The strange case: the unsymmetric cisplatin-based Pt(IV) prodrug

```
[Pt(CH<sub>3</sub>COO)Cl<sub>2</sub>(NH<sub>3</sub>)<sub>2</sub>(OH)] exhibits higher cytotoxic activity with respect to its symmetric congeners due to carrier-mediated cellular uptake
```

Elisabetta Gabano,¹ Ilaria Zanellato,² Giulia Pinton,³ Laura Moro,³ Mauro Ravera,² and Domenico Osella,²

¹ Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, Piazza Sant'Eusebio 5, 13100 Vercelli (Italy)

² Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria (Italy)

³ Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, 28100 Novara (Italy)

Correspondence should be addressed to Mauro Ravera; <u>mauro.ravera@uniupo.it</u> and Domenico Osella; <u>domenico.osella@uniupo.it</u>

SUPPLEMENTARY MATERIAL

- Figure S1 Sketch of the complexes under investigation.
- Figure S2 $[^{1}H, ^{15}N]$ HSQC spectrum of $^{15}N-1$.
- **Figure S3** [¹H, ¹⁵N] HSQC spectrum of ¹⁵N-1 after 2 h reduction in cell cytosol.
- Figure S4 $[^{1}H, ^{15}N]$ HSQC spectrum of $^{15}N-2$.
- **Figure S5** [¹H, ¹⁵N] HSQC spectrum of ¹⁵N-2 after 2 h reduction in cell cytosol.
- **Figure S6** [¹H, ¹⁵N] HSQC spectrum of ¹⁵N-2 after 2 h reduction in cell cytosol (magnification).
- Figure S7 $[^{1}H, ^{15}N]$ HSQC spectrum of $^{15}N-3$.
- **Figure S8** [¹H, ¹⁵N] HSQC spectrum of ¹⁵N-3 after 2 h reduction in cell cytosol.
- **Figure S9** [¹H, ¹⁵N] HSQC spectrum of ¹⁵N-3 after 2 h reduction in cell cytosol (magnification).
- **Figure S10** Accumulation ratio (AR) in A2780 cells treated for 1 h with **1-3** in the absence or in the presence of cimetidine.
- **Figure S11** RP-HPLC chromatograms of **3** (100 μ M) aged in complete RPMI 1640 at time zero and after 72 h in solution.
- Figure S12 (A) RP-HPLC chromatograms of 2 aged in RPMI 1640 at time zero and after 72 h in solution. (B) ESI-MS spectra of 2 and [2-Cl+H₂O]⁺. (C) Zoomed-in version of (A).

Figure S1 Sketch of the complexes under investigation.

Synthesis of the ¹⁵NH₃-labeled complexes ¹⁵N-1, ¹⁵N-2, and ¹⁵N-3.

The syntheses of ¹⁵N-labeled complexes started with the preparation of cis-[PtCl₂(¹⁵NH₃)₂] as previously reported. ¹⁵N-cisplatin was then oxidised with hydrogen peroxide in water to get the dihydroxido complex ¹⁵N-1 (with a microwave-assisted heating) or in acetic acid to get the monoacetato complex ¹⁵N-2. Finally, the diacetato complex ¹⁵N-3 was obtained from the reaction between ¹⁵N-1 and acetic anhydride.

¹⁵N-1. Yield: 90 %. ¹⁵N NMR (50.70 MHz, H₂O/D₂O 9/1): δ –33.8 ppm with satellite peaks at –31.2 ppm and –36.6 ppm (¹*J*_{Pt-N} = 274 Hz and ²*J*_{Pt-H} = 52 Hz). ESI-MS (positive ion mode): 336 *m/z* [M+H]⁺. Calc. for [Cl₂H₉¹⁵N₂O₂Pt]⁺ 336 *m/z* [M+H]⁺.

¹⁵N-2. Yield: 85 %. ¹⁵N NMR (50.70 MHz, H₂O/D₂O 9/1): δ –35.6 ppm with satellite peaks at –32.9 ppm and –38.2 ppm (¹*J*_{Pt-N} = 273 Hz and ²*J*_{Pt-H} = 54 Hz). ESI-MS (positive ion mode): 379 *m/z* [M+H]⁺. Calc. for [C₂H₁₁Cl₂¹⁵N₂O₃Pt]⁺ 379 *m/z* [M+H]⁺.

¹⁵N-3. Yield: 80 %. ¹⁵N NMR (50.70 MHz, H₂O/D₂O 9/1): δ –39.6 ppm with satellite peaks at –37.0 ppm and –42.5 ppm (¹*J*_{Pt-N} = 265 Hz and ²*J*_{Pt-H} = 54 Hz). ESI-MS (negative ion mode): 418 *m/z* [M-H]⁻. Calc. for [C₄H₁₁Cl₂¹⁵N₂O₄Pt]⁻ 418 *m/z* [M-H]⁻.

diidrossoplatino(IV)_HSQC_15N 1 1 "/Users/DIEGO/Desktop/Dati NMR HSCQ composti ridotti con estratto cellulare"

Figure S2 [1 H, 15 N] HSQC spectrum of 15 N-1 in H₂O/D₂O 9/1.

Figure S3 [¹H, ¹⁵N] HSQC spectrum of ¹⁵N-1 after 2 h reduction in cell cytosol.

Figure S4 [1 H, 15 N] HSQC spectrum of 15 N-2 in H₂O/D₂O 9/1.

[&]quot;AcetatoOH_15N_estratto cellulare" 1 1 "/Users/DIEGO/Desktop/Dati NMR HSCQ composti ridotti con estratto cellulare"

Figure S5 [¹H, ¹⁵N] HSQC spectrum of ¹⁵N-2 after 2 h reduction in cell cytosol.

Figure S6 [¹H, ¹⁵N] HSQC spectrum of ¹⁵N-2 after 2 h reduction in cell cytosol (magnification).

Figure S7 [1 H, 15 N] HSQC spectrum of 15 N-3 in H₂O/D₂O 9/1.

Figure S8 [¹H, ¹⁵N] HSQC spectrum of ¹⁵N-3 after 2 h reduction in cell cytosol.

Figure S9 [¹H, ¹⁵N] HSQC spectrum of ¹⁵N-3 after 2 h reduction in cell cytosol (magnification).

Figure S10 Accumulation ratio (AR) in A2780 cells treated for 1 h with **1-3** (10 μ M) in the absence (gray bars) or in the presence (white bars) of cimetidine (CMT, co-treatment, 1.5 mM). Data are the mean \pm sd of three independent replicates and were compared using one-way analysis of variance (ANOVA) with Tukey post-hoc test. Statistical analysis (in presence *vs.* in absence of CMT): no indication = not significant; ***p < 0.001).

Figure S11 RP-HPLC chromatograms of $3 (100 \,\mu\text{M})$ aged in complete RPMI 1640 medium at time zero and after 72 h in solution.

Figure S12 (A) RP-HPLC chromatograms of 2 (100 μM) aged in complete RPMI 1640 medium at time zero and after 72 h in solution. In the gray box, the two peaks belonging to 2 and its hydrolyzed derivative [2-Cl+H₂O]⁺ are present. (B) ESI-MS spectra of 2 and [2-Cl+H₂O]⁺. (C) Zoomed-in version of A in the gray box area containing the chromatograms at t = 0 and 72 h, and those obtained at intermediate aging times. (Note: the peaks below 0.10 AU intensity belong to the medium, and partially overlap the peaks of interest, but the hyphenated technique permits identification of the Pt species).