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Orodental problems have long been managed using herbal medicine. -e development of nanoparticle formulations with herbal
medicine has now become a breakthrough in dentistry because the synthesis of biogenic metal nanoparticles (MNPs) using plant
extracts can address the drawbacks of herbal treatments. Green production of MNPs such as Ag, Au, and Fe nanoparticles
enhanced by plant extracts has been proven to be beneficial in managing numerous orodental disorders, even outperforming
traditional materials. Nanostructures are utilized in dental advances and diagnostics. Oral disease prevention medicines,
prostheses, and tooth implantation all employ nanoparticles. Nanomaterials can also deliver oral fluid or pharmaceuticals, treating
oral cancers and providing a high level of oral healthcare. -ese are also found in toothpaste, mouthwash, and other dental care
products. However, there is a lack of understanding about the safety of nanomaterials, necessitating additional study. Many
problems, including medication resistance, might be addressed using nanoparticles produced by green synthesis. -is study
reviews the green synthesis of MNPs applied in dentistry in recent studies (2010–2021).

1. Introduction

Nanotechnology is a field of science that deals with nano-
meter-sized objects, which are referred to as nanoparticles
(NPs). Nanomaterials are small solid particles having a
dimension of 1–100 nanometers. Nanomaterials show
promise in antibacterial therapy because of their improved
and distinct physicochemical properties, including very

small dimensions, huge surface area compared to their mass,
and higher reactivity [1–5]. By adding many functional
groups to the nanoparticle, the quality of products can be
improved. -erefore, nanoproducts are widely used in
different industrial, medical, and dentistry sectors. Nano-
biotechnology is a unique method that has inspired the
development of a variety of nanobiomaterials with appli-
cations in biology and medicine [6]. Despite their potential
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antibacterial properties, most methods for synthesizing these
nanoparticles are costly and may have negative conse-
quences for the environment, biological systems, and human
health due to the usage of toxic and dangerous substances.
As a result, “green” nanoparticle synthetization technologies
have been created. Because no hazardous compounds are
utilized, this alternative uses biological systems such as yeast,
fungus, bacteria, and plant extracts, making it a safer and
more environmentally friendly alternative to chemical ap-
proaches. Plant extracts are widely used for a variety of
reasons, including their enormous and accessible reserves,
global distribution, safe handling, availability of a diverse
range of metabolites with high reducing potentials, and low
waste and energy costs [7–9]. -e broad application of
medical nanosystems in different branches of dentistry,
including prognosis, prevention, tissue regeneration, repair,
and care, has been documented in numerous studies (Fig-
ure 1). For quality oral care, advancements in oral medicine
nanosystems for individual prophylaxis are critical. Due to
their broad-spectrum antibacterial capabilities, metal
nanoparticles (MNPs) have been used in various dental
applications. To achieve a greater antibacterial impact, tinier
MNPs might release more of their ions. Many studies on the
antibacterial activities of NPs have found that NPs have
greater antibacterial activity in bacteria that are resistant to
antibiotics. As a result, the use of nanoparticles in dentistry
could be very beneficial [11–13]. Oral cosmetics with
nanomaterials are used in toothpaste and other products to
promote oral health. -ese procedures are applicable to
nanoparticles and nanoparticle-based materials, with a focus
on plaque management in periodontology and cariology.
NPs have also been used in a variety of cosmetic products to
help with enamel remineralization and dental hypersensi-
tivity [14]. More than 75 bacterial and fungal strains have
been linked to oral disorders. -e oral microbiota had been
altered by the accessible chemical reagents, resulting in
diarrhea, vomiting, and tooth discoloration. Traditional
medications can have a role in antibiotic treatment in
general, but antibiotic resistance and undesirable side effects
such as hypersensitivity, immunological suppression, and
allergic reactions are growing concerns. As a result, scientists
are attempting to create novel goods using natural materials.
Plant-based biomolecules can inhibit the growth of oral
infections, reduce tooth plaque, and reduce the symptoms of
oral illnesses [15]. Biofilms are characterized as microbial
communities that may house many bacterial and fungal
species and are associated with nearly every surface on the
planet, including human hard and soft tissues, and are
embedded in extracellular polymeric substances. -e ac-
cumulation of acidogenic biofilms on tooth surfaces, in
particular, causes the enamel to dissolve, a process known as
demineralization, which, if left untreated for long periods of
time, can cause the development of caries. Controlling oral
biofilm production is a difficult challenge, but nano-
therapeutics has been employed successfully in recent years
by adding nanoparticles into a variety of dental materials [7].
In this study, the dental application of green synthesis (GS)
in the production of MNPs has been reviewed in recent
studies (2010–2021).

2. Metal Nanoparticles

MNPs are the most widely used inorganic NPs and can be
considered a viable solution to antibiotic resistance. Fur-
thermore, they attack a variety of biomolecules, posing a
threat to the formation of resistant strains [16]. Because of
their physicochemical properties and uses in biotechnology,
metal nanoparticles (MNPs) created using green methods
have risen in popularity. Nowadays, green-synthesizing NPs
from plant extracts have become a critical concentration of
researchers due to the low toxicity of these NPs in the human
body and minimal hazardous influence on the environment.
-e shape and size of plant-derived NPs are more stable, and
they yield more than the other approaches. Furthermore,
some of these MNPs have demonstrated antibacterial action,
regularly validated in recent years. Plant extracts have been
employed as a reducing (RA) and stabilizer agent (SA) of
NPs, allowing us to minimize toxicity in both the envi-
ronment and the human body without the need for chemical
agents [17].

2.1. Metal Nanoparticles’ Characterization. Nanoparticles
have been studied using a variety of approaches to determine
their size, crystal structure, elemental content, and a range of
other physical features. Physical attributes can be examined
using more than one technique in numerous instances.
Different strengths and limits of each methodology make
selecting the best method difficult, and a combinatorial
characterization is frequently required. Size and shape are
two of the essential criteria addressed in the characterization
of NPs. We may also assess the surface chemistry and es-
timate the size distribution, degree of aggregation, surface
charge, and surface area. Other features and applications of
NPs may be influenced by their size, size distribution, and
organic ligands on their surfaces [18–20]. -ere are
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Figure 1: Green-synthesized metal nanoparticles’ medical appli-
cations [10].
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microscopy-based techniques (e.g., confocal laser scanning
microscopy (CLSM), scanning electron microscopy (SEM),
transmission electron microscopy [21], and atomic force
microscopy (AFM)) [22], which provide information on the
nanomaterials’ size, shape, and crystal structure. Other
approaches, such as magnetic procedures, are tailored to
certain families of materials. SQUID, VSM, FMR, and
XMCD are examples of these approaches. Many more
techniques give further information on the nanoparticle
samples’ structure, elemental content, optical characteristics,
and other common and more particular physical qualities.
X-ray, spectroscopy, and scattering techniques are examples
of these techniques. Microstructure and dispersion (sizes
and spatial distribution) of NPs must be described as a
function of different process parameters to optimize the
material qualities of MNPs [23]. UV/visible spectroscopy is a
method for determining how much light is absorbed and
dispersed by a substance. UV/Vis spectroscopy is a valuable
method for identifying, characterizing, and investigating
gold and silver plasmonic nanoparticles because their optical
properties are sensitive to size, shape, concentration, ag-
glomeration state, and refractive index near the nanoparticle
surface. Transmission electron microscopy [21] is a high-
magnification imaging technique that records the trans-
mission of an electron beam through a sample.-e preferred
way for directly measuring the particle size, grain size, size
distribution, andmorphology of nanoparticles is to use TEM
imaging. Sizing precision is usually within 3% of the actual
value. DLS (dynamic light scattering) is a valuable tech-
nology for determining the properties of nanoparticles and
other colloidal solutions. Because it offers information on
the aggregation state of nanoparticle solutions, the hydro-
dynamic diameter is a valuable complement to other size
studies such as TEM [24].

2.2. Metal Nanoparticle Antibacterial Mechanisms.
Electrostatic interactions draw electropositive MNPs to the
surface of electronegative bacterial cell walls. Apart from
this, MNPs form a strong bond with membranes, resulting
in the breakdown of cell walls and enhanced permeability.
Furthermore, nanoparticles can transfer metal ions [25] into
the cell from the extracellular area, disrupting physiological
systems. MIs and NPs may produce reactive oxygen species
(ROS) in the intracellular space. -e oxidative stress causes
glutathione to be oxidized, reducing bacteria’s antioxidant
defense system against ROS. As a result, MIs can interact
with cell components (membranes, proteins, and DNA),
disrupting cell functions [15]. MIs can create strong coor-
dination bonds with the nitrogen, oxygen, and sulfur atoms
found in organic compounds and biomolecules. MNPs have
a broad spectrum of activity because the connections be-
tween MIs and biological molecules are often not specific
[26].

2.3. Disadvantages of the Application of Metal Nanoparticles.
Although NPs have been shown to have numerous ad-
vantages, they also have certain drawbacks, such as high
costs, simple inhalation of nanoparticles, which can lead to

lung disease, and changes in homeostasis. Nanotoxicity is a
novel discipline of toxicology that studies the side effects of
NPs, which may have toxicological consequences. -e
nanoparticles’ tiny size makes them highly reactive and
causes many adverse molecular effects. Most plant extract
nanoparticles are unprocessed, yet they are not the func-
tional molecules of choice for plant extracts. For the low-cost
production of nanoparticles, all functional groups of plant
extracts are analyzed. Analyzing which molecule is
employed as a RA or SA and identifying the biological
nanoparticles in charge of therapeutic purposes are quite
complex. Assessing the system’s overall toxicity in vivo
should be a top goal. -e compensating dose for green-
produced nanomaterials will be challenging to achieve with
the reported dose. Green nanoparticles’ long-term impacts
on many clinicians will require more research in the future
[27].

3. Approaches for NPs’ Synthesis

3.1. Chemical Approach. Metallic precursors [28], RA, and
SA are the primary components of the chemical method
(inorganic and organic). Elemental hydrogen, the polyol
process, ascorbate, sodium citrate, NaBH4, Tollens’ reagent,
and ethylene glycol-block copolymers are all utilized as RAs
(Figure 2) [30].

3.2. Physical Approach. -e most common physical method
for the production of nanoparticles is a “top-down”
mechanism in which the size of the material decreased using
techniques such as ultrasonication, microwave (MW) irra-
diation, and electrochemical methods (Figure 2). -e most
well-known physical mechanisms are laser removal and
evaporation condensation. A carrier gas is created by va-
porizing the material inside a pontoon focused on the heater.
Various Au, Ag, and Cd NPs have been produced and
published using this dissipation buildup approach [31].

3.3. Green Approach. Traditional techniques have long been
utilized, but studies have shown that GS is the most suc-
cessful method for creating NPs because it has fewer risks of
failure, is less expensive, and is easier to characterize. GS
particles are distinct from those created by physical and
chemical methods. GS, a bottom-up mechanism for creating
MNPs, is similar to the chemical approach, in which bio-
logical components such as a plant extract replace a costly
chemical RA. Biological organisms have great potential for
producing NPs. Green reduction of MPs to NPs is favorable
to the environment and is sustainable, chemical-free, less
expensive, and scalable. Furthermore, the GS of NPs leads to
the recycling of valuable metal salts such as Au and Ag
present in steams of waste. Greenly coordinated NPs are
presently preferred over conventionally supplied NPs due to
their superior qualities. Because of their insecurity and
ambiguous composition, additional chemicals that are
hazardous and poisonous to human health and the envi-
ronment might enhance particle reactivity and toxicity and
produce undesired adverse health impacts. Green synthesis
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approaches are appealing because they can lessen nano-
particles’ toxicity. As a result, the usage of plant extracts is
becoming increasingly popular (Figure 2) [32, 33]. -e
collection and purification of the plant component of in-
terest is the initial step in a typical plant-mediated metal
nanoparticle production. -en, the plant is dried and pul-
verized. Deionized distilled water is generally poured into
the plant powder according to the required concentration
for plant extract production. -is solution is then heated
before being filtered. A particular volume of the extract is
combined with the right amount of metal salt solution. -e
combination is heated to the required temperature for the
specified duration while being thoroughly mixed. A color
shift of the solution is achieved when metal ions are reduced
to metal nanoparticles which may then be checked by UV-
visible spectra (Figure 3) [10]. -e dentistry application of
green synthesis of plant-mediated metal is summarized in
Table 1.

3.3.1. Benefits of Plant-Delivered Green Synthesis over Mi-
croorganism-Delivered Methods. -e reaction rate is rela-
tively high in plant extract-based synthesis methods.
Depending on the type of plant and the amount of plant, this
reaction takes a few minutes and several hours, but a
considerable time (2 or many days) is necessary for microbe
cultivation in the microorganism-based approaches. -is
shows that this is a strategy that takes time. In addition to
these microbes, some are pretty hazardous and pose a hazard
to human health. Still, most of these are safe and benign to
generate nanoparticles, such as Pseudomonas, Fusarium, and
E. coli. Many plants are nearly always available in nature,
particularly evergreen ones. Metal nanoparticles are

synthesized by plant extracts mostly at ambient temperature,
whereas the reaction mixture and culture medium must be
heated when microorganisms synthesize metallic nano-
particles. Plant extracts, rather than microbes, are better
suitable for mass production [86]. -e most critical metal
nanoparticles and their plant-based green synthesis and
application in dentistry will be discussed in the following
sections.

4. Silver Nanoparticles

Silver nanoparticles (AgNPs) have attracted commercial
interest due to various characteristics, including a change-
able surface-area-to-volume ratio, helpful in various bio-
logical and technological applications. -ey are widely used
in the electrical industry and serve as effective catalysts.
Many papers reveal their biological activity in medical ap-
plications, such as anticancer, antioxidant, and antibacterial
effects. Silver has been utilized historically from ancient
times, and it has been proven that silver is harmless to
human cells in low doses. Several action mechanisms have
been suggested in antibacterial AgNP activities, for example,
the potential of AgNPs to attach bacterial walls and to cause
structural changes in the cell membrane, the ability to
damage and porous the cell-based membrane as a result of
free AgNP radicals, and the ability to release silver ions in the
inner cell to destruct various functions in the cell (Figure 4).
An antifungal mechanism of AgNPs was earlier postulated
against C. albicans in that AgNPs had high potential for
disturbing the cell membrane and stopping the G2/M cell
cycle of C. albicans [40]. Previously, AgNPs mainly were
made through a chemical procedure involving the reduction
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Figure 2: Various physical, chemical, and green approaches for the synthesis of NPs [29].
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of silver nitrate (AgNO3) by a chemical reducing agent.
Environmental resources, such as bacteria, plants, algae, and
fungi, use the organic processes. -e AgNPs’ synthesis of
microorganisms is easily scalable and naturally environ-
mentally beneficial, although microorganismmanufacturing
is more expensive than plant extracts [40]. Plant extracts are
used tomake AgNPs because they include a lot of flavonoids,
carbohydrates, sapogenins, and steroids which act as RA and
biocapping chemicals that prevent nanoparticles from
clumping together and allowing for greater size control
(Figure 5). In general, obtaining AgNPs from plant extracts
is a straightforward procedure. Plant fragments are gathered,
sterile water cleaned, dried in the shade, and pulverized. -e
dried powder is boiled in deionized water to create the plant
extract. -e resulting infusion is filtered to remove any
insoluble components. -e solution containing 1mM
AgNO3 is then supplemented with a particular volume of the
plant extract. -e color change of the medium (typically to
dark brown) and the ultraviolet-visible (UV-Vis) spectra can
be used to confirm the AgNPs’ synthesis reaction. Repeated
centrifugation procedures at 12,000 rpm for 15 minutes will
easily collect AgNPs (Figure 6) [29].

Pomegranate (Punica granatum L.) has long been uti-
lized as a reducing agent for Ag+ ions. Pomegranate is
known for its high phenolic content, including punicalagin,
punicalin, ellagitannins, gallic acid, ellagic acid, and an-
thocyanins, which have anti-inflammatory qualities. Poly-
phenols, such as ellagic acid and gallic acid, are considered
the elements responsible for the decrease of Ag+ ions and the
stabilization of AgNPs [7]. Rice (Oryza sativa L.) is a Poaceae
family cereal plant. -e rice husk is hard to preserve the
kernel inside the rice grain [39]. -e leftover product

contains the interior endosperm as well as the exterior rice
bran (RB) and rice germ (RG) after RH is removed. Many
sections of the rice grain contain a high concentration of
antioxidant and reducing active compounds. Suwan et al.
used the rice extract to make AgNPs. -ey demonstrated
that RB, RH, and RG aqueous extracts may be employed as
reducing agents in the manufacture of silver nanoparticles
(AgNPs). -eir antimicrobial studies revealed that AgNPs
derived from green synthesis catalyzed by rice extracts ex-
hibit potent antibacterial action against S. mutans, a serious
oral infection that causes caries. RB is the most effective and
suitable component of the rice grain for AgNP production
out of the three sections [40]. Jain and Mehata used green
chemistry to make AgNPs using Ocimum sanctum (tulsi)
leaf extracts and derivatives (tulsi) as distinct precursors.
-is is to see if the particles made just from the precursor
quercetin have the same characteristics as the particles made
from tulsi leaf extraction. AgNPs produced using the leaf
extract and plain quercetin showed the same optical,
morphological, and antibacterial characteristics, showing
that the biomolecules (quercetin) contained in tulsi were
largely responsible for reducing metal ions to MNPs [89].
Silver-mediated nanoparticles have been demonstrated to
have a higher cytotoxicity in plants than gold, regardless of
cell type. -e size and shape of MNPs produced by plants
had an impact on their cytotoxicity. Although cancer in-
dications are acceptable, the therapeutic index of most
nanoparticles is limited. MNPs synthesized from Butea
monosperma, Abutilon inducum, Indoneesiella echioides,
Melia azedarach, and Gossypium hirsutum are among the
potential anticancer medications having an appropriate
therapeutic indicator as a safety marker [90].

+ Solution of
metal ions

Plan extract

Capped and stabilized
nanoparticles

Newly formed nanoparticles and
phytochemicals

Capping agents Nanoparticle BIOLOGICAL
REDUCTION

Figure 3: -e typical process of plant-mediated green synthesis of metal nanoparticles [10].
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Table 1: Green synthesis of plant-mediated metal nanoparticles which have been used in dentistry.

NP Plant Objective Outcome NP size Year/
ref

AgNP Acacia senegal

To make AgNPs, the unique
technique of utilizing tree exudates
containing a high quantity of
polysaccharides in gum Arabic
(GA) produced from the Acacia
senegal (L) wild tree was utilized.
-e effect of synthesized AgNPs
was evaluated against S. mutans
isolates utilizing well diffusion and

microdilution methods.

-e synthesized NPs’ strong
antibiotic activity against S. mutans
provides the door for creating new
dental care products. -e tiny size

of the NPs further aids their
application in COVID-19
pandemic containment.

<10 nm (spherical
shape)

2021/
[34]

AgNP Camellia sinensis (green
tea)

-is work aimed to make light-
colored Ag-SiO2 nanoparticles by
synthesizing AgNPs from the

green tea (GT) extract and coating
their surfaces with silica.

Ag-SiO2 NPs were shown to have
strong antibacterial activity against
S. mutans, with a 600 g/mL MIC
and biofilm inhibition of around
44% (p 0.05). Both NPs did not
cause cytotoxicity at the MIC

doses.

11 nm (spherical
shape)

2020/
[35]

AgNP Azadirachta indica and
Aloe vera

-e purpose of this study was to
see if AgNP made from neem and
Aloe vera had any antibacterial
activity against four dental

pathogens.

AgNPs made from neem and Aloe
vera have been found to be efficient
against Streptococcus mutans and

Pseudomonas species

_ 2019/
[36]

AgNP Viola serpens

-e objective of this study was to
see if silver nanoparticles

produced from the Viola serpens
plant have antibacterial and

antiplaque capabilities.
Antibacterial tests were used to
assess the efficacy of biologically

generated AgNPs against
recovered isolates.

Compared to the reference
medicine, they were shown to be
relatively effective against the three

strains of S. mutans.

_ 2018/
[37]

AgNP Curcuma aromatica

To produce AgNPs, researchers
utilized Bacillus amyloliquefaciens

SJ14 culture (MAgNPs) and
extracted from Curcuma

aromatica rhizome (CAgNPs).
MIC, MBC, and antibiofilm
properties of AgNPs against
S. mutans were investigated.

PMMA/MAgNPs and PMMA/
CAgNPs nanocomposite thin

films were tested for antimicrobial
and antibiofilm properties.

When compared to CAgNPs,
MAgNPs were found to have better
antibacterial action. At doses of 3 g/
mL and 50 g/mL, respectively,

MAgNPs and CAgNPs inhibited
S. mutans biofilm formation by 99
and 94 percent, respectively. -e

microbicidal activity of the
PMMA/MAgNP thin film was
found to be more significant.

10–30 (irregular
shape)

2018/
[38]

AgNP Oryza sativa L. (rice)

Rice bran (RB), rice husk [39], and
rice germ (RG) aqueous extracts
were evaluated for their ability to
function as reducing agents in the

generation of AgNPs.

-e findings imply that aqueous
extracts of RB, RH, and RG might
be utilized as reducing agents in

AgNP production.

346.4± 36.8 nm 2018/
[40]
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Table 1: Continued.

NP Plant Objective Outcome NP size Year/
ref

AgNP Punica granatum
L. (pomegranate)

-e objective was to develop,
characterize, and test novel
nanocomposites containing

AgNPs that were either associated
or not with calcium

glycerophosphate for antibacterial
and antibiofilm characteristics.

All of the extracts utilized were able
to produce AgNPs. Antimicrobial

and antibiofilm activities of
composites produced with peel

extracts were greatest against both
bacteria tested, and they performed

comparably to or better than
chlorhexidine.

50 nm 2018/
[7]Following treatments, the MBC/

MFC and biofilm density were
used to assess antimicrobial and
antibiofilm capabilities against

Candida albicans and
Streptococcus mutans.

Ag2O
NP Ficus benghalensis

-e antibacterial activity of Ag2O
NPs produced with the Ficus
benghalensis prop root extract
(FBPRE) as a RA and SA is

described and investigated, as well
as their antibacterial efficacy
against dental bacterial strains.

-e combination of FBPRE and
Ag2O NPs has good antibacterial
activity against Streptococcus

mutans and Lactobacilli sp., two
dental pathogens.

42.7 nm 2017/
[41]

AgNP Aloe vera

-e purpose of this study was to
compare the antibacterial
effectiveness of Aloe vera
nanoparticles to calcium

hydroxide in the treatment of
chronic endodontic infections.

-e antibacterial activity of AgNPs
from A. vera should prompt

further study into their application
as an intracanal medicament in

root canal therapy.

_ 2017/
[42]

AgNP Tragia involucrata

-e AgNPs were made using a
simple green technique using an
aqueous extract of T. involucrata.
UV spectroscopy, particle size

measurement, zeta potential, and
TEM were used to demonstrate
the production of AgNPs. A single
gel diffusion technique was used to
test the extract’s in vitro struvite

growth inhibitory efficacy.

-e findings suggested that an
aqueous extract of T. involucrata
and its AgNPs might be used to
treat patients with recurring stones.

47 nm 2017/
[43]

AgNP Mangifera indica

A novel green synthesis method
was utilized to make silver
nanoparticles from leaves of

Mangifera indica.-e antibacterial
activity of AgNPs is tested on

Escherichia coli and Staphylococcus
aureus germs, and the hardness of

AgNP-reinforced GIC is
compared to ordinary GIC and
microsilver-reinforced GIC.

As seen by the results, the AgNP-
reinforced GIC had a much higher
hardness, and the AgNPs were
shown to have an acceptable

antibacterial activity.

32 nm 2017/
[44]

AgNP Prunus japonica

A simple room-temperature
approach was utilized to produce
AgNPs from AgNO3 at a low cost
and in an ecologically acceptable
way using the Prunus japonica

leaves’ extract as an RA.

-e produced AgNPs have
antibacterial efficacy against tested
bacteria to varying degrees, with
Proteus vulgaris having the highest

activity.

24 nm spherical 2017/
[45]

AgNP Ficus religiosa
AgNPs were produced and
described utilizing the Ficus

religiosa leaf extract.

In several cancer cell lines, the
AgNPs exhibited strong

antibacterial action as well as
cytotoxicity.

21 nm 2017/
[15]

Bioinorganic Chemistry and Applications 7



Table 1: Continued.

NP Plant Objective Outcome NP size Year/
ref

AgNP Ficus carica

-ey suggested utilizing dried fig
(Ficus carica L.) fruit extract as an
RA and CA to make AGNPs from
a 1mM AgNO3 solution in a cost-

effective and ecologically
acceptable manner. Nanoparticles
were studied using UV absorption

spectroscopy and SEM.

Silver nanoparticles were
successfully synthesized using the
dried fruit extract of Ficus carica.
According to the anticancer test,
the AgNPs reduced by the fig

extract showed a strong anticancer
effect against MCF7 cells, and
further animal acute toxicity
experiments indicate that the
aforementioned AgNPs are

toxicologically harmless when
given orally.

54–89 nm 2017/
[46]

AgNP Psoralea corylifolia

Biologically produced AgNPs
from the Psoralea corylifolia seed
extract using a 1mM AgNO3

solution. -e synthesized herbal-
mediated AgNPs were submitted

to different characterization
procedures and evaluated in

healthy female albino mice for in
vitro antidiabetic efficacy and

potentially harmful consequences.

-is research might lead to the
creation of valuable nanomedicines
to treat a variety of disorders and

highlight AgNPs’ safety and
biocompatibility within biological

cells.

15–25 nm
(average: 18 nm)

2017/
[47]

AgNP Azadirachta indica

-e aim was to synthesize AgNPs
using the Azadirachta indica
aqueous leaf extract and

investigate their antibacterial
effects on human pathogenic

Escherichia coli and Staphylococcus
aureus.

Both Gram-positive and Gram-
negative pathogens were
susceptible to the AgNPs.

34 nm 2016/
[48]

Characterization of produced
nanoparticles using various

methods.

AgNP Ficus benghalensis and
Azadirachta indica

-e agar well diffusion technique
was used to test the antibacterial
activity of green-produced AgNPs

against some bacteria. Cell
viability was studied to assess the
cytotoxic effect of green-produced

AgNPs.

Gram-negative and Gram-positive
microorganisms exhibited

potential antibacterial action
against the NPs. -e produced

AgNPs demonstrated
antiproliferative efficacy against the
MG-63 osteosarcoma cell line in a

dose-dependent manner.

40–50 nm 2016/
[49]

AgNP Salix alba

DAD was used to test the
antibacterial activity of these
biologically produced silver

nanoparticles.

-e antibacterial efficacy of these
manufactured silver nanoparticles
was demonstrated against bacteria

isolated from dental plaque.

29–35 nm 2016/
[50]

AgNP Emblica officinalis

-e AgNPs were produced using
E. officinalis (fruit extract). -e

nanoparticles were analyzed using
UV-Vis spectrophotometers, FTIR
measurements, and SEM and XRD

to determine the presence of
E. officinalis biomolecules
encapsulated in AgNPs.

-e results showed that the
E. officinalis fruit extract is an
excellent bioreductant for the
production of AgNPs. -e

produced AgNPs were found to
inhibit and have considerable
antibacterial activity against

bacterial strains.

15 nm 2015/
[51]

DAD was used to evaluate the
antibacterial activity of the
produced AgNPs against the

isolates.
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Table 1: Continued.

NP Plant Objective Outcome NP size Year/
ref

AgNP Justicia glauca

-e antimicrobial activities of
green-synthesized AgNPs and
drug-blended AgNPs against
dental caries and periodontal

disease-causing microorganisms
were tested.

-e antibacterial and antifungal
activities of AgNPs and drug-

mixed AgNPs were considerable.
-e MIC of AgNPs against these
bacteria was found to be between

25 and 75 g/mL.

10–20 nm 2015/
[52]

AgNP Eucalyptus oleosa

Aqueous AgNO3 was mixed with
the E. oleosa leaf extract under
nonphotomediated conditions to

produce colloidal silver
nanoparticles.

-is study revealed that silver
nanoparticles may be produced by
adjusting key parameters, and
executing the synthesis method

under ideal conditions resulted in
silver nanoparticles with an

average size of 21 nm.

21 nm 2015/
[53]

AuNP Anogeissus latifolia

-is study aimed to assess the
osteoinductive capacity and
analgesic effects of gold

nanoparticles (AuNPs) made with
phytochemicals from Anogeissus

latifolia.

-is study found that green-
synthesized AuNPs are effective
analgesic and bone-inducing

agents in implantation therapy.

50–60 nm
(crystalline)

2020/
[54]

AuNP Salacia chinensis

-ey looked at the osteoinductive
properties of gold nanoparticles
mediated by Salacia chinensis in

implant dentistry.

-e findings revealed that AuNPs
may be utilized as an efficient bone
inductive agent during dental
implant therapy since they are
stable, biocompatible, and
environmentally friendly.

1.5± 0.8 nm
(distorted

spherical shape)

2018/
[55]

AuNP

Indigofera tinctoria

On the lung cancer cell line A549,
the cytotoxic impact of the
I. tinctoria leaf extract and

nanoparticles was investigated.
-e agar well diffusion technique
was used to assess antimicrobial
activity against bacterial and

fungal strains. Using the DPPH
technique, the antioxidant activity
of produced nanoparticles was

determined.

It was discovered that when the
quantity of nanoparticles increases,

cell viability declines, and
nanoparticles have a more

damaging effect on cancer cells
than the pure leaf extract. -e

nanoparticles produced had strong
antibacterial activity against all
investigated microbial strains to
various degrees. It was discovered
that nanoparticles have more

antioxidant activity than the leaf
extract.

AuNP: 6–29 nm
(19.73 nm)

2018/
[56]AgNP AgNP: 9–26 nm

(16.46 nm)

AuNP Alternanthera
philoxeroides

-ey used A. philoxeroides leaves
to make phytochemically gold
nanoparticles and tested the

positive effects of these biologically
synthesized nanoparticles against

various microbial strains.

Overall, the findings point to a
successful production of green
nanoparticles as well as an

enhancement in gold nanoparticle
antibacterial efficacy.

72.11± 2.87 nm 2018/
[57]

AuNP Justicia glauca

-e research focuses on Justicia
glauca (aqueous leaf extract)
mediated AuNP production at
room temperature by treating
chloroaurate ions, which has an
antagonistic impact against oral
pathogenic bacteria and fungi
when taken with the medicines
azithromycin and clarithromycin.

Against oral infections, AuNPs and
drug-conjugated AuNPs
demonstrated potential

antibacterial and antifungal action.
MIC values of biogenic AuNPs

against various oral infections were
found to be in the range of

6.25–25 g/mL.

32.5± 0.25 nm 2017/
[6]
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Table 1: Continued.

NP Plant Objective Outcome NP size Year/
ref

AuNP

Panax ginseng

-e study tested the antibacterial
uses of silver nanoparticles against

pathogenic microbes and
developed a simple technique for
the green synthesis of silver and
gold nanoparticles using the fresh
root extract from a four-year-old

Panax ginseng plant.

Techniques utilizing various
equipment were used to

characterize the biosynthesized
AuNP and AgNP. Furthermore,

silver nanoparticles have
antibacterial properties.

AuNP: 10–40 nm
(spherical)

2016/
[58]AgNP AgNP: 10–30 nm

(spherical)

AuNP Stevia rebaudiana

-e possibility of utilizing the
Stevia rebaudiana (SR) leaf extract

to reduce gold ions to
nanoparticles has been

investigated. -e aqueous extract
for this investigation was made
from Stevia leaves. Different
approaches were used to

characterize gold nanoparticles.

-e findings show that the leaf
extract of S. rebaudiana may

produce gold nanoparticles (SR).
5–20 nm 2015/

[59]

CuNP Celastrus paniculatus

-e antifungal activity of the
C. paniculatus leaf extract against

Fusarium oxysporum and its
photocatalytic efficiency in the

breakdown of organic dye were all
evaluated in this work.

CuNPs were effectively synthesized
via a green method and utilized as

photocatalysts and antifungal
agents, according to the findings.

2−10 nm
(spherical)

2020/
[60]

CuNP Cardiospermum
halicacabum

-e present study synthesized
CuNPs by a GS method with the
Cardiospermum halicacabum leaf
extract. -e antibacterial and
antibiofilm analyses were
conducted to confirm their
aptitude for biomedical

applications.

CuNPs were shown to inhibit
biofilm formation by adhering to
the cell wall and disrupting their

growth and development.

30–40 nm
(hexagonal shape)

2020/
[61]

CuNP Zingiber officinale

-is research aimed to learn more
about the antioxidant effects of
copper nanoparticles made from

dried ginger.

Copper nanoparticles made with
Zingiber have strong free radical
scavenging activity, making them

antioxidants with various
medicinal and dental uses.

Not measured 2020/
[62]

CuNP Eryngium caucasicum

CuNPs were synthesized using an
aqueous extract of Eryngium

caucasicum Trautv., and different
methods were used to validate the

results [63].

According to the findings, the use
of an aqueous extract of

E. caucasicum Trautv. offered
considerable promise for

establishing a clean, simple, cost-
effective, and efficient technique
for green copper nanoparticle

production.

<40 nm (nearly
spherical)

2020/
[64]

CuNP Plectranthus amboinicus

-ey performed an
environmentally friendly copper
nanoparticle synthesis technique

utilizing the Plectranthus
amboinicus leaf extract, a simple
and ostentatiously fast approach
that yields stable nanoparticles.

-is approach has been shown to
be cost-effective, simple to use, and

free of contaminants.

16–25 nm
(crystalline)

2020/
[65]

CuO
NP Madhuca longifolia

Madhuca longifolia plant extract,
which works as a nontoxic

reducing agent, has been used to
establish an effective and
environmentally acceptable

approach to the green production
of CuO nanoparticles (NPs).

CuO NPs exhibited strong
antibacterial action against E. coli,
S. aureus, and B. subtilis bacteria,

with findings, compared to
ampicillin and tetracycline.

30–120 nm 2019/
[66]
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Table 1: Continued.

NP Plant Objective Outcome NP size Year/
ref

CuNP Azadirachta indica

CuNPs were produced using
Azadirachta indica leaf broth, and
the influence of various reaction
parameters on the conversion rate
and shape of the CuNPs was

investigated.

-e following were the optimal
conditions for synthesis: 20% leaf
broth, [CuCl2]� 7.5 103M, pH 6.6,
and temperature 85°C. -e current

research might have a huge
influence on the ability to produce
metallic nanoparticles on a large

scale in the near future.

48 nm (crystalline,
cubical shape)

2018/
[67]

CuNP Punica granatum

-e goal of this study was to use
plant extracts as RA and SA in the
GS of CuNPs. It would also look at
the antibacterial properties of the
CuNPs that had been produced.

-e copper nanoparticles can be
easily produced using the Punica
granatum fruit rind extract and
may be employed as effective
antibacterial agents against
Staphylococcus aureus.

56–59 nm 2018/
[68]

CuNP Eclipta prostrata

-is study described the invention
of a technique for making CuNPs
by combining copper acetate

solution with the Eclipta prostrata
leaf extract without the need for a
surfactant or external energy.

-e antioxidant potential of the
biosynthesized CuNPs was

impressive. Similarly, in vitro
anticancer experiments revealed

that produced CuNPs had
cytotoxicity against HepG2 cells.
-e results of this work show that
biosynthesized CuNPs made from
E. prostrata extracts might be
utilized for medicinal purposes,

making them a potential
nanomaterial.

23–57 nm (face-
centered cubic
structure)

2017/
[28]

CuNP Citrus medica Linn.

-ey developed a safe and low-cost
technique for the production of
CuNPs utilizing citron juice.

CuNPs were tested for
antibacterial activity.

CuNPs produced by this method
showed considerable inhibitory

efficacy against tested
microorganisms.

20 nm 2015/
[69]

Fe3O4
NPs Euphorbia hirta

In the green production of
magnetic iron oxide nanoparticles,
they employed the Euphorbia hirta

leaf extract (Fe3O4 NPs)

-e antibacterial activity of the
produced iron oxide nanoparticles
was tested against various bacterial
and fungal pathogens, with highly

encouraging results.

25–80 nm (cavity-
like structure)

2020/
[70]

FeNP
Rose, Azadirachta indica
(neem), carom, Syzygium

aromaticum (clove)

-ese particles were made using
mango leaves, rose leaves, neem
leaves, carom seeds, and clove
buds in an environmentally

friendly green synthesis process at
70°C with continual stirring and

atmospheric pressure.

-e size of Fe particles grew larger
as the concentration of

polyvinylpyrrolidone (PVP) rose,
according to the findings of the

experiments. -e presence of PVP
allows particles at the micro-/
nanoscale to maintain their

crystalline structure after 3 to 4
months of preparation.

12–28 nm
(crystalline)

2019/
[71]

FeONP Moringa oleifera

-ey used theMoringa oleifera leaf
extract to make FeONPs and
examined their fluoride ion

adsorption potential, comparing
their effectiveness to that of a

commercially available adsorbent.

-e regeneration process revealed
that FeONPs may be reused three
times in the fluoride ion adsorption
method. Due to its adsorption
characteristics and the shortest

contact time to reach equilibrium,
FeONP is a potential material for

fluoride ion removal.

4.14 nm 2018/
[72]
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Table 1: Continued.

NP Plant Objective Outcome NP size Year/
ref

Fe3O4
NPs Couroupita guianensis

-ey have proposed utilizing the
C. guianensis aqueous fruit extract
to produce magnetic Fe3O4 NPs
for antibacterial and theranostic

cancer applications.

-ese Fe3O4 NPs demonstrated
outstanding bactericidal activity
against various human diseases,
demonstrating their antibacterial

potential. Fe3O4 NPs had a
substantial dose-dependent

cytotoxic effect on treated human
hepatocellular carcinoma cells

(HepG2).

17± 10 nm
(crystalline)

2017/
[73]

FeNP

Syzygium aromaticum
(clove), Azadirachta

indica (neem), Camellia
sinensis (green tea)

-e activity of popular natural
items such as clove buds, neem
leaves, and green tea leaves against

S. mutans was investigated.
S. mutans was treated with several

combinations of therapies.

-e study found that adding FeNP
to an antibacterial treatment boosts

its action.
_ 2017/

[74]

TiO2
NP

Azadirachta indica twigs,
Ficus benghalensis, and
Syzygium aromaticum

TiO2 nanoparticles (NPs) were
green-synthesized utilizing

Azadirachta indica twigs, Ficus
benghalensis, and Syzygium

aromaticum extracts. According to this study, greenly
produced TiO2 NPs have

outstanding antibacterial and
antibiofilm characteristics.

18.95 nm
(crystalline)

2020/
[75]TiO2 NPs were evaluated for

antibacterial and antibiofilm
properties against bacteria
(Streptococcus mutans and

Citrobacter freundii) and fungi
(Candida albicans)

TiO2
NP Citrus aurantifolia

-is article focused on the
production of TiO2 fillers and their
potential use in light-curing dental

composite materials.

-e findings revealed that TiO2
nanohybrids might be utilized as
excellent fillers for light-curing
dental nanohybrid composite

materials to improve their physical
characteristics, in addition to their
antibacterial, hydrophilic, and self-

cleaning capabilities.

30–40 nm
(crystalline)

2019/
[76]

TiO2
NP Echinacea purpurea

An aqueous solution of the
Echinacea purpurea herbal extract
was used as a bioreduction in this
work to biosynthesize titanium

dioxide nanoparticles.

UV-Vis spectroscopy, FTIR
spectroscopy, and TXRF were used
to establish the existence of TiO2

nanoparticles.

120 nm 2017/
[77]

TiO2
NP

Acanthophyllum
laxiusculum

-e aqueous extract of
Acanthophyllum laxiusculum was
used in this work to create green or
environmentally friendly TiO2
NPs. -e sol-gel process, one of
the most extensively utilized in the
nanofield, was employed to make
titanium dioxide nanoparticles.

UV-Vis absorption spectra were
used to determine TiO2

nanospheres and then confirmed
using diffuse reflectance

spectroscopy.

25 nm
(crystalline)

2016/
[78]

ZnONP Deverra tortuosa

Using the MTT test, the potential
anticancer activity was examined
in vitro against two cancer cell

lines (human colon
adenocarcinoma “Caco-2” and
human lung adenocarcinoma

“A549”), as well as human lung
fibroblast cell line (WI38).

Against the two cancer cell lines
tested, both aqueous extract and
ZnONPs demonstrated significant

selective cytotoxicity.

9–31 nm (15.41) 2020/
[79]
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4.1. Applications in Dentistry. -e antimicrobial character-
istics of silver nanoparticles (AgNPs) have been thoroughly
explored, and they can be used in a variety of dental pro-
cedures. In vitro studies demonstrate that AgNPs have a
strong antibacterial effect when coupled with dental mate-
rials, including acrylic resins, nanocomposites, adhesives,
resin comonomers, intracanal medications, and implant

coatings. Furthermore, due to their anticancer capabilities,
AgNPs are promising tools in managing oral malignancies
[91]. In endodontics, AgNP was utilized as a disinfectant to
eliminate bacteria, toxins, and debris from the root canal
system to hinder microbial development and prevent in-
fection.-is fast expansion of the AgNP usage in endodontic
substances has been mainly owing to its demonstrated

Table 1: Continued.

NP Plant Objective Outcome NP size Year/
ref

ZnONP Dysphania ambrosioides

ZnONPs were synthesized
utilizing a green synthesis

technique, including Dysphania
ambrosioides extract.

-is report discussed the structural
properties of zinc oxide
nanoparticles (ZnONPs)

5–30 nm (quasi-
spherical)

2020/
[80]

-eir antibacterial properties were
tested against bacteria such as
S. aureus, S. epidermidis, E. coli,
and Pseudomonas aeruginosa, as
well as bacteria commonly found
in human mouths and linked to

dental conditions.

According to the antibacterial test,
most of the bacterial strains utilized

in this investigation were
susceptible to synthetic and

commercial NPs, with Prevotella
intermedia being the most sensitive

to ZnONPs.

ZnONP Sesamum indicum L.

-ey described that entire
vegetative portions of Sesamum
indicum L. were used to produce
ZnONPs. In this work, aqueous
extracts of several sections of

S. indicum were utilized to make
nanoparticles.

-is study will result in the
development of cost-effective
ZnONP synthesis with possible
further exploration to serve

humankind.

_ 2019/
[81]

ZnONP Juglans regia L.

Juglans regia L. leaf extract was
used in the green production of
zinc oxide nanoparticles. -e
characteristics of zinc oxide

nanoparticles produced using both
green and chemical techniques

were compared.

ZnO nanoparticles produced using
a green approach had a more
substantial antibacterial impact
than chemically manufactured

ZnO nanoparticles. -e
cytotoxicity of ZnO nanoparticles

generated using the green
approach was lower than that of
chemically synthesized ZnO

nanoparticles.

45–65 nm
(spherical)

2019/
[82]

ZnONP Salvadora persica

Under ambient circumstances,
Salvadora persica extract was used
as a mediator in the production of
ZnONPs. -e MTT assay was
applied to test the cytotoxic
activity of the biosynthesized

nanoparticles against the HT-29
cancer cell line.

UV-Vis investigations of these
specific nanoparticles indicated the
production of ZnO nanoparticles.

60–130 nm
(hexagonal)

2019/
[83]-e findings revealed that the

toxicity of manufactured
nanoparticles is proportional to

their concentration.

ZnNP Lavandula vera

-e ZnNPs were produced
utilizing a GS method in the

presence of the Lavandula vera
leaf extract. -e median fatal dose
of ZnNPs and subacute toxicity
were established using a variety of

tests.

-e results showed that changes in
OS were unrelated to the caspase
pathway and that the dosage of

biogenic ZnNPs with no observable
adverse effects (NOAEL) in a 14-
day subacute toxicity trial was less

than 1 g/kg.

30–80 nm 2019/
[84]

ZnONP Costus pictus D. Don

Green-synthesized ZnONPs were
tested against bacteria and two

fungal species, including Candida
albicans. -e antitumor effect of

the produced ZnONPs was
investigated in mice with Dalton’s

lymphoma ascites (DLA).

When tested using the DAD
technique, the green-synthesized

ZnNPs demonstrate good
antibacterial efficacy against

bacterial and fungal species. -e
ZnONPs have been shown to have
an anticancer effect against DLA

cells.

20–80 nm (40 nm) 2018/
[85]
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antibacterial efficacy in about 650 bacterial species. Infor-
mation that silver is less harmful to cells and tissues in
nanoparticles further encouraged the usage of AgNPs to
medicines and therapeutic uses. A study was performed to
assess the synergistic effects of NPs and Aloe vera in root
canal disinfection. In endodontic infections, A. vera-en-
capsulated nanomaterials showed durable antibacterial ac-
tion [42]. Alveolar bone loss, a common condition, makes
dental implant placement difficult. A barrier between the
bone replacement and the gingiva that prevents fibrotissue
ingrowth and bacterial infection and encourages bone de-
velopment is crucial to alveolar ridge repair. Chen et al.
demonstrated how AgNP-coated collagen membranes can
help prevent infection after the insertion of bone grafts in
alveolar ridge restoration [92].

Multiple studies have suggested their usage in a variety of
formulations, with promising results in the treatment of
S. mutans, with antibacterial activity 25 times stronger than
chlorhexidine, as well as antiviral and antifungal activities
[93]. Composite resin is now the most extensively utilized
dental material to treat caries lesions, owing to its cosmetic
and load-bearing qualities. Microleakage has been seen on
composite repair edges, and oral microorganisms can colo-
nize these perforations, resulting in secondary caries. Anti-
microbial restorative materials have been created to prevent
or reduce biofilm deposition, particularly by integrating
AgNPs into composite resins and adhesive systems [94].
Dentures, which are usually made of polymethyl methacrylate
(PMMA) acrylic resin, have a rough internal surface, along
with other factors (such as poor hygiene and HIV infection),
leading to the development of denture stomatitis. Candida
species colonize denture surfaces, generating a biofilm that
can induce the development of denture stomatitis [95].
Acosta-Torres et al. [63] created PMMAwith 1 μg/mL AgNPs
and compared it to PMMA that had not been changed.
PMMA AgNPs (P 0.05) specimens revealed reduced C.
albicans adhesion than PMMA. Root canal fillings have been
made from various materials, with gutta-percha being one of
the most popular. Endodontic materials should ideally have
some antibacterial action as bacterial removal in root canals is
critical to treatment effectiveness. In an attempt to improve
the characteristics of gutta-antibacterial percha, Iranian re-
searchers created nanosilver gutta-percha. Gutta-percha
coated with AgNPs is efficient against E. faecalis, S. aureus,
Candida albicans, and E. coli [96]. Samiei et al. modified
mineral trioxide aggregate (MTA) by adding AgNPs at 1%
weight to boost its antibacterial activity. It was tested for its
ability to eliminate oral bacteria and fungus. Compared to
unmodified MTA, AgNP-containing MTA had a stronger
antibacterial activity against E. faecalis, Candida albicans, and
Pseudomonas aeruginosa [97]. Zhao et al. used silver nitrate
immersion and UV radiation to insert AgNPs into titania
nanotubes (TiO2-NTs) on Ti implants. -e antibacterial ac-
tion against S. aureuswas tested, and the findings showed that
planktonic germs were inhibited over the first days. Fur-
thermore, Ti implants coated with AgNPs have shown to be
able to inhibit bacteria adherence for up to 30 days, which is
regarded enough time to avoid postinfection in the early
stages [98].

Rodrigues et al. tested the antibacterial effectiveness
including AgNP in an aqueous vehicle, chlorhexidine, and
sodium hypochlorite against Enterococcus faecalis biofilm
and infected dentinal tubules. -e AgNP solution killed
fewer bacteria than NaOCl but could dissolve more biofilm
than chlorhexidine. AgNP irrigant was not as effective AgNP
against E. faecalis as root canal therapy solutions [99].
Biomaterials containing AgNPs have been developed to
prevent or minimize the production of biofilms. -ey have a
unique antibacterial effect without altering the material’s
mechanical qualities due to their higher surface-to-volume
ratio and tiny particle size. AgNPs have a unique feature that
allows them to be used as fillers in various biomaterials,
where they play an essential role in enhancing the charac-
teristics [100]. -ese nanoparticles were employed in a two-
way dental restorative treatment simultaneously. -e use of
glass ionomer cement in dentistry has found a significant
restriction on poor wear and secondary caries caused by the
buildup of bacterial colonies around the restoration when
used at an early or aging stage. -e produced silver nano-
particles were cemented with glass ionomer cement to meet
the two limits. -e addition of AgNPs to GIC improves the
hardness of traditional GIC and, in turn, eliminates the
limiting of secondary caries caused by bacterial colonies
around the GIC-fixed restoration in postmedication [44].
Dental equipment and bandages have been made with
AgNPs. -e addition of AgNPs to orthodontic glue can
improve or maintain the glue’s shear bond strength while
increasing its bacterial resistance [101]. Magalhães et al.
found that including AgNPs into dental composites reduced
microbial colonization of coating materials, enhancing an-
tifungal capability [102]. Moreover, endodontic fillings
containing AgNPs had an antimicrobial action that lasted for
a long time against Streptococcus milleri, Staphylococcus
aureus, and Enterococcus faecalis [103].

5. Gold Nanoparticles

A great deal of research and manufacturing approaches have
been used to create gold nanoparticles (AuNPs) by various
physical and chemical processes. Due to their unique
physicochemical features and a wide variety of uses, nu-
merous publications have been published in recent years on
the synthesis and characterization of AuNPs. Physical
methods of preparing metallic nanogold (e.g., laser ablation)
produce GNPs with a narrow particle size distribution, but
they are expensive and yield low. AuNPs can be made
chemically (for example, sodium borohydride). Organic
solvents’ hazardous side effects and the toxic effects of re-
ducing reagents employed in the chemical production of
GNPs drew focus to the development of alternative green
approaches [104]. AuNPs are a form of nanomaterial that
can be readily produced using a one-step environmentally
friendly green chemistry process. -ey are widely known for
their biocompatibility and nontoxicity. AuNPs are an ex-
cellent contender for biological applications because of their
characteristics [17].

Hyperaccumulators are plants that can absorb and
collect metals from the water and soil.. Alfalfa may gather
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gold and store it as discrete pure metal nanoparticles in their
leaves and stems’ biomasses. Various plants, such as broth
extracts of neem, Aloe vera, Arena sativa, alfalfa, wheat,
geranium, Hibiscus sabdariffa, and lemongrass, have been
effectively employed and reported for effective and quick
extracellular synthesis of gold, silver, and copper nano-
particles in recent years. It possesses different actions that are
ideal for therapeutic usage and broad applications in
nanobiotechnology, and it possesses unique nanoscale gold
properties [39]. Previous studies on AuNPs have included
immune response augmentation, microbe detection, con-
trol, cancer cell photothermolysis, clinical chemistry, optical
imaging of cancer cells using resonance scattering, targeted
drug delivery, two-photon luminescence, and optical co-
herence tomography. Although AuNPs have the strongest
antibacterial activity of all metal NPs, antibiotic-coupled
AuNPs have shown the potential for photothermal protozoa
and bacteria death. It was demonstrated that AuNPs con-
jugated with the anticancer drug 5-fluorouracil were more
effective against bacteria and fungus than 5-fluorouracil
alone. As a result, conjugated NPs can deliver antibiotics to a
specific site [6]. AuNPs are suitable for biological applica-
tions due to their unique optical features derived from the
SPR (surface plasmon resonance) phenomenon and their
biocompatibility. AuNPs are shown to have a strong po-
tential for photothermal cancer cell treatment.When AuNPs
are subjected to electromagnetic radiation, the resonance of
surface-conductive electrons absorbs the radiation in the
visible and near-infrared ranges. Cancer cells are thermally
degraded via the heat generated.

5.1.Applications inDentistry. AuNPs have been used to treat
gum disorders, dental cavities, tissue engineering, dental
implantology, and cancer detection because of their nano-
structures, huge surface volume, and biocompatibility. Be-
cause AuNPs have antifungal and antibacterial capabilities,
they are employed to boost the effect in various biomaterials.
-ey also improve material mechanical properties, resulting
in improved results. To illustrate their therapeutic effects,
they come in various sizes and concentrations. Because of
their properties, AuNPs are a viable candidate for fillers in
biomaterials [105].

5.1.1. Dental Caries. AuNPs have a greater surface area
because of their nanoscale, allowing for greater inorganic
and organic chemical reactions. As a result, AuNPs can be
used as a potential anticaries agent. It was discovered that
including AuNPs into cavity disinfectants can improve the
material’s antibacterial activity and, as a result, reduce the
risk of secondary caries when compared to conventional
treatments [106].

5.1.2. Dental Implants. AuNPs can be used as osteogenic
agents for bone regeneration because of their biocompati-
bility and surface specificity. -e osteoinductivity of Salacia
chinensis-mediated AuNPs was investigated for usage as a
green source osteoinductive biomaterial in implant dentistry

by Jadhav et al. Plant-mediated AuNPs produced utilizing
green chemistry have been shown to be biocompatible,
environmentally friendly nanomolecules that stimulate bone
formation and decrease bone resorption and may be utilized
as an active bone inductive material during implant
placement [55].

5.1.3. Periodontal Disease. Periodontal disease diagnosis is
critical for preventing further progression and providing
proper treatment. AuNPs play a significant role in diag-
nosing periodontal disease due to their unique critical op-
tical properties. According to the findings, the size and
concentration of AuNPs have a favorable effect on the
proliferation of these cells. As a result, AuNPs can be used as
a source in tissue engineering to help mend diseased tissues
[105].

5.1.4. Stem Cell Technology. Because of their resemblance to
a nanostructured environment, nanomaterials have piqued
the interest of many tissue engineering experts. -ese
nanomaterials have the ability to infiltrate the nuclei of cells
and alter their functions. -e effects of AuNPs on stem cells
in tissue engineering have been investigated [31]. For the
first time, Xia et al. tested the osteogenic induction potential
of a new calcium phosphate cement containing AuNP-CPC
on human dental pulp stem cells (hDPSCs). AuNPs in-
creased hDPSCs’ behavior on CPC, such as cell adhesion and
proliferation, as well as osteogenic differentiation (approx-
imately a 2- to 3-fold increase after 14 days) [107]. Wang
concluded that using an eco-friendly, cost-effective, and
accessible green synthetic technique, stable, biocompatible,
and functional AuNPs may be effectively manufactured. -e
stability of AuNP colloid solution in vitro was shown to be
outstanding in a range of blood components. -ey dis-
covered that they may be utilized as a pain reliever and an
osteoinductive adjuvant in the treatment of dental tissue
implantation [54].

5.1.5. Dental Materials. Dadkan et al [108] studied the effect
of gold nanofiller particles on microtensile bond strength to
dentin in an experimental bonding agent, as well as the
optimal filler quantity required to achieve the maximum
bond strength.-e inclusion of AuNPs increases the flexural
and tensile strength of the dental adhesive, with the optimal
AuNP concentration resulting in the best mechanical
properties. Its flexural and tensile strength optimum con-
centrations were 10X and 5X, respectively. AuNPs can
function as a barrier to fracture development in terms of
flexural strength, with higher concentrations having a
stronger positive impact. At higher concentrations, NPs
clump together, which might serve as a good starting point
for a fracture [105].

5.1.6. Diagnostic Imaging. Optical imaging is one of the
most critical tools in biological research. Bio-optical imaging
still has issues with resolution, sensitivity, speed, and pen-
etration depth despite significant advancements. Because of
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their unique optical features, such as surface plasmon res-
onance, gold nanoparticles (AuNPs) can be easily employed
to improve optical imaging through absorption, scattering,
fluorescence, Raman scattering, and other means. According
to the literature, AuNP-assisted bioimaging is a promising
method for probing fundamental biological questions and
detecting disorders early [109].

6. Iron Nanoparticles

Because of their exceptional physicochemical features, high
magnetism, microwave absorption capabilities, low toxicity,
and high catalytic activity, iron nanoparticles (INPs) are
among the most intriguing new materials. Iron oxide
nanoparticles (IONPs) (including magnetite: Fe3O4, he-
matite: −Fe2O3, and maghemite: −Fe2O3), iron oxide-hy-
droxide (FeOOH) nanoparticles, and zero-valent iron (ZVI)
nanoparticles are the three principal categories of INPs
[110]. Applications for these particles include delivery of the
drug, magnetic targeting, heat exhaustion, heat ablation,
stem cell trial and manipulation, gene editing, negative MRI
contrast improvement, ferrofluids, preservation of food,
bioprocess intensification, antimicrobial agents, environ-
mental remedy, pigments, and lithium-ion batteries [111].
-e particles are synthesized using a variety of physical and
chemical processes, including the coprecipitation method,
sol-gel method, microemulsion method, hydrothermal
method, and solvothermal method. -e green production of
iron nanoparticles is gaining popularity as an environ-
mentally friendly and cost-effective therapeutic method.
Afsheen et al. used mango leaves, rose leaves, neem leaves,
carom seeds, and clove buds to make iron nanoparticles in a
zero-valent oxidation state by an eco-friendly green syn-
thesis at 70°C temperature with steady stirring and atmo-
spheric pressure. In combination with a specific proportion
of polyvinylpyrrolidone (PVP) instead of polyvinyl alcohol
(PVA), different plant extracts play an essential role in the
reduction and stabilization of nanoparticles. -e significant
amount of PVP utilized prevented the particles from ag-
glomerating and oxidizing. -e presence of PVP allows
particles at the micro-/nanoscale to maintain their crystal-
line structure after 3 to 4 months of preparation [71]. -e
primary mechanism of INP generation by plant extracts,
including nucleation and particle development, is yet to be
found. Phytochemicals (primary and secondary metabolites)
in the plant extract, on the contrary, play a critical role in the
biosynthesis of INPs, according to research. In fact, phenolic
chemicals (polyphenols, flavonoids, tannic acid, and ter-
penoids) act as natural antioxidants that significantly de-
crease iron ions to INPs [112]. Artocarpus heterophyllus
(jackfruit) peel extract was used to make iron nanoparticles
(FeNPs). -e peel’s strong antioxidant content makes it a
potential source of valuable biomolecules that can be used as
bioreductants, capping agents, and stabilizing agents in
green nanoparticle manufacturing. Apart from employing
nontoxic reactant ingredients and being cost-effective, the
approach makes use of trash and thereby lowers waste ac-
cumulation [113]. Green procedures are the most commonly
utilized for the synthesis of INP utilizing the plant-mediated

extract of Citrus sinensis since they are both environmentally
benign and economically effective. Gram-negative bacteria
and Gram-positive bacteria were used to investigate the
antibacterial impact of biologically generated IONPs. -ese
findings demonstrated that IONPs have a strong antibac-
terial potential as they inhibited bacterial strains in a sub-
stantial zone [112].

6.1. Applications in Dentistry. Iron oxide nanoparticles
(IONPs), such as magnetite and maghemite magnetic
nanoparticles, have received a lot of attention in recent years
in various sectors. IONPs have been used in biomedicine for
a wide range of applications, including diagnosis and
treatment. -ese magnetic nanoparticles can be utilized as
contrast in imaging. IONPs can also be employed as
nanocarriers for delivering therapeutic drugs to desired cells
in vivo due to their magnetic characteristics, low cost, and
excellent biocompatibility [114]. Gao et al. described a new
technique for controlling biofilms (plaques) based on cat-
alytic nanoparticles (CAT-NPs) comprising biocompatible
Fe3O4 with peroxidase-like activity that promotes extra-
cellular matrix disintegration and bacterial mortality within
acidic niches of caries-causing biofilms (Figure 7). -ey
showed that CAT-NP combined with H2O2 successfully
suppresses the onset and severity of dental caries in vivo
while protecting normal tissues, using 1-minute topical daily
treatments similar to those used in clinical settings [115].-e
antibacterial activity of both natural and synthetic medi-
cations has been discovered to be improved by the synergy of
INP. -e action of common natural items against S. mutans
was examined, including clove buds, neem leaves, and green
tea leaves. To compare the effects of various combinations of
treatments on S. mutans, researchers used the plant extract
alone, a plant extract with INP, and the plant extract with
INP and amoxicillin. When an antimicrobial agent is cou-
pled with INP, the antimicrobial agent’s action is enhanced
[74].

7. Zinc Oxide Nanoparticles

Zinc is a trace mineral abundantly spread across the body
tissue, which contributes to the catalytic activity of several
enzymes [116]. Zinc oxide (ZnO) is a biocompatible
semiconductor material that is utilized for different purposes
to make various dental products such as zinc oxide eugenol,
amalgam, ceramics, and dental cements. -e Food and Drug
Administration considers it to be one of the safest materials
in the pharmaceutical industry. -e intrinsic features of
nanosized ZnO, such as its wide bandgap, high-exciton
binding energy, high electronic conductivity, nontoxicity,
and chemical durability, have piqued industrial interest.
ZnONPs have unique optical features that make them
suitable for use as a drug delivery system and anticancer,
antibacterial, antidiabetic, and theragnostic tool [117].
Plants are the most popular source of NP synthesis because
they allow for large-scale production. Phytochemicals such
as polysaccharides, vitamins, amino acids, alkaloids, and
terpenoids released by plants are used to reduce metal ions
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or metal oxides [118]. Plant extracts, such as phenols and
flavones, can be used to make ZnONPs. -e reducing and
capping agents in the extracts, such as phenols and flavones,
can stabilize the NPs by electrostatic, steric, hydration, and
van der Waals forces. Plant extract-assisted biosynthesis is a
reasonably straightforward process that can be completed in
three steps.-e preparation of the plant extract is usually the
initial step.-en, as a precursor, zinc salts are added to plant
extracts. Metal ions are reduced into NPs at this stage and
then stabilized with reducing and capping agents. After
various synthesis procedures such as high-temperature
annealing, ZnONPs are created in the last stage [119]. Plants
in the Lamiaceae family, including Anisochilus carnosus,
Plectranthus amboinicus, and Vitex negundo, have been
researched extensively for the NP formation of various sizes
and shapes, including spherical, quasi-spherical, hexagonal,
rod-shaped, and agglomerates. -e size of produced NPs
reduces when the content of a plant extract increases,
according to the findings [120–122]. -e size of CuNP
produced from peel was larger, as validated by SEM and
TEM studies, but the forms were similar (hexagonal and
spherical). Agglomeration was seen in NPs made from
extracts of Moringa oleifera, Agathosma betulina, Pongamia
pinnata, Plectranthus amboinicus, Nephelium lappaceum,
and Calotropis gigantea [123].

7.1. Applications in Dentistry. Zn2+ ions disrupt bacterial
enzyme systems by displacing magnesium ions required for
dental plaque enzymatic activity. Tavassoli Hojati et al. [21]
demonstrated that including ZnONPs into resin composites

may considerably inhibit S. mutans strains without losing the
resin’s mechanical qualities. Another explanation could be
due to electrostatic forces induced by light exposure, resulting
in interactions between the nanoparticles and bacteria [124]
(Figure 8). On Streptococcus mutans, the antibacterial effect of
composite resin containing ZnONPs was much higher than
that of composite resin containing AgNPs [126]. Implant
failure is frequently caused by infections linked with the
prosthesis and aseptic loosening. Improved antibacterial
properties and osseointegration of orthopedic implants are
critical. Zinc oxide nanoparticles (ZnONPs) are a form of
zinc-containing metal oxide nanoparticle that has been ex-
tensively explored in a variety of sectors, including food
packaging, pollution control, and biomedicine. Low toxicity
and good biological functions, as well as antibacterial, anti-
cancer, and osteogenic properties, characterize ZnONPs.
Furthermore, ZnONPsmay bemade readily using a variety of
ways. Green preparation approaches, for example, can im-
prove the bioactivity of ZnONPs and increase their biological
application potential [119]. Implants with ZnONP modifi-
cations have good antibacterial characteristics. Elizabeth et al.
covered titania nanotubes and titania nanoleaves with
ZnONPs. -e antibacterial capabilities of modified samples
were dramatically improved compared to pure nanopatterned
materials [127]. By electrospinning polyetherimide (PEI) with
various concentrations of ZnONPs, Artifon et al. were able to
create a variety of ZnO/PEI scaffolds. -e antibacterial action
was more vital as the ZnONP level rose. ZnNP-modified
implants can modulate the immune system and increase
antibacterial characteristics, in addition to direct toxicity
against microorganisms [128].
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Figure 7: Antibacterial and antibiofilm mechanisms of iron oxide nanoparticles [25].
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8. Titanium Oxide Nanoparticles

-e entire biosynthetic process begins with mixing a simple
precursor salt with the biological extract; the extract’s me-
tabolites can then reduce and stabilize the bulk metal into an
elemental form through a series of mechanical stages. -is
biosynthetic approach has several advantages over chemical
and physical procedures, and it has emerged as a simple, safe,
and viable alternative. Aside from this, biological approaches
can efficiently catalyze the synthesis process at any size and
under any condition. Furthermore, NPs of controlled size
and form can be made. Because of these advantages, several
researchers have planned to investigate various species for
their ability to manufacture TiO2 NPs [129]. Forming a
solution of a titanium precursor with the required solvent is
the most common way to make TiO2 nanoparticles. Ethanol
and distilled water are the most commonly utilized solvents
for this purpose. TTIP (titanium tetraisopropoxide), TiCl4
(titanium tetrachloride), and TiO(OH)2 are common tita-
nium precursors used to greenly produce TiO2 nanoparticles
(metatitanic acid or titanyl hydroxide). -e synthesis pro-
cedures also use TiOSO4 (titanium oxysulfate) and TiO2 bulk
particles; in fact, this is one of the advantages of green

nanotechnology: water-soluble precursors can be used
equally [130]. Plant components such as phenolic acids,
alkaloids, proteins, enzymes, and carbohydrates govern the
synthesis of NPs through reduction and stabilization
mechanisms. To produce diverse forms of TiO2 NPs, a
variety of plant species have been employed. When a pre-
cursor TiO2 salt is tainted with the plant extract, the reaction
mixes heat up quickly. -en, the solution is constantly
stirred at a moderate temperature. -e initial synthesis
indicator is a color change, which can be validated later
using spectroscopic techniques. Several color indicators have
been recorded in the production of TiO2 NPs, ranging from
pale green to dark green [77]. -e nanoparticles are then
filtered, rinsed with distilled water, dried, and calcined. To
eliminate organic groups, calcination is usually carried out at
temperatures ranging from 400 to 800°C [130]. Ahmad et al.
studied the antibacterial and antifungal properties of green-
produced titanium dioxide (TiO2) nanoparticles utilizing
Mentha arvensis leaf extract as the reducing agent and ti-
tanium tetraisopropoxide as the precursor. Green TiO2
nanoparticles showed promising antibacterial and antifun-
gal action against various microorganisms [131]. TiO2
nanoparticles (NPs) were green-synthesized using the
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Figure 8: Antibacterial mechanism of ZnNPs [125].

Bioinorganic Chemistry and Applications 19



extracts of Azadirachta indica twigs, Ficus benghalensis,
Syzygium aromaticum,Mentha arvensis, Citrus aurantifolia,
Echinacea purpurea, and Acanthophyllum laxiusculum
[75–77, 131].

8.1. Applications in Dentistry. Titanium dioxide nano-
particles (TiO2 NPs) are valuable additions in adhesives and
composites because of their photocatalytic, antimicrobial,
and UV-absorbing capabilities. However, the ROS created
by photoactivated TiO2 NPs has been linked to toxicological
concerns. Sun et al. revealed that acid-functionalized TiO2
NPs might be incorporated into dental resins that can be
used as dental adhesives on human teeth.-e ROS produced
by these NPs when exposed to visible light can be used to
boost the degree of vinyl conversion in resins, resulting in
adhesives with improved shear bond strength to human
teeth. -e genotoxicity of the NPs and their potential for
release from dental composites were investigated, and the
results showed that there was a low danger of genotoxic
effects [132]. When the mechanical properties of the com-
posites were evaluated, it was discovered that using TiO2 as a
reinforcing agent strengthened the polymer. -e morpho-
logical observation revealed substantial adhesion between
TiO2 and the polymer matrices, as well as a uniform dis-
tribution of TiO2 within the polymer matrix.-emechanical
properties of TiO2 were improved by adequate compatibi-
lization with the polymer matrix [133]. Titanium dioxide is
an inorganic chemical that has recently received a lot of
attention due to its photoactivity. TiO2 produces a variety of
ROS after being exposed to UV radiation in aqueous so-
lutions. -e capacity to produce ROS and consequently
induce cell death has been used in photodynamic therapy
(PDT) to treat a variety of ailments ranging from psoriasis to
cancer. TiO2 NPs have been investigated as photosensitizing
agents for treating malignant tumors and photodynamic
inactivation of antibiotic-resistant microorganisms. In PDT,
TiO2 NPs can be employed as photosensitizers on their own,
as well as in composites and mixtures with other chemicals
or biomolecules. Furthermore, different chemical molecules
can be grafted onto TiO2 nanoparticles to create hybrid
materials. -ese nanostructures can show higher light ab-
sorption, allowing them to be used in medicine for focused
therapy. Many titanium dioxide-based techniques were
tested to improve the efficacy of anticancer and antibacterial
medicines [134]. -e extracts of Azadirachta indica twigs,
Ficus benghalensis, and Syzygium aromaticum were used to
make TiO2 nanoparticles (NPs). G-TiO2 NPs were investi-
gated for antibacterial and antibiofilm properties against
bacteria (Streptococcus mutans and Citrobacter freundii) and
fungus (Candida albicans). According to this study, greenly
produced TiO2 NPs have outstanding antibacterial and
antibiofilm characteristics [75].

9. Copper Nanoparticles

Copper nanoparticles (CuNPs) have garnered attention in the
recent two decades because of their simple nature and the
property of demonstrating a range of potentially beneficial

physical properties depending on their size, shape, and com-
position. Natural plants have free radical scavengers that help
prevent diseases including heart disease, cancer, arthritis, and
liver disease and effectively reduce oxidative damage. Vital
water in copper containers cleans water by killing bacteria
species and strains and effectively eliminates bacteria, making it
bactericidal. Furthermore, compared to other antibacterial
agents such as gold and silver, copper is a less expensive option.
Compared to other organic antibacterial agents, it exhibits
antioxidant capabilities and longer shelf life. -ey have these
unique physical, chemical, and biological features because of
their highly distinctive crystal shape and high surface area-
volume ratio [62]. Copper nanoparticles were created using
both physical and chemical methods. -e microemulsion
technique is themost prevalent chemical strategy, although it is
expensive and requires a high surfactant concentration.
Physical methods for synthesizing nanoparticles include laser
ablation, aerosol techniques, and radiolysis. However, these
methods are less popular because of the high cost of instru-
ments and high energy consumption. In the absence of a
stabilizing agent, copper nanoparticles can be made via mi-
crowave irradiation. -e inclusion of ascorbic acid during the
synthesis of copper oxide results in the formation of nano-
particles. Because of their availability, cost-effectiveness, en-
vironmental friendliness, and lack of harmful byproducts,
plants have been employed to synthesize metallic nanoparticles
[135].Mixing a known concentration of the plant extract with a
known precursor concentration and heating the mixture to a
defined temperature with continuous stirring at a set period is
one of the most popular methods for generating Cu and CuO
NPs (Figure 9) [136]. -e medical qualities of the plant extract
are seen to protect the NPs generated from it, which could be
used in medicine, targeted drug delivery, and cosmetic ap-
plications. CuNPs have also gained interest due to their po-
tential industrial applications, such as gas sensors, catalytic
processes, high-temperature superconductors, and solar cells,
as well as their applications in wound dressings and biocidal
qualities. Antibiotics use CuNPs because of their remarkable
physical characteristics. -ey are used as a bactericidal agent to
coat medical equipment, such as heat transfer systems, anti-
microbial materials, superstrong materials, sensors, and cata-
lysts, due to their disinfecting characteristics and matrix
stability. -e bactericidal impact of NPs has been improved
because of their tiny size [137]. CuNP has been synthesized
using extracts of various plants such as Celastrus paniculatus,
Cardiospermum halicacabum, Zingiber officinale, Eryngium
caucasicum, Plectranthus amboinicus, Azadirachta indica,
Punica granatum, Eclipta prostrata, Citrus medica Linn., and
Madhuca longifolia [28, 60–62, 64–69].

9.1.Applications inDentistry. Unlike silver, ions’ release is not
the most critical factor in copper nanoparticles’ bactericidal
activity. Other parameters, such as the nanoparticles’ oxidation
state, size, and crystalline structure, significantly impact the
process. CuNPs’ bactericidal action against Aggregatibacter
actinomycetemcomitans (one of the principal pathogens re-
sponsible for producing localized aggressive periodontitis) and
cytocompatibility make them a good candidate for use as an
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anti-peri-implantitis agent in oral implants [138]. Copper oxide
nanoparticlesmade fromAloe vera gel have been found to have
excellent anticariogenic properties and can be used in a variety
of dental applications [36]. To prevent and minimize the oc-
currence of secondary caries, glass ionomer cements (GICs)
with an excellent fluoride-ion releasing function have been
used.-e antibacterial characteristics of the copper-doped glass
ionomer-based materials were dramatically increased, and
collagen degradation was significantly reduced. -e use of
copper-doped glass ionomer-based materials for composite
restore may assist them to live longer because of its increased
antibacterial capacities and decayed collagen breakdown [139].
CuNP applied to adhesives at a concentration of up to 0.5 wt%
can offer antibacterial properties and prevent adhesive interface
degradation without affecting the formulation’s mechanical
capabilities, according to Gutiérrez et al. [140].

10. Future Prospects

Herbal medication, nanometer-sized, has a bright future in
enhancing biological activity and overcoming the issues
associated with chemical/synthetic pharmaceuticals. As a

result, the use of green pharmaceuticals in nanodrug delivery
systems improves the usage of herbal plants and aids in
treating numerous ailments. Plant nanoparticles can be used
to a greater extent to prevent oral diseases, dentures, and
implants, oral cancer prevention and treatment, and oral
health care. Furthermore, substantial research on the nu-
merous chemicals found in herbal remedies, as well as their
subsequent nanoparticle manufacturing, should be done.
Herbal nanomedicine technologies must be thoroughly
investigated for efficacy and application in dentistry. In vivo
testing should be done on all plant nanoparticles that
demonstrate anticancer potential in diverse malignancies.
Plant nanoparticles with antioxidant properties should also
be tested for a variety of dental uses.

11. Conclusion

Since ancient times, herbal medicine has been utilized to
treat oral/dental diseases and provide everyday care. Plant-
mediated biogenic metal nanoparticles can overcome the
drawbacks of herbal treatments, making the development of
herbal medicine-incorporated nanoparticle formulations in
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dentistry a novel breakthrough. -e use of medicinal plant
extracts in the green production of metal nanoparticles such
as silver, copper, and gold nanoparticles has been shown to
be effective in treating a variety of oral/dental diseases, even
outperforming conventional materials. -ese are also found
in toothpaste and mouthwash, as well as other dental care
products. However, there is a lack of knowledge about the
safety of nanomaterials, necessitating more research. Many
concerns, including medication resistance, could be
addressed using nanoparticles and a combination of plant
extracts. Herbal medicines are a suitable option for allo-
pathic drugs in dentistry since they lessen the adverse effects
of chemicals and antibiotics. -erefore, herbal extracts are
precious in dental care because of their safety, naturalness,
and cost-effectiveness. In this instance, educating people
about the advantages of utilizing herbal treatments to avoid
oral diseases will be quite valuable. Nanotechnology is ex-
pected to be used in all dental applications because it ef-
fectively addresses herbal medicine's limitations such as low
oral absorption, low water solubility, poor bioavailability,
physical instability, and slow and toxic pharmacological
actions.
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