence, the ability
to detect these new variants is required to monitor their
spread, evaluate their clinical impact, and update public
health policy.

Te most common lineages of Omicron in early 2022
were BA.1 (B.1.1.529.1), BA.2 (B.1.1.529.2), and BA.3
(B.1.1.529.3). Tese variants share 12 mutations in the RBD
which binds to human angiotensin-converting enzyme 2
(ACE2) proteins and is responsible for viral entry into the
host cell [4]. Additionally, these variants also share 21
common mutations in other regions of the spike protein,
such as the N501Y andQ498Rmutations that are expected to
enhance the binding to ACE2 receptors and the H655Y,
N679K, and P681H mutations that are believed to increase
spike cleavage and facilitate virus transmission [5]. BA.2 is of
particular interest because it was reportedly 1.5-fold more
infectious than BA.1 and 4.2 timesmore thanDelta. BA.2 has
a 30% higher potential than BA.1 to escape existing vaccines
and is 17-fold more capable than Delta [6] in this regard.
BA.2 is 35-fold more resistant to sotrovimab, a monoclonal
antibody, compared to the ancestral D614G-bearing B.1.1
virus. Moreover, BA.2 is 6.4-fold more resistant than BA.1 in
neutralization assay using murine sera [7]. BA.2 contains
S371F, T376A, D405N, and R408S substitutions in the RBD,
whichmight increase its rate of spread [8], along with unique
mutations, T19I, L24S, P25del, P26del, A27S, V213G,
T376A, and R408S [4].

Te evolutionary rate of SARS-CoV-2 has accelerated
due to multiple factors. Immune evasion from vaccination,
past infections, and hybrid immunity are the key drivers of
this phenomenon [9]. In addition, intrahost evolution in
immunocompromised hosts may lead to unexpected mu-
tations and the emergence of novel variants [10–12]. Current
rapid mutations in the spike protein of SARS-CoV-2 may
also alter the sensitivity and specifcity of reverse-
transcription polymerase chain reaction. Hence, the
designed primers and RT-qPCR assays for detecting SARS-
CoV-2 variants need to be constantly updated to capture
Omicron sublineages [13].

In Tailand, Omicron is the ffth wave of the COVID-19
pandemic that started around January 2022 and spread
much faster than the earlier Delta variants [14]. Tis situ-
ation prompted our team, the Tai Red Cross Emerging
Infectious Diseases Clinical Center (TRC-EIDCC), to de-
velop a cost-efective and rapid workfow for classifying
SARS-CoV-2 variants in patients who visited the King
Chulalongkorn Memorial Hospital (KCMH). In this study,
we compared whole-genome sequencing, which is the gold
standard method for SARS-CoV-2 variant classifcation, to
more afordable array-based (Novaplex™ SARS-CoV-2
Variants VII) and mass spectrometry-based methods
(MassARRAY®). Te collected data let us derive an estimate
for the increased transmission rate of the Omicron variants
compared to the Delta variant that is consistent with esti-
mates obtained from GISAID data [15]. Hence, the ability to

detect viral variants using afordable technology can enable
a sentinel surveillance site to quantitatively monitor and
evaluate the impact of an outbreak. Te overall workfow of
this study is shown in Figure 1.

2. Materials and Methods

2.1. Swab Sampling and Viral RNA Extraction.
Oropharyngeal swabs of suspected COVID-19 patients were
collected between 5 November 2021 and 31 March 2022 as
a part of routine SARS-CoV-2 surveillance at the TRC-
EIDCC from KCMH (IRB�No. 361/59, 400/63), Suvar-
nabhumi Airport (Division of International Communicable
Disease Control Port and Quarantine) and other organi-
zations in Bangkok. Viral RNA was extracted from the
samples using a MagPurix® 12 EVO Automated Nucleic
Acid Purifcation System (Zinext Life Science Corp) and
confrmed for SARS-CoV-2 by reverse-transcription PCR
(RT-qPCR) test.

2.2. SARS-CoV-2 Variant Classifcation. As mentioned,
three methods were used to classify SARS-CoV-2 variants in
positive samples, namely, Novaplex™ SARS-CoV-2 Variants
VII Assay (Novaplex) (Seegene Technologies),
MassARRAY® System (Agena Bioscience), and whole ge-
nome sequencing (WGS) using next-generation sequencing
(NGS) (Illumina). Ct values generated by the RT-qPCR test
were considered together with the urgency of the samples to
determine the variant classifcation method(s) used for each
sample. Table 1 compares the performance of the three
assays. Te samples with discordant variant results were
subjected tomultiple assays for confrmation. For discordant
results, more weights are given to assays with higher
specifcity (NGS followed by MassARRAY® and
Novaplex™).

For Novaplex, the detection of E484A and HV69/70
deletion in spike gene, N501Y in RdRP gene, and endoge-
nous internal control were performed according to the
manufacturer’s instructions on the CFX96 Touch Real-Time
PCR Detection System (Bio-Rad, Hercules, CA). Te test
results were analyzed with Seegene software using a positive
cut-of of Ct< 42. Te list of targeted mutations is provided
in Table 2.

For the MassARRAY® System, a multiplex PCR Mas-
sARRAY assay (PMA) was conducted using specifc point
mutation panels. Four diferent point mutation panels of
PMA were designed based on the circulating variants and
used as the assay throughout the period, namely, ABDO V1,
Omicron V1, Omicron V2, and Omicron V3 (Table 2).
Samples with Ct< 30 were analyzed with RT-PCR using
iPLEX prochemistry reagent for target regions amplifcation
and MALDI-TOF mass spectrometer (MassARRAY Ana-
lyzer) [16] to detect nucleotide at target mutations of
each panel.

ForWGS, viral RNAwas amplifed by ARTICV3 and V4
protocols. Te DNA library was prepared using an
Illumina® DNA Prep kit with Respiratory Virus Oligos
Panel v2 (Illumina) enrichment. Sequencing was performed
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on a MiSeq platform using a 2× 250 nucleotides reagent kit
v2 and assembled by mapping with the reference genome
Wuhan-Hu-1 (NC_045512.2) as previously described in
[17]. A variant of the genomes was classifed using Pangolin
[18] and Nextclade [19].

2.3. Estimation of the Transmission Rates for Each Variant.
Te number of new cases at time t+ 1, Nt+1, was modeled
using three factors, the current number of cases, Nt, the
current fractional abundance of each variant, {ftDelta, ftBA.1,
ftBA.2}, and the transmission rate of each variant {rDelta, rBA.1,
rBA.2}, which represents the number of new cases that could
arise from an infected person over a period of time and is
assumed to be time-independent:

Nt+1 � Nt 
v∈ Delta,Omicron,BA.2{ }

f
v
t r

v
. (1)

Here, a unit of time was set at 5 days. A frst-order
competition model was used to estimate the dynamics of
the fractional abundance of viral variants:

f
s
t+1 �

f
s
tr

s

v∈ Delta,Omicron,BA.2{ }f
v
t r

v. (2)

Te search for the best-ftted transmission rate of each
variant {rDelta, rBA.1, rBA.2} was performed using SciPy’s
minimize function with weighted mean squared error
(weighted by the number of tested samples at each time
point) as the objective. To estimate the variability of the ftted
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Figure 1: Workfow of the study starting from sample collection to data analysis. Te number of samples that underwent the three SARS-
CoV-2 variant classifcation methods is larger than the number of positive SARS-CoV-2 RT-qPCR samples as the variant of some samples
was classifed by multiple methods.
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transmission rates, the parameter ftting process was re-
peated on 100 random initial guesses for the transmission
rates, each drawn uniformly from [0, 1] and 100 bootstrap
sampling of the time-series daily case data, each drawn from
two-third of the number of time points without replacement.
Te number of new cases in Bangkok during the time period
was collected from the Tailand Ministry of Public Health
record. Te fractional abundances of the Delta, BA.1, and
BA.2 variants in Bangkok during the time period were es-
timated based on either our local samples or submitted
entries on GISAID.

3. Results

Te TRC-EIDCC identifed the frst Omicron case (BA.1)
from a sample from Suvarnabhumi airport on 8 December
2021, when the number of daily new cases in Tailand was
around 3,000–4,000 cases. Ten, the frst Omicron BA.2 case
was detected on 8 January 2022, when the number of daily
new cases reached 10,000. As shown in Figure 2, the new
Omicron variants quickly replaced the prevalent Delta
variant in early January, although some Delta cases can still
be found up until early March. Te BA.2 lineage then
replaced BA.1 as the most dominant lineage in early March.
Similar relative abundances of the three variants of interest,
Delta, Omicron BA.1, and Omicron BA.2, were obtained
with either GISAID data (n� 4,295 for Bangkok and
n� 11,422 for Tailand) or our cohorts (n� 612).

From 5 November 2021 to 31 March 2022 (21weeks),
a total of 618 samples tested positive for SARS-CoV-2 were
analyzed at our center using three assays, namely, Novaplex,
PMA, and WGS, to identify SARS-CoV-2 variants. As the
resolutions of the three assays are diferent, the subvariants
detected by PMA and NGS were grouped with the parent
subvariants that are detectable by Novaplex, namely, Delta,
Omicron BA.1, and Omicron BA.2. Out of 618 samples, 261
were subjected to multiple assays, and only nine were dis-
cordant (Table 3). All discordant results were due to
Novaplex’s limited ability to detect mutations. Te variants
of 6 samples were unidentifed as they failed the assays or
yielded inconclusive results. Hence, only the variants of 612
samples were considered in the downstream analysis.

To estimate the transmission rates, i.e., the number of
new infections that could arise on average from an infected
individual, a linear model linking the relative abundance and
the transmission rate of each variant to the number of daily
cases was built (see Methods). Te estimation process was
repeated 100 times with diferent random initial guesses to
determine the uncertainty. As shown in Figure 3(a), despite
small sample counts, data from our local cohorts (n� 612)
yielded a similar estimate as Bangkok data from GISAID
(n� 4,295). Te transmission rate for Omicron BA.1 was
estimated to be 2.23 (SD� 0.22) and 2.09 (SD� 0.14) times
that of the Delta variant, while the transmission rate for
Omicron BA.2 was estimated to be 3.38 (SD� 0.43) and 3.29
(SD� 0.24) times that of the Delta variant. Interestingly,
usingTailand data fromGISAID yielded signifcantly lower
estimates of 1.78 (SD� 0.18) for BA.1 relative to Delta and
2.67 (SD� 0.38) for BA.2 relative to Delta, respectively

(Mann–Whitney U test p values <3e− 24). Te baseline
transmission rate for the Delta variant was estimated to be
0.58 (SD� 0.06), 0.59 (SD� 0.04), and 0.66 (SD� 0.06) using
local data, GISAID data for Bangkok, and GISAID data for
Tailand, respectively. In all cases, these estimates ft well
with the observed abundances and case counts (Figure 3(b)).
Te lower transmission rates estimated using data from all
over Tailand compared to Bangkok data ft the expectation
that higher transmissibility would be observed in densely
populated areas, like Bangkok, compared to more
rural areas.

4. Discussion

Te Omicron BA.1 variant (B.1.1.529) rapidly replaced the
predominant Delta strain within 4weeks, leading to the ffth
wave of COVID-19 in Tailand (Figure 2). Te rapid spread
of Omicron was similar across countries; however, the
immunity from infection and vaccination difered, such as
the cases in Denmark [8], South Africa [20], and EU [21].
Diferences in mutations on the spike protein of Omicron
BA.1 and BA.2 may explain their high transmissibility. BA.2
has deletions at amino acid positions 24–26 and A27S
substitution, whereas BA.1 has deletions at amino acid
positions 69-70 and 142–144. Tese positions are located
near the N-terminal domain (NTD) antigenic site and are
associated with resistance to neutralizing monoclonal an-
tibodies [22]. Te deletion at amino acid position 69-70 in
spike protein afects the antigenicity leading to resistance
against neutralizing antibodies and defnes the sublineages
BA.1 [23].

Te Novaplex™ assay is easy to use, fast, cost-efective,
and able to handle low-concentration samples (Ct< 42).
However, this assay can detect only three point mutations,
E484A, HV69/70 deletion, and N501Y, which are insufcient
for distinguishing other subvariants of Delta and Omicron.
On the other hand, the PMA platform can accommodate up
to 40 point mutations, producing more information for
classifying subvariants. Furthermore, PMA utilizes PCR and
mass spectrometry which are not as expensive asWGS and is
applicable to samples with lower viral loads (Ct< 35 com-
pared to Ct< 26 for WGS). [16] AlthoughWGS is still a gold
standard method for variant classifcation and novel variant
identifcation, PMA and Novaplex™ can be benefcial for
screening variants in the high transmission areas and for
preselecting samples for WGS. In particular, the choices of
40-point mutations in PMA can be continually updated to
encompass new variants, as done in this study (Table 2).
Tese assays are also highly concordant (96.5%, 252 out of
261 cases).

A key highlight of our study is that data from a sentinel
site with a limited number of samples (n� 612) can still
faithfully refect the variant abundance profles and the
transmission rates compared to those obtained using the
much larger provincial level and national level datasets from
GISAID (Figures 3(a) and 3(b)).Tis stresses the importance
of capacity building in basic viral genomics and mathe-
matical modeling at sentinel hospitals which would enable
them to quantitatively assess outbreak situations and inform
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public health policy. However, the lack of epidemiological
data means that our modeling can only capture the average
transmission characteristics of the virus. Information on the
actual transmission rates in the community was also un-
available for validating our estimates. Furthermore, it should
be noted that external factors, such as the saturation of PCR
testing capacity, underreporting of new cases, and changes in
public health policy, can confound the observations. Tese
details are needed to fully ascertain the accuracy of our
approach.

In addition to through patients, temporal changes in
SARS-CoV-2 evolution and variant compositions can also
be efectively monitored in environmental samples, such as
wastewater [24]. While hospital surveillance captures link-
age across viral variants, clinical severity, and human-to-
human transmission, environment-based surveillance can
illustrate a more complete picture of the reservoir of viral
variants in a community and supplement transmission route
reconstruction. However, array-based variant detection
approaches utilized here will have limited application for
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Figure 2: Te trends of daily new cases and relative abundances of the Delta and Omicron variants from November 2021 to March 2022 in
Tailand, Bangkok, and our hospital. Variant abundance data forTailand and Bangkok were retrieved fromGISAID. Numbers of daily new
cases were retrieved from the report released by the Tailand Ministry of Public Health. Data were smoothed with a 5-day average sliding
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Table 3: Number of positive samples detected by each assay combination.

Novaplex PMA WGS Samples Mismatchesb

x 68
x 279

x 4
x x 137 8
x x 48 1

x x 35 —
x x x 41 —

6a

Total 618 9
aSamples that failed the variant classifcation step, two samples from each method. bMismatch results, diferent variants detected by multiple methods, were
cleaned before data analysis by basing the result on the more reliable method, ranging from the gold standard WGS, PMA, and Novaplex.
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environment-based surveillance because they cannot fully
deconvolute the mixture of variants within the samples.

5. Conclusion

Te use of the afordable mass spectrometry-based
MassARRAY® System for detecting SARS-CoV-2 variants
in clinical samples enabled sentinel surveillance at a primary
healthcare institution. Tis method is also fexible, allowing
primer customization to target new emerging mutations,
and has a rapid turnaround time. Te ability to monitor and

predict the current magnitude of infection and change in
transmission rate using our strategy facilitates prompt al-
location of vaccines and treatment resources that prevents
overburden of hospital admission.

Data Availability

SARS-CoV-2 whole-genome sequences generated in this
study are deposited into the GISAID repository (https://
www.gisaid.org). GISAID ID and the SARS-CoV-2 variant
classifcation results of 618 positive SARS-CoV-2 samples
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analyzed by three methods are provided in Supplementary
Table S1. New daily SARS-CoV-2 cases in Bangkok and
Tailand were retrieved from the Tailand Department of
Disease Control COVID-19 API (https://ddc.moph.go.th/
covid19-daily-dashboard/); the data are also provided in
Supplementary Table S2.
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