Compounds	$V_{asNH2}, V_{sNH2},$	ν_{NHs}	$\nu_{\text{C=0}}$	$\nu_{(C=N)s}$	δ_{NH2}	δ_{NHs}	V(NO₃)(ion)	$\nu_{\text{M-N}}$
	V _{OH}							
1) HL ¹	3410,3333	3184, 3160	1671	1586, 1565	1625	1493, 1442		
2) [Ag (HL ¹) ₂](NO ₃)	3319, 3247	3191	1671	1570, 1566	1595	1494,1420	1380	530
3) HL ²	3420, 3330	3195, 3180	1663	1599	1644	1522, 1488		
4) [Ag (HL ²) ₂](NO ₃)	3400, 3327	3205, 3192	1683	1591, 1583	1630	1487,	1381	560
5) HL ³	3380, 3335	3190, 3177	1667	1559,1530	1633	1505, 1464		
6) [Ag (HL ³) ₂](NO ₃)2H ₂ O	3410 (B.C),	3181 (B.C)	1668	1559, 1504	1629	1505, 1440	1384	511
7) HL ⁴	3456, 3356	3219, 3190	1672	1589, 1512	1637	1480, 1470		
8) [Ag (HL ⁴) ₂](NO ₃)	3445, 3338	3197(B)	1685	1573, 1512	1612	1470	1384	509

TABLE 1S: Characteristic IR spectral bands (cm⁻¹) for Ag(I)- pyrazolone (HL¹⁻⁴) complexes

B.C, Broad band centered

TABLE 2S: Plausible TGA data for Ag(I)- pyrazolone (HL¹⁻⁴) complexes

Compound	Steps	Temp.	Decomposed	Weight loss; Calcd
		range(°C)		(Found %)
1) HL ¹	1 st	150.2 - 250.5	- NH ₃ +CO	22.17(22.16)
	2 nd	251.1 - 560.2	- 2NH ₃ +2CN	42.37(42.37)
	Residue		6C	35.46(35.47)
2) [Ag (HL ¹) ₂](NO ₃)	1 st	155.3 - 280.4	$-NO_2+H_2CO_3+0.5H_2$	18.92(19.01)
	2 nd	282.3- 571.8	$-C_6H_6+3NH_3$	22.42(22.38)
	3 rd	572.0 - 770.2	-4CN	18.06(18.06)
	Residue		7C + AgN ₃	40.60(40.55)

3) HL ²	1 st	140.1 - 310.3	- NH ₃ +CO+HCl	34.29(34.41)
	2 nd	311.2 - 620.4	- N ₂ H ₄ +2CN	35.38(35.30)
	Residue		6C	30.33(30.29)
4) [Ag (HL ²) ₂](NO ₃)	1 st	162.1 - 350.1	$-NO_2+C_2O_3+CI_2$	29.28(29.28)
	2 nd	350.2- 610.1	$-C_{12}H_{10}+NH_2+N_2$	30.73(30.76)
	3 rd	610.3 - 810.8	-4HCN	16.76(16.76)
	Residue		AgN ₃	23.23(23.20)
5) HL ³	1 st	157.6 - 301.2	- NH ₃ +CO+N ₂	33.63(33.62)
	2 nd	301.2 - 631.7	- N ₂ H ₄ +CH ₄	22.14(22.21)
	Residue		8C	44.23(44.17)
6) [Ag (HL ³) ₂](NO ₃)2H ₂ O	1 st	67.8- 158.9	-2H ₂ O	5.63(5.62)
	2 nd	160.1 - 320.9	-NO ₂ +2CH ₄ +CO ₂ +CO	23.44(23.45)
	3 rd	322.1- 584.5	$-C_{12}H_{10}$	24.08(24.21)
	4 th	584.7 - 805.4	-4HCN+3N ₂	30.01(29.89)
	Residue		Ag	16.84(16.83)
7) HL ⁴	1 st	147.6 - 301.2	- NH ₃ +CO+N ₂	32.26(32.24)
	2 nd	301.2 - 631.7	- N ₂ H ₄ +CH ₄	33.87(33.90)
	Residue		8C	33.87(33.86)
8) [Ag (HL ⁴) ₂](NO ₃)	1 st	166.1 - 350.5	-2NO ₂ + 4HCN+N ₂	34.24(34.23)
	2 nd	350.5- 590.2	-N ₂ O ₅	16.21(16.18)
	3 rd	590.3 - 793.8	-2C ₆ H ₆	23.45(23.45)
	Residue		2C + AgN ₃	26.10(26.14)

Compound	Е _н (eV)	EL (eV)	(EH - EL) (eV)	El-Eh	x(eV)	µ(eV)	η(eV)	S(eV-1)	ω(eV)	б(eV)
H_2L^1	-0.18521	-0.06966	-0.1156	0.11555	0.127435	-0.12744	0.057775	0.028888	0.140542	17.30852445
Ag(I)-HL ¹	-0.21018	-0.19055	-0.0196	0.01963	0.200365	-0.20037	0.009815	0.004908	2.045142	101.8848701
H_2L^2	-0.19022	-0.07564	-0.1146	0.11458	0.13293	-0.13293	0.05729	0.028645	0.154219	17.45505324
Ag(I)-HL ²	-0.21571	-0.19595	-0.0198	0.01976	0.20583	-0.20583	0.00988	0.00494	2.144028	101.2145749
H_2L^3	-0.18337	-0.06722	-0.1162	0.11615	0.125295	-0.1253	0.058075	0.029038	0.13516	17.21911322
Ag(I)-HL ³	-0.19798	-0.18199	-0.016	0.01599	0.189985	-0.18999	0.007995	0.003997	2.257305	125.0781739
H_2L^4	-0.18143	-0.06156	-0.1199	0.11987	0.121495	-0.1215	0.059935	0.029968	0.123142	16.6847418
Ag(I)-HL ⁴	-0.21877	-0.20101	-0.0178	0.01776	0.20989	-0.20989	0.00888	0.00444	2.480507	112.6126126

Table 3S.	Energy parameters	(eV)) applying	DFT	method
-----------	-------------------	------	------------	-----	--------

TABLE 4S: Significant log file data for pyrazolone ligands and their Ag(I) complexes

Compounds	N ⁸	N ¹⁵	N ³⁶	N ⁴³	М	C ¹¹ -N ¹⁵	C ¹² -N ⁸	D(Debye)	ţ	E(nm)
HL1	-0.372663	-0.810500				1.370778	1.290060	2.4597	0.0305	481.54
Ag(I)- HL ¹	-0.379435	-0.111566	-0.358308	-0.074319	-0.170741			4.5428	0.0259	2576.38
HL ²	-0.372993	-0.170822				1.370611	1.290075	1.7522	0.0307	491.48
Ag(I)- HL ²	-0.382616	-0.111681	-0.361115	-0.072323	-0.164420			4.5286	0.0241	2646.8
HL ³	-0.373119	-0.174258				1.370975	1.289734	2.8477	0.0322	477.42
Ag(I)- HL ³	-0.361510	-0.131663	-0.355586	-0.092131	-0.259004			2.1739	0.0025	9548.13
HL ⁴	-0.060119	-0.064912				1.417723	1.334193	5.5760	0.0001	5479.51
Ag(I)- HL ⁴	-0.362551	-0.143065	-0.207957	0.214036	-0.189765			1.7655	0.0048	7279.67

ligands	pKa, pKb	Receptor	Est. free energy of binding	Est. inhibition constant (K _i)(uM)	desolve desolve energy	Electrostatic Energy	Total intercooled Energy	Frequency	Interact surface
		3s7s	-6.76	11.06	-7.91	-0.04	-7.96	80%	423.372
ш ¹	1.58	3e1r	-4.75	330.07	-5.21	-0.05	-5.26	40%	416.009
пL	-0.81	4dk7	-3.88	1.42	-4.52	-0.05	-4.57	20%	479.222
		1bpb	-5.39	112.83	-5.88	-0.02	-5.91	50%	466.75
		3s7s	-7.89	1.64	-8.74	-0.11	-8.85	50%	455.857
Ш ²	2.10	3e1r	-5.29	132.93	-5.75	-0.05	-5.81	30%	435.984
пL	-0.84	4dk7	-4.01	1.14	-4.53	-0.07	-4.59	10%	506.796
		1bpb	-5.89	47.95	-6.75	-0.15	-6.89	20%	515.286
		3s7s	-7.04	6.89	-7.86	-0.10	-7.96	90%	456.741
ш ³	1.05	3e1r	-4.97	225.74	-5.46	-0.02	-5.48	50%	440.961
IIL	-0.80	4dk7	-4.14	917.05	-4.89	-0.10	-4.99	10%	517.815
		1bpb	-5.42	107.22	-6.23	-0.17	-6.40	50%	501.982
		3s7s	-8.27	863.48	-9.44	-0.11	-9.55	80%	461.009
Ш ⁴	2.54	3e1r	-5.18	159.40	-5.92	-0.04	-5.95	30%	449.648
11L	-0.85	4dk7	-4.58	437.03	-5.51	+0.02	-5.49	20%	511.913
		1bpb	-6.21	28.20	-7.37	-0.17	-7.54	40%	507.894

TABLE 5S: Energy values (k cal/mol) for pyrazolone - protein docked complexes

-

Figure 1S . ¹HNMR spectra of pyrazolone derivatives ,HL $^{(1-4)}$

Figure 2S . Mass spectra of two elected ligands

Figure 3S . ¹H NMR spectra of three Ag(I)- pyrazolone derivatives

Figure 4S . Mass spectra of selected ligands and three Ag(I) complexes

Figure 5 S. X-Ray patterns of three pyrazolone derivatives and their Ag(I) complexes

Figure 6S. SEM images of pyrazolone derivatives $HL^{(1-4)}$ and their Ag(I) complexes

Figure 7S. Spectrophotmetric plots for DNA binding towards Ag(I) complexes(1-4)

Figure 8S. Dose response curves of HL(1-4) ligands and their Ag(I) complexes against MCF-7, HEPG-2 and HCT-116 cancer cells, cells were treated with various concentrations of ligands and complexes incubated for 72 hrs. %5 CO₂.

Figure 9A,S. kinetic plots using Coats Redfern and Horowitz-Metzger for pyrazolone liugands, HL(1-4)

Figure 9B, S. kinetic plots using Coats Redfern and Horowitz-Metzger for pyrazolone- Ag(I) complexes

Figure 10A, S. Images of frontier molecular orbital's (HOMO,1 & LUMO,2) for pyrazolone ligands (HL $^{\rm 1-3}$)

Figure 10B, S. Images of frontier molecular orbital's(HOMO,1 & LUMO,2) for Ag(I)-HL ¹⁻³ complexes (A-c, respectively)

Figure 11S. Interacting complexes appeared with $3e_1r$, $4d_k7$ and 1bpb proteins and HL^{1-4} ligands

3e1r+HL²

3e1r+HL⁴

4d7k+HL1

3s7s+HL³

Key Ligaad bond Non-iggaad bond Non-iggaad bond Non-iggaad pool Non-iggaad residues inveserver(s) Non-iggaad residues inveserver(s)

Ligand bond Non-ligand bond Hydrogen bond and its length

Figure 12S . 2D plots for interacting complexes appeared with $3e_1r$, $4d_k7$, 1bpb and $3s_7s$ proteins and HL^{1-4} ligands