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Due to the coronavirus disease 2019 (COVID-19), researchers all over the world have tried to fnd an appropriate therapeutic
approach for the disease. Te angiotensin-converting enzyme 2 (ACE2) has been shown as a necessary receptor to cell fusion,
which is involved in infection due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is commonly crucial for
all organs and systems. When ACE2 is downregulated via the SARS-CoV-2 spike protein, it results in the angiotensin II (Ang II)/
angiotensin type 1 receptor axis overactivation. Ang II has harmful efects, which can be evidenced by dysfunctions in many
organs experienced by COVID-19 patients. ACE2 is the SARS-CoV-2 receptor and has an extensive distribution; thus, some
COVID-19 cases experience several symptoms and complications. We suggest strategy for the potential protective efect of ACE2
to the viral infection. Te current review will provide data to develop new approaches for preventing and controlling the
COVID-19 outbreak.

1. Introduction and Background

In December 2019, the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) resulted in coronavirus disease
2019 (COVID-19), frst identifed in Wuhan, China, with
a rapid spread in China and 27 other countries with high
mortality. Tere is no defnite treatment for this disease, and
those available are restrictions on travelling, isolating the pa-
tients, and supportive healthcare; however, several medications
have been examined [1–3]. Identifcation of the underlying
pathobiology of the disease is helpful. In the current study, the
angiotensin-converting enzyme 2 (ACE2) receptor, a special
target of SARS-CoV-2, will be considered and reviewed.

2. Angiotensin-Converting Enzyme (ACE) and
Its Homolog (ACE2)

Te renin-angiotensin system (RAS) regulates the cardio-
vascular and kidney functions and contributes to the
pathophysiology of cardiovascular and kidney disorders

[4, 5]. Te RAS efector peptides can be generated and
degraded via several enzymatic reactions that indicate their
concentration in the plasma and many tissues [6]. Angio-
tensin (Ang) processing begins by angiotensinogen hydro-
lysis through protease renin for generating Ang I (Ang1–10)
[7]. ACE due to its peptidase-dependent activity can convert
Ang I to octapeptide Ang II (Ang1–8) [8].

Ang1–8 is the main RAS mediator and is associated with
many physiological events. It enhances vascular smooth
muscle contraction, which increases the systemic vascular
resistance. It is also able to initiate sodium reabsorption
within the kidneys through the stimulation of aldosterone
release and acting as the main mediator of the kidney
tubuloglomerular feedback mechanism [9]. Moreover, it has
strong proinfammatory and proangiogenic efects [10, 11].
It attaches to AT-1 and AT-2 receptors; the former mediates
its vasoconstrictive, proliferative, and proinfammatory
efects [8].

In recent years, ACE2 as a homolog of ACE was detected
[12–14]. It mainly acts as a mono-carboxypeptidase that
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preferably hydrolyzes between proline and a hydrophobic/
basic C-terminal amino acid. An enzymatic reaction, which
is successfully catalyzed via ACE2, involves Ang1–8 deg-
radation through the removal of its C-terminal phenylala-
nine for generating Ang1–7 [15–17] that is characterized by
vasodilatory, antiproliferative, antiangiogenic, and anti-
infammatory properties [18]. G protein-coupled Mas re-
ceptors mediate its efects [19]. Also, Ang1–7 suppresses the
activities of the carboxy-terminal domain of ACE, by which
it prevents ACE against fully acting on Ang I and bradykinin
[6, 20] (Figure 1).

Considering the mentioned mechanisms, the simulta-
neous reduction in Ang1–8 and an elevation of Ang1–7
positively afect many diseases [6]. Since these benefcial
efects can be achieved by ACE2, the enhanced function of
this enzyme may provide efective strategies to treat illnesses
with pathologically elevated Ang1–8 and/or reduced
Ang1–7 because of an imbalanced RAS.

Regarding the negative regulation of RAS by ACE2, this
enzyme is currently a functional receptor for SARS-CoV-2
[21–23]. Coronaviruses can efciently recognize ACE2, and
the SARS-CoV-2 spike protein possesses a high binding
afnity for human ACE2 [24, 25]. Tese viruses use ACE2
because of its cellular entry to the host cell as well as for the
downregulation of ACE2 expression [26] that is involved in
the acute respiratory distress syndrome (ARDS) and severe
acute respiratory syndrome (SARS) pathogenesis [27].

Te epidemiological fndings suggest an increase in
ACE2 expression in youths than aged individuals [28]. Te
reduced ACE2 amount in aged cases possibly is associated
with the prevalence of consequences in aging [21]. Bio-
informatic analysis data of the genomics and transcriptomics
gene expression in human [29] demonstrated that expres-
sion of ACE2 decreases with ageing in many tissues.
According to Chen et al., ACE2 expression decreases with
age in various organs including blood, adrenal gland, colon,
nervous system, adipose tissues, and salivary gland [29].
Several studies have demonstrated that ageing is linked with
reduced expression of ACE2 in both experimental and
human models [29–31]. Xudong et al. [31] investigated the
impact of ageing on ACE2 expression in lung epithelial cells
and found that the older group exhibited signifcantly lower
levels of ACE2 expression compared to the young group
[31]. Moreover, ACE2 restricts the macrophage expression
in many proinfammatory cytokines in vitro, such as tumor
necrosis factor-α (TNF-α) and interleukin-6 (IL-6) [32].
However, regarding COVID-19, ACE2 is downregulated by
the virus, which enhances the macrophage expression [33],
evidenced by macrophage activation. ACE2 has a high level
of expression in the luminal area of tubular epithelial cells in
the kidneys [34], as well as cardiomyocytes in the heart [35].
It is also detectable in the gut and the lungs [36]. Dys-
functions of diferent organs in COVID-19 cases are ex-
plainable by the elevated level of ACE2 expression.
Terefore, SARS-CoV-2 infection downregulates ACE2 and
causes the Ang II involvement [21]. It is assumed that ACE2
has a protective function in diferent organs, and ACE2
downregulation in SARS-CoV-2 infection has deleterious
efects [37]. Te overactivation of the angiotensin (Ang) II/

AT1R axis caused by the SARS-CoV-2 spike protein’s
downregulation of ACE2 may be the reason for the harmful
efects of Ang II, which could potentially clarify the mul-
tiorgan dysfunction observed in patients. [37]. Due to its
extensive distribution throughout various organs, ACE2 has
the ability to counteract the activation of the conventional
RAS system, thus safeguarding against hypertension, di-
abetes, cardiovascular disease, and organ damage [38].
Accordingly, we can propose potential treatments to obtain
better outcomes in severe COVID-19 patients.

3. Role of ACE2 in Lung Protection

In the respiratory tract, ACE2 expression mainly occursin
the alveolar/bronchiolar epithelium, endothelium, and
smooth muscle cells of lung vessels [39]. Cell diferentiation
as well as ACE2 expression levels determine the vulnerability
of human airway epithelial cells to infections [40]. In the
respiratory system, treatment with recombinant ACE2 was
efective for lung diseases and survival of patients with virus-
induced ARDS and SARS [6, 41, 42]. SARS-CoV-2 infection
is associated with the ACE2 depletion from the cell surface
and the loss of ACE2-mediated tissue protection [21].

Te therapeutic efects of recombinant human ACE2
(rhACE2) have been recently investigated in diferent acute
and chronic animal diseases linked to enhanced Ang1–8
concentrations or dysregulated RAS. In ACE2-knockout
mice receiving Ang1–8, rhACE2 prevented Ang1–8-
related arterial hypertension, oxidative stress, and tubu-
lointerstitial fbrosis [43]. It also inhibited pathological
hypertrophy, myocardial fbrosis, and diastolic dysfunction
[44], while reducing the diabetic nephropathy progression
[45]. Also, rhACE2 suppressed the liver fbrosis develop-
ment in bile duct ligation and chemically-induced liver f-
brosis in a mouse model [46]. Moreover, rhACE2 systemic
administration caused an improvement in the pulmonary
blood fow as well as blood oxygenation in a lipopolysac-
charide (LPS)-associated ARDS model in piglets [47].

According to Kuba et al. [48], SARS-CoV-2 down-
regulated ACE2 protein (but not ACE) in mice through
attachment to its spike protein, leading to severe lung injury.
Terefore, excessive amounts of ACE2 in a competitive
manner are attached to SARS-CoV-2 for neutralizing the
virus as well as rescuing cellular ACE2 activity that has
a negative regulatory role for RAS to protect the lungs
against injury [49, 50]. It is known that the increased ACE
activity and reduced ACE2 accessibility cause lung injury in
acid- and ventilator-related lung injury [49, 51, 52].
Terefore, administrating the soluble type of ACE2 has
a dual function: (1) slow entrance of the virus into cells,
leading to viral spread [53, 54]; and (2) protection of the
lungs against damage [48].

It has been shown that the rhACE2 protein (APN01 and
GSK2586881) has no harmful hemodynamic impacts in
normal cases and some cases with ARDS [6, 42, 55]. In this
regard, Haschke et al. carried out the frst single-dose es-
calation and tolerability research on human to assess the
pharmacokinetics and pharmacodynamics of rhACE2 fol-
lowing its intravenous admonition in normal humans [6].
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Moreover, Khan et al. showed that infusion of GSK2586881,
a recombinant form of rhACE2, resulted in expected
changes of RAS biomarkers and was well-tolerated by ARDS
patients [42]. Also, Monteil et al. demonstrated that human
recombinant soluble ACE2 (hrsACE2) remarkably blocked
the early stages of SARS-CoV-2 infection [56]. Alhenc-Gelas
and Drueke showed that ARDS patients well-tolerated

sACE2 in clinical phase I and II trials. Tey suggested
that sACE2 has additional efectiveness on the lungs and
diferent organs, such as the kidneys [57]. Te development
of human recombinant soluble ACE2, also known as
hrsACE2, aims to reduce lung injury and prevent multiple
organ dysfunction. Tis is achieved by competing with
membrane-bound ACE2, thereby reducing the SARS-CoV-2

RENIN-ANGIOTENSIN SYSTEM inactive peptide

Angiotensin (1-5)

ACE

ACE

Angiotensin (1-9) MME
MAS 1

Angiotensin (1-7)

Alamandine

ACE2

THOP1 MRGPRD
CTSA NLN
CPA3

MME

ACE2

Renin secretion
ACE2

AngA
Liver Kidney &

tissues
AT2R

PRCP

AGT
REN Angiotensin I CMA1 Angiotensin II AT1R

CTSG
AP-A

ACE Vascular smooth
muscle contraction

Angiotensin III Aldosterone synthesis
and secretionTonin

AP-N

CTSG Degradation of
bradykinin

Angiotensin IV IRAP

AP-N

Enhanced
vasoconstriction

Angiotensin (5-8)Complement and
coagulation cascades PREP inactive peptides

Kallikrein-kinin
system Angiotensin (5-7)

PRR Protein synthesis,
antiapoptosis, proliferation

Vasoconstriction, Infammation,
Fibrosis, Antinatriuresis,
ROS generation,
Na+ and water retention

Vasodilation
Antifbrosis

Vasodilation, Antifbrosis,
Apoptosis, Natriuresis,
Anti-infammation

Vasodilation, Antifbrosis,
Apoptosis, Natriuresis,
Anti-infammation

Vasoconstriction, Infammation,
ROS generation,
Na+ and water retention

Figure 1: Detailed representation of the renin-angiotensin system cascade. ACE, angiotensin-converting enzyme; Ang, angiotensin; AT 1,
Ang II type 1 receptor; AT2, Ang II type 2 receptor; Mas, Ang-(1–7) receptor.

SARS-CoV-2

Soluble ACE2

ACE2

Binding of SARS-CoV-2 to high-affinity
sACE2 outcompetes binding to ACE2 on
the cell surface.

internalization

Figure 2: Binding of SARS-CoV-2 to high-afnity sACE2 outcompetes binding to ACE2 on the cell surface.

Advances in Virology 3



entrance into target cells [58] (Figure 2). In addition, the
growth of SARS-CoV-2 virus is signifcantly decreased by
approximately 1000–5000 times in cell culture, engineered
human blood vessels, and kidney organoids upon admin-
istration of the engineered human recombinant soluble
ACE2 (hrsACE2) [56].

4. Conclusion

Te exciting potential of hrsACE2 as a protective measure
against viral infections, including COVID-19, has been
revealed in recent research. While these fndings hold great
promise, further investigation is crucial to fully explore the
therapeutic possibilities of this innovative approach.
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Österreicher, and Y. Kodama, “Angiotensin-converting-en-
zyme 2 inhibits liver fbrosis in mice,” Hepatology, vol. 50,
no. 3, pp. 929–938, 2009.

[47] B. Treml, N. Neu, A. Kleinsasser, C. Gritsch, T. Finsterwalder,
and R. Geiger, “Recombinant angiotensin-converting enzyme
2 improves pulmonary blood fow and oxygenation in
lipopolysaccharide-induced lung injury in piglets,” Critical
Care Medicine, vol. 38, no. 2, pp. 596–601, 2010.

[48] K. Kuba, Y. Imai, S. Rao, H. Gao, F. Guo, and B. Guan, “A
crucial role of angiotensin converting enzyme 2 (ACE2) in
SARS coronavirus–induced lung injury,” Nature Medicine,
vol. 11, no. 8, pp. 875–879, 2005.

[49] Y. Imai, K. Kuba, S. Rao, Y. Huan, F. Guo, and B. Guan,
“Angiotensin-converting enzyme 2 protects from severe acute
lung failure,” Nature, vol. 436, no. 7047, pp. 112–116, 2005.

[50] L. Yu, K. Yuan, H. T. A. Phuong, B. M. Park, and S. H. Kim,
“Angiotensin-(1-5), an active mediator of renin-angiotensin
system, stimulates ANP secretion via Mas receptor,” Peptides,
vol. 86, pp. 33–41, 2016.

[51] R. Zhang, Y. Pan, V. Fanelli, S. Wu, A. A. Luo, and D. Islam,
“Mechanical stress and the induction of lung fbrosis via the
midkine signaling pathway,” American Journal of Respiratory
and Critical Care Medicine, vol. 192, no. 3, pp. 315–323, 2015.
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