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The organosilicon derivatives of 2-[1-(2-furayl)ethyledene]sulphathiazole with organosilicon chlorides have been synthesised and
characterized on the basis of analytical, conductance, and spectroscopic techniques. Probable trigonal bipyramidal and octahedral
structures for the resulting derivatives have been proposed on the basis of electronic, IR, 1H, 13C NMR, and 29Si NMR spec-
tral studies. In the search for better fungicides, bactericides, nematicides, and insecticides studies were conducted to assess the
growth-inhibiting potential of the synthesized complexes against various pathogenic fungal, bacterial strains, root-knot nematode
Meloidogyne incognita, and insect Trogoderma granarium. These studies demonstrate that the concentrations reached levels which
are sufficient to inhibit and kill the pathogens, nematode, and insect.
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INTRODUCTION

Sulpha drugs are a group of compounds used for eliminating
a wide range of infections in human and other animal sys-
tems. Many chemotherapeutically important sulpha drugs,
like sulphadiazine, sulphathiazole, sulphamerazine, and so
forth, possess SO2NH moiety which is an important tox-
ophoric function [1]. The heterocyclic compounds with both
sulphur and nitrogen atoms in the ring system have also
been used in the synthesis of biologically active complexes.
It is however noteworthy that the biological activity gets en-
hanced on undergoing complexation with metal ions [2].
Schiff bases and their metal complexes have exhibited bio-
logical activity as antibiotics, antiviral, and antitumor agents
because of their specific structures. Heteronuclear Schiff base
complexes have been found in applications as magnetic ma-
terials, catalysts and in the biological engineering field [3–6].

Organosilicon compounds of sulphur-containing ligands
have attracted much attention recently due to their biological
importance. The sulphur containing ligands are well known
for their anticarcinogenic, antibacterial, tuberculostatic, an-
tifungal, insecticidal, and acaricidal activities. It has been
reported that the activity of sulphur-containing ligand in-
creases on complexation [7–15]. The interest in organosil-
icon(IV) compounds is due to their versatile applicability
in the pharmaceutical industries. Generally, organosilicon
compounds seem to own their antitumour properties to the

immuno defensive system of the organism [16–19]. The
medical applications and effectiveness of the silatranes in the
treatment of wounds and tumours are thought to be related
to the role of silicon in the growth of epithelial and connec-
tive tissues and hair, where its function is to impart strengths,
elasticity, and impermeability to water [20].

The preparation and characterization of one biologically
active sulphonamide imine derived from 2-acetylfuran with
sulphathiazole and its silicon(IV) complexes form the subject
of this paper. The results of these investigations seem to be
promising. Based on the coordination sites available in the
ligand system, this has been classified as monobasic bidentate
ligand (Scheme 1).

EXPERIMENT

Adequate care was taken to keep the organosilicon(IV) com-
plexes, chemicals, and glass apparatus free from moisture;
clean and well-dried glass apparatus fitted with quickfit in-
terchangeable standard ground joints was used throughout
the experimental work. All the chemicals and solvents used
were dried and purified by standard methods.

Physical measurements and analytical methods

Nitrogen and sulfur were estimated by the Kjeldhal’s and
Messenger’s methods, respectively. Silicon was determined
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gravimetrically as SiO2. Molecular weights were determined
by the Rast camphor method (freezing point depression
method) using resublimed camphor (MP 178◦C).

Conductance measurements

The conductance measurements were carried out in dry
dimethylformamide (DMF) at room temperature using a
systronics conductivity bridge (model 305) in conjunction
with a cell having a cell constant of 1.0.

Electronic spectra

The electronic spectra were recorded on a Perkin Elmer UV
visible spectrophotometer in the range 200–600 nm, using
dry methanol as the solvent.

IR spectra

Infrared spectra were recorded on a Nicolet Magna FT-IR 550
spectrophotometer in KBr pellets.

Nuclear magnetic resonance measurements

Multinuclear magnetic resonance spectra (1H, 13C, and 29Si)
were recorded on an FX 90 Q JEOL spectrometer operating
at 90 MHz.

1H NMR spectra

1H NMR spectra were recorded in deuterated methanol at
89.55 MHz using tetramethylsilane (TMS) as an internal
standard.

13C NMR spectra

13C NMR spectra were recorded in dry methanol using TMS
as the internal standard at 22.49 MHz.

29Si NMR spectra

29Si NMR spectra were recorded at 17.75 MHz using deuter-
ated dimethylsulphoxide (DMSO-d6) as the solvent.

Preparation of the ligand

The sulphonamide imine was prepared by the condensation
of 2-acetylfuran with sulphathiazole in equimolar ratio in ab-
solute alcohol. The contents were refluxed for 3–4 hours and
the solid which separated out was filtered off, recrystallized
from the same solvent (ethanol), and dried in vacuo. The
physical properties and microanalysis of this sulphonamide
imine are recorded in Table 1.

Synthesis of the organosilicon(IV) complexes

For the synthesis of the complexes, first the sodium salt of
the ligand was prepared by dissolving sodium metal (0.04–
0.07 g) in 30 mL of methanol. Now to the weighed amount
of organosilicon chlorides in 1 : 1 (0.38–0.51 g) or 1 : 2 mo-
lar ratios (0.11–0.29) in 20 mL methanol, the above prepared
sodium salt of the ligand was added. The solution was re-
fluxed for a period of 15–17 hours. The white precipitate of
sodium chloride, formed during the course of the reaction,
was removed by filtration and the filtrate was dried under re-
duced pressure. The resulting product was repeatedly washed
with a mixture of methanol and n-hexane (1 : 1 v/v) and then
finally dried for 3–4 hours. The purity was further checked by
TLC using silica gel G. The details of these reactions and the
analyses of the resulting products are recorded in Table 1.

RESULTS AND DISCUSSION

The 1 : 1 and/or 1 : 2 molar reactions of Me2SiCl2, Ph2SiCl2,
and Ph3SiCl with sulphonamide imine have led to the forma-
tion of Me2SiCl(2-Ac-F-St), Me2Si(2-Ac-F-St)2, Ph2SiCl(2-
Ac-F-St), Ph2Si(2-Ac-F-St)2, and Ph3Si(2-Ac-F-St) types of
complexes. The reactions have been carried out in perfectly
dry methanolic medium and proceed smoothly with the pre-
cipitation of NaCl. These reactions can be represented by the
general equations in Scheme 2 showing the formations of the
sodium salt and the complexes.

The resulting coloured solids are soluble in most of
the common organic solvents. These have been found to
be monomeric as evidenced by their molecular weight de-
terminations. The low values of molar conductivity (10–
27 ohm−1 cm2 mol−1) of the resulting silicon complexes in
anhydrous DMF show them to be nonelectrolytes in nature.

UV spectra

The electronic spectra of the sulphonamide imine and its
1 : 1 and 1 : 2 organosilicon(IV) complexes have been
recorded. The spectrum of the ligand shows a broad band
at 370 nm which can be assigned to the n-π∗ transitions
of the azomethine group. This band shows a blue shift in
the silicon complexes appearing at 351, 353, 359, and 355,
362 nm for 1 : 1 and 1 : 2 derivatives, respectively, due to
the polarisation within the >C=N chromophore caused due
to formation of covalent silicon–nitrogen bond. The bands
at 255 and 285 nm are due to π–π∗ transitions, within the
benzene ring and (>C=N) band of the azomethine group,
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Table 1: Analysis and physical properties of the ligand and its silicon complexes.

Compound

Elemental analysis (%)

Reactant (g) Colour Yield MP C H N S Si Cl Mol Wt

M∗ LH∗ Na∗ and state (%) (◦C) Found Found Found Found Found Found Found

(Calcd) (Calcd) (Calcd) (Calcd) (Calcd) (Calcd) (Calcd)

(2-Ac-F-StH) — — — Light yellow 73 124–130
51.62 3.51 11.84 18.19

— —
325

(51.86) (3.77) (12.09) (18.45) (347.39)

Me2SiCl(2-Ac-F-St) 0.38 1.02 0.07
Dark brown

74 71–73
46.18 3.88 9.26 14.19 6.07 8.00 412

solid (46.40) (4.12) (9.55) (14.57) (6.38) (8.05) (439.99)

Me2Si(2-Ac-F-St)2 0.11 0.61 0.04
Light brown

76 109–111
50.99 3.67 10.77 16.70 3.48

—
738

solid (51.18) (4.02) (11.19) (17.07) (3.74) (750.92)

Ph2SiCl(2-Ac-F-St) 0.48 0.66 0.04
Dark brown

74 149–151
57.15 3.58 7.09 11.00 4.71 5.92 542

solid (57.48) (3.93) (7.44) (11.36) (4.97) (6.28) (564.13)

Ph2Si(2-Ac-F-St)2 0.29 0.81 0.05
Dark brown

77 155–157
57.31 3.74 9.42 14.19 3.00

—
858

solid (57.64) (3.91) (9.60) (14.65) (3.20) (875.05)

Ph3Si(2-Ac-F-St) 0.51 0.60 0.04 Brown solid 81 90–92
65.02 4.12 6.68 10.19 4.22

—
588

(65.42) (4.49) (6.93) (10.58) (4.63) (605.78)
∗M = silicon compound, LH = ligand, and Na = sodium metal.

respectively. The K band π–π∗ showed a red shift due to the
overlap of the central metal d-orbital with the p-orbital of
the donor atom which causes an increase in conjugation and
the B-bands undergo a hypsochromic shift in the complexes
[21], see Table 2.

IR spectra

The assignments of characteristic IR frequencies for the re-
sulting complexes may be discussed as follows.

The IR spectra of these derivatives do not show any band
in the region 3400-3150 cm−1 which could be assigned to
νNH. This clearly indicates the deprotonation of the ligand as
a result of complexation with the silicon atom. A sharp band
at 1628 cm−1 due to ν(>C=N) frequency of the free azome-
thine group in the ligand shifts to the lower frequency (ca
15 cm−1) in the silicon complexes and indicating thereby the
coordination of the azomethine nitrogen to the silicon atom.
A shift of this frequency to the higher and lower wave num-
ber side as well as the “no change” has also been reported in
the literature [16].

In dimethylsilicon(IV) complexes, a band at ca 1420
cm−1 has been ascribed to the asymmetric deformation
vibrations of (CH3−Si) group, whereas the band at ca
1270 cm−1 has been ascribed to the symmetric deforma-
tion mode of (CH3−Si) group. New bands are observed in
the spectra of the complexes at ca 570–582 cm−1 due to the
ν(Si ← N) vibrations. These remain absent in the spectrum
of the ligand. A band due to ν(Si−Cl) at ca 423 and 439 cm−1

is observed in 1 : 1 diorganosilicon(IV) derivatives. It has
been reported [16] that the cis form of such complexes gives
rise to two ν(Si ← N) bands, whereas in the transform only
one IR active ν(Si ← N) band is observed. The presence of

only one ν(Si ← N) band in the present case suggests that the
complexes exist in the transform, see Table 3

1H NMR spectra

The proton magnetic resonance spectral data of sulphona-
mide imine and its corresponding silicon complexes have
been recorded in DMSO-d6. The chemical shift values rel-
ative to the TMS peak are listed in Table 4.

The broad signal due to the −NH proton in the ligand
disappears in the case of silicon complexes showing the co-
ordination of silicon to nitrogen after the deprotonation of
the functional group. The azomethine proton signal due to

methyl proton (H3−
|
C=N) appears at δ 2.10 ppm in the lig-

and. The downfield shift of this position in the spectra of the
complexes substantiates the coordination of azomethine ni-
trogen to the silicon atom. The additional signal in the region
δ (1.01 and 1.13 ppm) in Me2SiCl(2-Ac-F-St) and Me2Si(2-
Ac-F-St)2 types of complexes are due to Me2Si group.

The ligand shows a complex pattern in the region δ 8.10–
6.92 ppm for the aromatic protons and this is observed in
the region δ 8.78–6.95 ppm in the spectra of the organosili-
con(IV) complexes. This shifting also supports the coordina-
tion through the nitrogen atom.

13C NMR spectra

The conclusions drawn from the UV, IR, and 1H NMR spec-
tra are concurrent with the 13C NMR spectral data regard-
ing the confirmation of the proposed structure. 13C NMR
spectra of the ligand and its silicon complexes were also
recorded in dry DMSO. The shifting of the signals due to
carbon attached to the azomethine nitrogen in the spectra of
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Scheme 2: General equations showing the formations of the sodium salt and the complexes (R =Me and Ph).

the complexes further supports the involvement of this group
in complexation [15]. Data are recorded in Table 5.

29Si NMR spectra

The 29Si NMR spectra of Me2SiCl(2-Ac-F-St), Ph2SiCl(2-Ac-
F-St), and Ph3Si(2-Ac-F-St) give sharp signals at δ-91 to δ-
98 ppm and the spectra of Me2Si(2-Ac-F-St)2 and Ph2Si(2-
Ac-F-St)2 give sharp signals at δ-128 to δ-110 ppm, which
clearly indicates the penta- and hexa-coordinated environ-
ment, respectively, around the silicon atom. Though, the ex-
act geometries of these complexes can be suggested on the
basis of X-ray crystal structure; inspite of our best efforts
we could not develop a suitable crystal for the X-ray stud-
ies. Hence, X-ray data could not be included in the present
paper.

Table 2: UV spectral data of the ligand and its silicon complexes.

Ligand/complex
n-π∗ (nm) π-π∗ (nm) π-π∗ (nm)
>C=N C6H5 ring >C=N

(2-Ac-F-StH) 370 255 285

Me2SiCl(2-Ac-F-St) 359 273 281

Me2Si(2-Ac-F-St)2 362 276 278

Ph2SiCl(2-Ac-F-St) 351 280 275

Ph2Si(2-Ac-F-St)2 355 285 271

Ph3Si(2-Ac-F-St) 353 290 268

Thus, on the basis of the above spectral features, as well
as the analytical data, the penta-coordinated trigonal bipyra-
midal and hexa-coordinated octahedral geometries shown in
Figure 1 have been suggested for the organosilicon(IV) com-
plexes.
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Table 3: IR spectral data (cm−1) of the ligand and its silicon complexes.

Compound/ligand ν(NH) ν(C=N) ν(Si ← N) ν(Si−Cl)
(2-Ac-F-StH) 3400-3150 (m)∗ 1628 (vs)∗ — —

Me2SiCl(2-Ac-F-St) — 1622 577 w∗ 423 m

Me2Si(2-Ac-F-St)2 — 1625 582 w —

Ph2SiCl(2-Ac-F-St) — 1619 574 w 439 m

Ph2Si(2-Ac-F-St)2 — 1613 576 w —

Ph3Si(2-Ac-F-St) — 1616 570 w —
∗m =medium, vs = very strong, and w = weak.

Table 4: 1H NMR spectral data (δ, ppm) of the ligand and its silicon complexes.

Ligand/complex Si−CH3 CH3 NH Aromatic proton 29Si NMR
(2-Ac-F-StH) — 2.10 (3H, s∗) 10.54 (br∗, 1H) 8.10-6.92 (m)∗ —

Me2SiCl(2-Ac-F-St) 1.01 (1s, 6H) 2.25 (3H, s) — 8.36-7.20 (m) −98 (ppm)

Me2Si(2-Ac-F-St)2 1.13 (s, 6H) 2.17 (6H, s) — 8.784-7.00 (m) −128 (ppm)

Ph2SiCl(2-Ac-F-St) — 2.22 (3H, s) — 8.48-6.95 (m) −94 (ppm)

Ph2Si(2-Ac-F-St)2 — 2.15 (6H, s) — 8.56-7.30 (m) −110 (ppm)

Ph3Si(2-Ac-F-St) — 2.19 (3H, s) — 8.51-7.14 (m) −91 (ppm)
∗m =multiplet, br = broad, and s = singlet.

BIOLOGICAL ASPECTS

Fungicidal, bactericidal, nematicidal, and insecticidal activi-
ties of the sulphonamide imine and its respective organosil-
icon(IV) complexes against pathogenic fungi, bacteria, root-
knot nematode, and insect are recorded in Tables 6–12.

Antifungal screening

Like plant cells, fungi also possess cell walls but they cannot
perform photosynthesis, moulds spoil food, damage potato,
and crop plants (corn and wheat). They also cause rotting
of clothes, shoes, and wooden materials. Some fungi cause
diseases like athlete’s foot and ring worm.

Method

The antifungal activities were evaluated against Macrophom-
ina phaseolina, Aspergillus niger, Fusarium oxysporum, and
Alternaria alternata by agar plate technique [22]. The com-
pounds were dissolved in 25, 50, and 100 ppm concentrations
in methanol and then mixed with the medium. The linear
growth of the fungus was obtained by measuring the diam-
eter of the colony after 96 hours. The inhibition percentage
was calculated as 100 (Df c − Df t)/D f c, where Df c and Df t

are the diameters of the fungus colony in the control and the
test plates, respectively.

Antibacterial screening

Of all the microorganisms, bacteria are the most abundant.
They generally reproduce quite fast, such as P cepacicola
which reproduces itself every 9.5 minutes. However, some

bacteria are very slow growing, such as those that cause tu-
berculosis and leprosy. This makes early diagnosis of these
diseases rather difficult. The most common bacteria used for
scientific research is E coli. Its normal living place is the lower
human intestine (COLON).

Method

Bactericidal activities were evaluated by the paper disc plate
method [23]. The nutrient agar medium (peptone, beef ex-
tract, NaCl, and agar-agar) and 5 mm diameter paper discs
(Whatman No. 1) were used. The compounds were dissolved
in methanol in 500 and 1000 ppm concentrations. The filter
paper discs were soaked in different solutions of the com-
pounds, dried, and then placed in the petri plates previ-
ously seeded with the test organisms (P cepacicola, E coli,
K aerogenous, and S aureus). The plates were incubated for
24–30 hours at 28±2◦C and the inhibition zone around each
disc was measured.

Observations

The free ligand and its respective metal chelates were
screened against selected fungi and bacteria to assess their
potential as antimicrobial agents. The results are quite
promising. The antimicrobial data reveal that the complexes
are superior than the free ligands. The enhanced activity
of the silicon chelates may be ascribed to the increased
lipophilic nature of these complexes arising due to the chela-
tion [24]. The toxicity increased as the concentration was
increased. Further, the results of bioactivity were compared
with the conventional fungicide, Bavistin, and the conven-
tional bactericide, Streptomycin, taken as standards in either
case.
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Table 5: 13C NMR spectral data (δ, ppm) of the ligand and its silicon complexes.

Ligand/complex Azomethine C-atom Si−CH3
C1 C2 C3 C4 C9 C11
C5 C6 C7 C8 C10

(2-Ac-F-StH) 155.91 —
146.02 138.99 120.98 143.94 152.60

151.80
128.01 122.46 124.01 125.98 150.00

Me2SiCl(2-Ac-F-St) 144.76 13.98
148.91 139.21 121.12 142.92 149.20

150.70
125.96 120.24 123.67 119.76 150.95

Me2Si(2-Ac-F-St)2 148.51 15.01
147.69 140.96 121.32 143.01 149.45

149.85
124.21 120.96 122.21 119.10 151.00

Ph2SiCl(2-Ac-F-St) 153.46 —
146.36 137.01 120.76 142.10 151.20

149.70
126.01 121.78 119.98 122.46 150.15

Ph2Si(2-Ac-F-St)2 146.76 —
145.16 138.06 127.92 143.21 147.20

150.12
128.96 121.02 120.21 123.74 149.80

Ph3Si(2-Ac-F-St) 154.90 —
144.05 133.42 120.81 143.40 148.78

149.40
127.01 121.98 123.32 124.86 150.55
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Figure 1: (a) The penta-coordinated trigonal bipyramidal and (b)
hexa-coordinated octahedral geometries R=Me/Ph and X= Ph/Cl.

In fungicide activity, most of the organosilicon(IV) com-
plexes were able to inhibit and kill the pathogens at 50 ppm
concentration, whilst 100 ppm concentration proved invari-
ably fatal. None of the fungi was able to withstand this con-
centration. In bactericidal activity, the complexes exhibited
remarkable potential in inhibiting the growth of pathogens.
Many of the complexes were found to be even more toxic
than the standard. Thus, it can be postulated that further in-
tensive studies of these complexes in this direction as well as
in agriculture could lead to the interesting results.

Nematicidal activity

Development of the concept of pest management and their
implementation have led to a greater appreciation of the need
for a wide range of tactics for nematode control. The ob-
jective of nematode control is to improve growth and yield
of plants, which can be achieved through a reduction of the

nematode population in soil or in plants, or through a reduc-
tion of their damage. Chemical method can be used to con-
trol nematodes [25]. M incognita produce galls on the roots
of many host plants and responsible for 44.87 percent of yield
loss in brinjal [26].

Method

First of all we applied different concentrations (25, 50, and
100) in ppm of complexes and ligand on root-knot nema-
tode M incognita spp. in a step-by-step [27] procedure. For
experiment, egg masses were separated from heavily infected
brinjal roots and washed under running water. After cutting
the roots, one percent of sodium hypochlorite solution was
added, shaked, and then sieved through 150 and 400 sieves.
Then the eggs of nematode were counted and replicated three
times. At this experiment, temperature range was 30± 2◦C.

Observations

Maximum hatching was recorded in control. All the metal
complexes are more toxic than the ligand and all bimo-
lar complexes are more active than unimolar organosili-
con derivatives. Dimethylsilicon(IV) complexes are less haz-
ardous than diphenylsilicon(IV) complexes. The activity in-
creases with increasing the concentration of the solutions.

Mode of action [15]

Much smaller amounts of the nonfumigant and fumigant ne-
maticides are needed in plant protection against nematode
because the indirect hematostatic effects of non-fumigant
nematicides resulting from impairment of neuromuscular
activity, interfere with movement, feeding, invasion, devel-
opment, reproduction, fecundity, and hatching of nematodes
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Table 6: Fungicidal screening data of the ligand and its silicon complexes inhibition percentage after 96 hours and SD values (25, 50, and
100 are concentrations in ppm).

Ligand/complex
Aspergillus niger Macrophomina phaseolina Fusarium oxysporum Alternaria alternata

25 50 100 25 50 100 25 50 100 25 50 100

(2-Ac-F-StH)
34 53 61 35 50 68 39 56 65 43 60 66

(50.72) (38.37) (37.75) (51.38) (39.02) (29.16) (44.28) (38.46) (35.00) (39.44) (30.23) (34.00)

Me2SiCl(2-Ac-F-St)
37 56 72 38 52 71 42 59 71 45 62 68

(46.37) (34.88) (36.11) (47.22) (36.58) (26.04) (40.00) (35.16) (29.00) (36.62) (27.91) (32)

Me2Si(2-Ac-F-St)2
42 63 78 41 57 74 46 65 74 47 65 72

(39.13) (26.74) (20.40) (43.05) (30.48) (22.44) (35.28) (28.57) (26.00) (33.80) (24.42) (28.00)

Ph2SiCl(2-Ac-F-St)
38 57 76 40 53 72 43 61 73 46 63 70

(44.92) (33.72) (22.44) (44.44) (35.36) (26.53) (38.57) (32.96) (27.00) (35.21) (26.74) (30.00)

Ph2Si(2-Ac-F-St)2
44 66 82 47 61 80 48 67 78 49 66 76

(36.23) (23.25) (16.32) (34.72) (25.60) (18.36) (31.42) (26.37) (22.00) (30.99) (23.26) (24.00)

Ph3Si(2-Ac-F-St)
40 60 80 42 54 73 45 63 75 47 64 71

(42.02) (30.23) (18.36) (41.66) (34.14) (25.51) (35.71) (30.76) (25.00) (33.80) (25.58) (29.00)

Bavistin 69 86 98 72 82 96 70 91 100 71 86 100

Table 7: Bactericidal screening data of the ligand and its silicon complexes diameter inhibition zone (mm) after 24 hours (500 and 1000 are
concentrations in ppm).

Ligand/complex
Esherichia coli (−) Klebsiella aerogenous (−) Pseudomonas cepacicola (−) Staphylococcus aureus (+)
500 1000 500 1000 500 1000 500 1000

(2-Ac-F-StH) 6 6 6 11 10 12 9 13
Me2SiCl(2-Ac-F-St) 8 12 9 15 12 14 12 14

Me2Si(2-Ac-F-St)2 10 16 11 17 15 17 16 18

Ph2SiCl(2-Ac-F-St) 10 14 10 16 14 16 15 16

Ph2Si(2-Ac-F-St)2 13 18 14 19 17 19 18 19

Ph3Si(2-Ac-F-St) 11 16 12 17 15 17 16 17

Streptomycin 1 2 3 5 2 5 15 17

Table 8: Nematicidal screening data of the ligand and its silicon
complexes (25, 50, and 100 are concentrations in ppm).

Ligand/complex
(% of hatching M incognita)

25 50 100
(2-Ac-F-StH) 22.5 19.0 15.0

Me2SiCl(2-Ac-F-St) 20.2 16.5 No hatching

Me2Si(2-Ac-F-St)2 18.5 14.9 No hatching

Ph2SiCl(2-Ac-F-St) 19.6 16.4 No hatching

Ph2Si(2-Ac-F-St)2 15.9 11.9 No hatching

Ph3Si(2-Ac-F-St) 18.6 14.0 No hatching

which are considered more important than their direct
killing action.

Insecticidal activity

Many insects cause injury to economic plants by feeding on
them externally: by chewing their leaves or other part: In or-
der to raise more food, man has devised methods to alter
normal population growth of many insect pests by reducing

their chance for survival. To control the insect pests, the man
since long has been employing various strategies which in-
clude mechanical, physical, chemical, and biological meth-
ods [28].

Methods

Ovicidal

To determine the efficacy of complexes as ovicide, eggs were
treated by contact method. By spreading 1 mL of complex so-
lutions on petri dishes (5.0 cm diameter), a thin film of 100
and 200 concentrations were prepared. The solvent was al-
lowed to evaporate 200 eggs for 0–24 hours and kept in con-
tact with the insecticidal film through out their incubation
period. A control with each experiment was also run in which
the eggs were kept in 1 mL of solvent. By Abott’s formula
[29], percentage of egg of mortality and percentage of cor-
rected egg of mortality were calculated.

% corrected mortality = KT − KC

100− KC
× 100, (1)

where KT = % kill in treated, KC = % kill in control.
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Table 9: Ovicidal screening data of the ligand and its silicon complexes (100 and 200 are concentrations in ppm).

Ligand/complex Dose level
Average no. of Average no. of % eggs

hatching
% eggs % corrected

eggs hatched eggs unhatched unhatched mortality

(2-Ac-F-StH)
100 15 5 75 25 21.05
200 11 9 55 45 42.10

Me2SiCl(2-Ac-F-St)
100 13 7 65 35 31.57
200 9 11 45 55 52.63

Me2Si(2-Ac-F-St)2
100 9 11 45 55 52.63
200 7 13 35 65 63.15

Ph2SiCl(2-Ac-F-St)
100 11 9 55 45 42.10
200 7 13 35 65 63.15

Ph2Si(2-Ac-F-St)2
100 8 12 40 60 57.89
200 5 15 25 75 73.68

Ph3Si(2-Ac-F-St)
100 10 10 50 50 47.36
200 7 13 35 65 63.15

Control — 19 1 95 5 —

Table 10: Larvicidal screening data of the ligand and its silicon complexes (100 and 200 are concentrations in ppm).

Ligand/complex Dose level
Average no. of Average no. of % pupal % larval % corrected
pupal formed dead larvae formation mortality mortality

(2-Ac-F-StH)
100 16 4 80 20 15.78
200 13 7 65 35 31.57

Me2SiCl(2-Ac-F-St)
100 13 7 65 35 31.57
200 10 10 50 50 47.36

Me2Si(2-Ac-F-St)2
100 9 11 45 55 52.63
200 7 13 35 65 63.15

Ph2SiCl(2-Ac-F-St)
100 11 9 55 45 42.10
200 8 12 40 60 57.89

Ph2Si(2-Ac-F-St)2
100 7 13 35 65 63.15
200 5 15 25 75 73.68

Ph3Si(2-Ac-F-St)
100 11 9 55 45 42.10
200 6 14 30 70 68.42

Control — 19 1 95 5 —

Larvicidal

By feeding method larvicidal efficacy of the synthesized
chemicals was assessed. The last instar larvae were separated
from subculture and kept in vials containing 5 g of topically
treated wheat grains with 1 mL of chemicals. Until the pu-
pal formation, larvae were allowed to continue their devel-
opment on this diet, replicated thrice, each dose. The food
was treated with solvent only in control. By Abott’s formula,
larval of mortality and percentage of corrected of mortality
were calculated.

Pupicidal

From the subculture, the last larval instars were stored out
and were kept in separate container. Pupal of known age
(0–12 hours) were taken out and were dipped in the desired
concentration (100 and 200) of the chemicals along with a
control of three replicates that were set for each dose and

total emergence and pupal of mortality were recorded after
96 hours. By Abott’s formula, percentage of pupal of mortal-
ity and percentage of pupal corrected of mortality were cal-
culated.

Adulticidal

By contact method the adulticidal action was assessed. With
1 mL of respective doses, 5 g of wheat grains were treated.
The solvent was allowed to evaporate completely. Along with
a control, experiment was replicated thrice. Newly emerged
adults were taken from the subculture and were released in
the plastic vials containing treated food. After 48-hour ob-
servations were taken and by Abott’s formula, percentage of
corrected of mortality was calculated.

Mode of action [30]

Some insecticides are physical poisons causing asphyxiation,
some are protoplasmic poisons, a few are respiratory poisons,
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Table 11: Pupicidal screening data of the ligand and its silicon complexes (100 and 200 are concentrations in ppm).

Ligand/complex Dose level
Average no. of
adults emerged

Average no. of
pupal mortality

% emerged
adult

% pupal
mortality

% corrected
mortality

(2-Ac-F-StH)
100 15 5 75 25 21.05

200 14 6 70 30 26.31

Me2SiCl(2-Ac-F-St)
100 14 6 70 30 26.31

200 11 9 55 45 42.10

Me2Si(2-Ac-F-St)2
100 10 10 50 50 47.36

200 6 14 30 70 68.42

Ph2SiCl(2-Ac-F-St)
100 12 8 60 40 38.84

200 8 12 40 60 57.89

Ph2Si(2-Ac-F-St)2
100 9 11 45 55 52.63

200 5 15 25 75 73.68

Ph3Si(2-Ac-F-St)
100 11 9 55 45 42.10

200 7 13 35 65 63.15

Control — 19 1 95 5 —

Table 12: Adulticidal screening data of the ligand and its silicon complexes (100 and 200 are concentrations in ppm).

Ligand/complex Dose level
Average no. of
adults in each vial

Average mortality
after 48 hours

% adult
mortality

% corrected
mortality

(2-Ac-F-StH)
100 20 4 20 15.78

200 20 6 30 26.31

Me2SiCl(2-Ac-F-St)
100 20 7 35 31.57

200 20 11 55 52.63

Me2Si(2-Ac-F-St)2
100 20 11 55 52.63

200 20 14 70 68.42

Ph2SiCl(2-Ac-F-St)
100 20 9 45 42.10

200 20 12 60 57.10

Ph2Si(2-Ac-F-St)2
100 20 12 60 57.89

200 20 15 75 57.89

Ph3Si(2-Ac-F-St)
100 20 10 50 73.68

200 20 4 70 47.36

Control — 20 1 5 68.42

but the majority of them are nerve poisons. The action of
insecticides upsets the normal behaviour and actions of the
target organisms.

Ovicidal, larvicidal, pupicidal, and adulticidal results are
shown in Tables 9, 10, 11, and 12. The data indicated the
same observations as were observed in nematicidal activity.
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