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Dengue is a growing mosquito-borne viral disease prevalent in 128 countries, while 3.9 billion people are at high risk of acquiring
the infection. With no speci�c treatment available, the only way to mitigate the risk of dengue infection is through controlling of
vector, i.e., Aedes aegypti. Nanotechnology-based prevention strategies like biopesticides with nanoformulation are now getting
popular for preventing dengue fever. Metal nanoparticles (NPs) synthesized by an eco-friendly process, through extracts of
medicinal plants have indicated potential anti-dengue applications. Green synthesis of metal NPs is simple, cost-e�ective, and
devoid of hazardous wastes. �e recent progress in the phyto-synthesized multifunctional metal NPs for anti-dengue applications
has encouraged us to review the available literature and mechanistic aspects of the dengue control using green-synthesized NPs.
Furthermore, the molecular bases of the viral inhibition through NPs and the nontarget impacts or hazards with reference to the
environmental integrity are discussed in depth. Till date, major focus has been on green synthesis of silver and gold NPs, which
need further extension to other innovative composite nanomaterials. Further detailedmechanistic studies are required to critically
evaluate the mechanistic insights during the synthesis of the biogenic NPs. Likewise, detailed analysis of the toxicological aspects
of NPs and their long-term impact in the environment should be critically assessed.

1. Introduction

In the age of emerging and reemerging pathogens, resistant
bugs, deadly cancers, and neglected tropical diseases like
dengue necessitate the need of holistic approaches to foster
health and well-being [1–4]. In this regard, the mosquito-
borne diseases got immense signi�cance as mosquitoes serve
as a vector for various deadly infections like yellow fever,
malaria, �lariasis, dengue, etc. [5]. Among the mosquito-
borne viral diseases, dengue fever has attracted attention of
researchers, epidemiologists, health, and social workers [6],

because of their life threatening nature, massive disease
burden, climatic conditions, vector expansion, urbanization,
and other socio-demographic factors [7].�e dengue virus is
transmitted by the Aedes aegypti, and Aedes albopictus has
put billions of people at risk of the dengue infection, es-
pecially threatening the tropical and subtropical regions
[8, 9]. �e annual reported cases of the infection are esti-
mated to be between 50 to 100 million. It is further estimated
that the actual number of the dengue incidence are around
390 million with 96 million of symptomatic cases and 25,000
estimated annual mortalities” [10]. Dengue has now an
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endemic status in 128 countries. ,e situation is further
aggravated by the resistant strains of dengue which are
proposed to be the primary cause of the transmission on a
large scale. ,e origination of resistant strains of dengue
virus is the main cause of dissemination of dengue infections
and its influence on human health. Dengue virus has four
different serotypes, referred as DENV 1–4, that have sub-
stantial genotypic variations within each serotype. Recently,
the fifth serotype of the dengue virus (DENV-5) was also
identified [11]. Infection caused by all serotypes reveals
similar symptoms [12]. Lifelong immunity is achieved upon
recovery of the patient from one particular serotype, while
the recovered patient is not protected from a secondary
infection from other serotypes. ,e secondary infection may
lead to more severe cases like dengue shock syndrome (DSS)
and dengue hemorrhagic fever (DHF) [13]. DSS and DHF
results through the antibody mediated disease enhancement
(ADM), resulting in either from the previous infection or
induced by the vaccine [14]. Dengue infection has no specific
treatment, while the only option is supportive care and
symptomatic treatment. ,erefore, an early diagnosis and
vector management is a key to controlling dengue fever.

As of now, despite tremendous research for antiviral
drugs or moieties, there has been no significant development
to combat the DENV, and usually, symptomatic treatment is
provided to the affected patients. At present, the WHO
recommends only one dengue vaccine for all serotypes in
children >9 years [15, 16]. ,e vaccine is only implemented
in countries with greater than 70% sero-prevalence of the
dengue virus; however, the vaccinations are only recom-
mended for dengue sero-positive cases [17]. Extensive re-
search is required to develop synthesize chemical entities
that enable to inhibit the virus. E-gene, NS-1 gene, and NS-3
genes are considered as potential pharmaceutical targets for
drugs. Previous studies revealed that bromocriptine exhibit
antiviral potentials by inhibiting its replication. Other drugs
like balapiravir, chloroquine, prednisolone, and celgosivir
have not revealed any significant results during trials.
Clinical trials with other drugs like ribavirin, ketotifen, and
ivermectin are currently underway. Other researchers have
been tirelessly working to search anti-dengue phytochem-
icals that can be useful in the control of dengue. ,e
prevalence of dengue fever has prompted scientists to look
for novel therapies, antiviral drugs, and nanotechnology
based innovations. ,is study aims to update researchers’
knowledge about the use of natural products-mediated
synthesis of biogenic NPs and their possible role in the
management of dengue infection and anti-dengue mecha-
nisms of biogenic NPs.

2. Mitigating the Dengue Infection

Dengue virus represents Flaviviridae having a spherical
shape and size of ∼50 nm [18]. Dengue virus comprises ten
proteins, in which 3 are structural proteins and 7 non-
structural proteins (NS). ,ese nonstructural proteins play
an important part in immune evasion, replication, and as-
sembly of the virus. Nonstructural proteins like NS-1, NS-3,
and NS-5 are absolutely vital for formation of viral particles

and, therefore, also present an opportunity to design ef-
fective antiviral drugs. Dengue prevalence is a pressing
problem for the developing world that signifies a dire need of
innovative approaches for curing the disease or limiting
their prevalence. ,ere is a need for novel anti-dengue
agents apart from transcription or protease activity that
works on viral stages. Entry inhibitors alongside fusion are
viable options that limit dengue entry into the target cell,
repressing its replication and rendering the virus ineffective
[19, 20].

Currently available vector control strategies are grouped
into including physical control via GIS mapping for locating
dengue foci, effective surveillance, determination of ovi-
position sites, and community-driven control programs.
Next strategy is through biological control including para-
transgenesis, vectors genetic modifications, sterile insects
techniques, and use of crustacean and larvivorous fish,
whereas chemical control strategies include the use of in-
secticides, plant derived compounds, use of insects growth
regulators, and the “attract and kill” approach using pher-
omones. Others include immunotherapy strategies via the
use of vaccines. Such approaches encompass biological,
chemical, and environmental methods to curtail breeding
and proliferation of the vector for dengue virus, i.e., Aedes
aegypti. Due to the lack of awareness, poor sanitation hy-
giene, and other socio-economic motives, vector control
becomes more challenging in developing countries [21, 22].
Effective and efficient vector control strategies through
chemical or biological products are used worldwide [23].
However, chemicals such as synthetic lead have powerful
impacts on public health that bring about resistance in
different species of mosquitoes [24, 25]. Eco-friendly ways to
control mosquito vectors with ultra-efficiency are needed.
,emosquito is generally targeted by organophosphates and
other growth regulators. Indoor spraying and bed nets are
used to decrease the transmission. Phytochemicals with
strong mosquitocidal and insecticidal potential are con-
sidered an alternative to synthetic insecticides in vector
control programs. ,ese plant-derived bioactive entities are
characterized by their larvicidal, pupicidal, and adulticidal
properties. Furthermore, both naturally occurring and
synthetic chemicals are revealed to alter the oviposition
behavior in mosquitoes or possess the ovicidal properties or
may act as mosquito repellant [19, 26–29].

Scientists have also proposed certain genetic strategies to
prevent the transmission of DENV to human beings. ,is is
done by the introduction of the genes responsible for the
disease resistance in the vector. Among them, one of the
endosymbiotic bacteria (Wolbachia) is frequently used to
spread disease resistant genes into mosquitoes. A transfected
line of the Aedes aegypti with Wolbachia revealed sup-
pression of the DENV by increasing the basal immunity in
the insect that led to the reduced transmission. ,ese
Wolbachia transfected A. aegypti female mosquitoes possess
an additional reproduction advantage over the uninfected
ones [30]. Other researchers have tried to use the life span
shortening strain ofWolbachia, to reduce the lifespan of the
mosquito, which can decrease the burden of the vector borne
diseases spread byA. aegypti [31]. Such genetic strategies are,
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however, primitive and mostly successful at the lab scale,
while their implementation on ground would require a
deeper understanding of the underlying mechanisms and
further research.

3. Nano-Biotechnology, an Emerging Interface

,e successful apprehension and manipulation of nano-
materials using the environmentally benign resources like
plant extracts or their derived chemical entities have paved a
way for using nanotechnology in an economical, sustainable,
and compatible way [32–34]. ,e process is characterized by
treating plant extracts with metal salts in different combi-
nations that lead to the reduction of metal salt and subse-
quent capping and stabilization of NPs [35, 36]. ,e
convergence of nanotechnology and biotechnology has
revealed exciting results for different health-hygiene,
nanomedicinal, environmental, and industrial applications
[37–39]. ,ese applications have paved a way for the
crystallization of nano-biotechnology or nanobiology. Metal
NPs like silver, gold, zinc, etc., are known to possess mul-
tifunctional properties owing to their unique surface area to
a volume ratio. ,ese NPs can be assembled by a variety of
physical, chemical, or biological processes [40, 41]. ,e
physical means are often characterized by high energy inputs
making the overall process expensive while chemical means
can generate hazardous wastes [42].

Recently, medicinal plants have been reported to exhibit
efficacy in various diseases including cancer, infectious
diseases, diabetes, and neurological disorders [43–50]. ,ey
inhibit the dengue virus by blocking the replication of virus
particles through interacting with the genome, or by
blocking their entry. ,e anti-dengue effect is manifested
through destabilization of NS proteins. Natural products
obtained from plants are reported to stop the viral repli-
cation either by interfering with the enzymes like inhibiting
polymerases, interacting with glycoproteins, or inhibiting
the replication by interfering with the RNA synthesis
pathway. Despite the advances in screening potential in-
hibitors, no such therapies have been approved due to the
heterotypic dengue infections [51–55].

A significant volume of research is now focused on the
biological methods that include extracts from the medicinal
plants as an eco-friendly, simple, and economical process for
assembling nanomaterials or composite nanomaterials
[56–61]. Other biological forms like microorganisms can
also be utilized for the synthesis of metal NPs [33] but
possess additional requirements like culture maintenance
and sterile conditions. On the contrary, plants do not possess
any expensive requirements, and are easy to handle. Phy-
tochemicals can reduce and stabilize NPs [62]. Apart from
the industrial applications, these biogenic NPs have revealed
excellent biomedical potential [63, 64]. Converging exper-
imental evidence suggests that the biogenic NPs can be used
against the dengue virus and controlling their vectors [19].
,e phyto-fabricated NPs present an excellent opportunity
to control the dengue virus. A detailed review of the liter-
ature is presented in Table 1, summarizing the plant used,

type of the metal NPs, their size, and application in vector
control.

4. Anti-Dengue Properties of Biogenic
Nanoparticles; Molecular Aspects

Few studies have documented the anti-dengue effect of the
phytogenic silver NPs against DENV-2. ,e likelihood
utilizing green-synthesized NPs in the fight against dengue
(serotype DEN-2) has been acknowledged lately. One of the
research articles encompasses the biosynthesis of silver NPs
from Bruguiera cylindrica (L.) Blume and evaluated their
effects on the dengue virus as well as their toxicity was
evaluated against the vector [65]. Interestingly, the silver
NPs treatment revealed decreased expression of dengue viral
E-gene that codes for structural envelope (E) protein. ,ese
results were confirmed through the western blot and RT-
PCR. ,e viral E-gene was found to be down-regulated in a
dose dependent manner leading to significant reduction in
envelope proteins as compared to the control. Significant
downregulation at 30 µg·mL−1 was observed. ,e synthe-
sized silver NPs were found to be toxic to the A. aegypti
larvae and pupae. Similar results are concluded for the
Moringa oleifera synthesized silver NPs for anti-dengue
applications [19]. Sonneratia alba Sm. derived silver NPs
tested in the concentration range of 5 µg/mL to 15 µg·mL−1

also revealed significant reduction in the Viral E-protein,
indicating a potential anti-dengue effect [66]. ,e afore-
mentioned findings put forth the hypothesis that the re-
duction in the formation of E protein may occur due to silver
NPs inhibiting the E gene and reducing the number of units
that are ineffective [65]. Subsequently, Centroceras clav-
ulatum (C.Agardh) Montagne synthesized silver nano-
particles (AgNPs) that were tested at 50mg/ml showed no
toxicity which is relevant against Vero cells, while the in-
hibition of growth of DEN-2 viral occurred for more than 80
percent [67]. ,e importance of screening different bio-
synthetic methods has been felt by these studies that can
explore ways for the production of novel and safer nano
drugs producing NPs having different features. Available
studies show the important role of screening different plants
which act as a source of reducing molecules of nanosynthesis
because different paths frequently guide us to manifold
various aspects of NPs and characteristics of biological
toxicity [66] (Figure 1).

Conclusively, these studies show strong and tangible
potential of screening substantial species of plants for bio-
synthesis of NPs with anti-dengue applications. ,e scarce
literature further necessitates conducting assemble NPs
other than silver, using medicinal plants for investigating
their anti-dengue properties.

4.1. Phyto-Nano-Interface for Vector Control. ,e use of
synthetic insecticides for potential vector control is unde-
sired because of environmental hazards and the elimination
of the nontarget organisms [68, 69]. Besides, environmental
issues, health concerns, and emerging insect resistance to
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io
lo
gi
ca
lp

ro
ce
ss
es

A
gN

Ps
5–

35
nm

C
ub

ic
an
d
sp
he
ri
ca
l

U
V
-v
is,

X
RD

,
FT

IR
,S

EM
,T

EM
13
.6
1
µg
/m

l
[1
38
]

57
.

Cl
er
od
en
dr
um

ch
in
en
se

La
rv
ae

II
I

N
ot

re
po

rt
ed

A
gN

Ps
25
–3

0
nm

Ir
re
gu
la
r,
Sp
he
ri
ca
l

or
w
ith

C
ub

ic
st
ru
ct
ur
es

U
V
-v
is,

SE
M
,

TE
M
,E
D
X
,F

TI
R

11
.1
0
µg
/m

l
[1
39
]

58
.

Ca
lo
tr
op
is

gi
ga
nt
ea

La
rv
ae

an
d

pu
pa
e

N
ot

re
po

rt
ed

A
gN

Ps
20
–3

5
nm

C
lu
st
er
ed

an
d

ir
re
gu
la
r

U
V
-v
is,

SE
M
,

ED
X
,F

TI
R

24
.3
3
pp

m
,3

4.
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pp
m
,
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.9
2
pp

m
,6
3.
38
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m
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d
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.8
8
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m
[1
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]
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.
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[1
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]
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.
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y
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d
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e
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t
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ep
id
er
m
al
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lls

A
gN
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66
.2
7
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75
.0
9
nm
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ng

ul
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an
d

pe
nt
ag
on

al
U
V
-v
is,

FT
IR
,

X
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,S
EM

,E
D
X
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m
g/
l

[1
42
]

61
.
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s
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m
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a
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to
ry

in
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t
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ca
cy

on
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er
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al
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5
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l
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d
ro
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d
U
V
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is,
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,

X
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,S
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,E
D
X
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m
g/
l

[1
42
]

62
.
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La
rv
ae
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ot

re
po

rt
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C
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SE
M
,
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X
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V
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d
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or
es
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e
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tr
os
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4.
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9
m
g/
L

[1
43
]
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.
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at
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A
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0.
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5
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L
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]
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.
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.2
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m
[1
45
]

65
.
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n
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A
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Ps
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l
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V
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,
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M
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50
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8,
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.0
5
μg
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L
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]
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.

Si
da
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r
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35
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X
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.1
2
μg
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L
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]
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.
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gl
ab
ra

La
rv
ae

N
ot

re
po

rt
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]
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.
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40
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M
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X
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.2
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8,
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7,
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.3
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.1
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µg
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]
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.
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d
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Ps
65
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M
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.6
0
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m
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),
9.
65
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V
),
an
d

14
.8
7
pp

m
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[1
49
]
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.

D
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tr
ifo
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I

an
d
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D
N
A
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r
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ab
ol
ism
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18
–5
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Sp
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nd
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c

U
V
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is,

FT
IR
,
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M
,E

D
X
,X
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,

TE
M

12
.1
1
m
g/
l(
II
I)
,1
7.
76

m
g/

l(
IV

)
[1
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]

71
.

Ca
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I
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rt
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A
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N
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57
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nm
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l,
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ia
ng
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de
ca
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al
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s
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V
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,
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M
,E

D
X
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RD
.
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.2
7
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d
48
.8
1
μg
/m

L
[1
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]

72
.

A
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a
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a
La
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an
d

pu
pa
e

D
am

ag
e
m
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gu
te
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th
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l
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em

br
an
e,
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tiv

at
e
en
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m
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d
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ra
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h
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6.
72
3
nm
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o
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re
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r

U
V
-v
is,

FT
IR
,

SE
M
,X

RD
[1
52
]

73
.
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ox
us

m
ul
tifl
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us

La
rv
ae

an
d

ov
a

A
ffe
ct

th
e
ep
ith

el
ia
lc

el
l/m

id
gu
t

or
co
rt
ex
,l
at
er
al
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ir
lo
ss
,

de
fo
rm

at
io
n
in
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lls
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w
el
la

s
br
us
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s

Zn
O

N
Ps

31
±
2
nm

Ir
re
gu
la
r
sp
he
ri
ca
l

U
V
-v
is,

FT
IR
,

SE
M
,E

D
X
,X

RD
34
.0
4
pp

m
an
d
32
.7
3
pp

m
[1
53
]

74
.

Pe
rg
ul
ar
ia

da
em

ia
La
rv
ae

N
ot

re
po

rt
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A
gN

Ps
44

to
25
5
nm

Sp
he
ri
ca
l

U
V
-v
is,

TE
M
,

pa
rt
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le

siz
e
an
d

ze
ta

po
te
nt
ia
l

an
al
ys
is

9.
90
,1

1.
13
,1

2.
40
,

12
.9
5
pp

m
[1
54
]

75
.

Ip
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oe
a
ba
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ta
s

La
rv
ae

D
N
A
st
ru
ct
ur
e
de
fo
rm

at
io
n,

an
d

ge
ne
ra
tio

n
of

ex
ce
ss
iv
e
re
ac
tiv

e
ox
yg
en

sp
ec
ie
s.

A
gN

Ps
20
–5

0
nm

O
rb
ic
ul
ar

U
V
-v
is,

FT
IR
,

SE
M
,E

D
X
,X

RD
15
.6
57

μg
/m

L
[1
55
]
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at
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e
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os
a
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N
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Sp
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ri
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r
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U
V
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is,

X
RD

,
FT

IR
,S

EM
7.
52
,8

.3
4,

9.
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,9

.1
5
μg
/

m
L

[1
56
]

77
.

A
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du
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A
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he
sis
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,r
ed
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e
m
em
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e
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e
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l
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V
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is,
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,
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.6
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]
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.
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0.
1
to
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d
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d
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l

U
V
-v
is,

A
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,
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,S
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]
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.
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s
el
lip

tic
us

La
rv
ae

D
ec
re
as
e
m
em

br
an
e

pe
rm

ea
bi
lit
y,

di
st
ur
b
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e
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n
is
di
sr
up

te
d

A
gN

Ps
<3

0
nm

Sp
he
ri
ca
l

U
V
-v
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]
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ra
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.9
9
μg
/m

L
[1
60
]
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.
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ed

A
gN

Ps
Sp
he
ri
ca
la

nd
ag
gr
eg
at
es

U
V
-v
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]
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]
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]
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.
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]
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n
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insecticides have led to the realization that these synthetic
chemicals may not be reliable in the long-term [70]. Such
pesticides are an instant danger to human health if used in a
nonjudicious manner. According to estimates, the synthetic
pesticides lead to around 3 million cases of poisoning and
222,000 deaths annually. Similarly, escaping of the pesticides
residues and their accumulation in the food chain represents
an unforeseen danger [71]. �ankfully, nanotechnology-
based interventions have emerged has a promising and al-
ternative source of insecticides due to their potent

insecticidal nature, mobility, solubility, and stability [70].
�e promising potential of green-synthesized NPs has paved
a way for novel vector control strategies. �eir toxicity
against some arthropod pests and vectors, especially mos-
quitoes has been well documented. �ere is a signi�cant
volume of literature on the toxicity of biogenic NPs on
mosquitoes; however, the information on the precise
mechanistic aspects is scarce. �e underlying mechanism is
pivotal to investigate the toxicological consequences arising
from the use of NPs as pesticides.
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Figure 1: Molecular interaction of biogenic NPs with the DENV genome causing decreased expression of viral E-gene.
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�e toxic e�ect of NPs may be linked to some stress
stimuli caused by NPs (Figure 2). �e exact mechanism is
not understood completely but scienti�c �ndings have
revealed that NPs may cause morphological alterations like
loss of lateral hair and damaged gills and brushes [72]. �is
may a�ect the respiratory activity of larvae, since the larval
stages rely solely on gills for breathing. At the cellular level,
severe membrane degradation is observed, as NPs penetrate
easily through the membrane. NPs may get accumulated in
midgut causing shrinkage of abdomen and damaged epi-
thelium or cortex. Blocking of the trypsin enzyme activity is
also considered as one of the causes of NPs mediated in-
secticidal activity [73]. Activity of this digestive protease is
linked with the signal transduction system as it regulates the
expression of a second gene, i.e., the late trypsin gene. �e
presence of two trypsin allows the mosquito to assess the
quality of the meal and adjust the levels of late trypsin for a
particular meal with remarkable ¦exibility. Feeding activity
is disturbed when trypsin activation is halted and the quality
of meal cannot be assessed [74]. Another factor contributing
to the toxicity of NPs is directly related to their small size due
to which they can pass easily into the cuticle and act directly
on epidermal cells and interfere with enzyme production
necessary for tanning and cuticle oxidation, ultimately af-
fecting the whole molting process. Alternatively, they may
inhibit neurosecretory cells resulting in cuticular shrinkage.
Some NPs are also associated with the disturbing of mus-
cular layers causing loss of distinction in endocuticle and
exocuticle leading to insect inactivity. NPs may bind to the
cuticle, sorbing the cuticular lipids and waxes resulting in
body wall desiccation, de-pigmentation, abrasion, spiracle
blockage, and insect dehydration, to which the insect ulti-
mately succumbs [72, 74]. �is factor contributes to the
utilization of NPs against the early instars and pupae and
prevents their development to adult stage rendering them as
a powerful larvicidal agent [75]. Authors have reported
interruption of acetylcholinesterase activity by NPs.

Acetylcholine is a compound involved with nerve impulse
transmission from nerve to nerve cell or involuntary
muscles, and this activity is regulated by acetylcholinesterase
(AChE) [63, 76]. It is reported the NPs interfere with AChE
resulting in disturbance of nerve impulse transmission
across cholinergic synapses [77]. �erefore, this could be
useful to assess the potential neurotoxic capacity of some
NPs [74]. Hormonal imbalances are also reported in insects
which are manifested by NPs. Further, NPs are reported to
interfere with the cytochrome P450, involved in the molting
of insects [73, 78]. A critical impact on reproduction and
development is also reported [74], where Gonadotropin
production is downregulated resulting in reduced �tness and
reproductive failure. Reduced female fertility is observed as
NPs disrupt the oogenesis process and ovaries become
defective, having a negative e�ect on egg laying capabilities
[72]. Moreover, NPs damage the organism by penetrating
through the exoskeleton [79], enter in the intracellular space,
and then the nanoscale material binds to sulfur from pro-
teins or to phosphorus from DNA which leads to the rapid
denaturation of organelles and enzymes. Due to the decrease
in membrane permeability and disturbance in proton mo-
tive force, loss of cellular function, and cell death occur
[80, 81]. At the cellular level, NPs can penetrate the cytosol
and interrupt the cellular signaling pathways, causing dis-
ruption in ion exchange and neuromuscular coordination
[73].

Even though several evidences exist on the toxicity of
NPs, di�erent experimental designs with diverse NPs sizes,
coatings, concentrations, times of exposure, measured
endpoints, and cell types make it di¨cult to compare results
and determine the mode of action by which these particles
in¦ict damage to organisms [82–84]. Generation of reactive
oxygen species (ROS) and free radicals have been observed
and implicated in the cause of oxidative stress, namely, in the
form of antioxidant defense system activation/inhibition
such as depletion of glutathione, lipid peroxidation and

Damages Cuticle
Dessication & Dehydation

Blocking Respiratory
Chain

Inhibit Transcription &
Translation

Alters Membrane
Permeability

Binds to ProteinsMalfunctioned Organelles

ROS and
Oxidative Stress

Inhibit antioxidants

Figure 2: Mechanism of nanoparticles toxicity against insects.
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DNA damage, decreased mitochondrial activity, in¦am-
matory processes, and apoptosis in a wide variety of cell
types [85] (Figure 3).

Converging evidence suggests an inverse correlation
between the size of NP and their toxicity and penetration
into the body of insects. Despite a number of pieces of
evidences, there is a dire need to conduct extensive studies
on the e�ects of the biogenic metal NPs on insects with
reference to their physicochemical nature like size, shape,
charge, etc. Moreover, the present body of literature only
indicates silver and gold NPs for their anti-parasitic prop-
erties and applications in entomology. Research can be
extended to other metal NPs of composite nonmaterial’s
biosynthesized from medicinal plants.

NPs: nanoparticles; X-ray di�raction (XRD); Fourier
transform infrared (FTIR); scanning electron microscope
(SEM); energy dispersive X-ray analysis (EDX); UV-visible
spectroscopy (UV-vis); �eld emission scanning electron
microscope (FESEM); high resolution transmission electron
microscopy (HRTEM); transmission electron microscopy
(TEM); dynamic light scattering (DLS).

5. Nanoparticles Enhances Predation Efficiency

Biological control of dengue vectors seems another probable
solution. �e prospective biological control of dengue
vectors can be performed using natural predators like �sh,
young instar tadpoles, copepods, and water bugs. Fishes
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Figure 3: Vector control and dengue transmission.
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were predominantly considered for biological control of
mosquitoes. Places that have the possibility to breed mos-
quitoes such as dams, marshes, canals, ponds, etc., were
inundated with numerous predatory fishes [148]. ,e
cyclopoids are also reported to be among the efficient
predators of the larvae of the mosquito involved in the
spread of dengue [113]. Copepods represent another eco-
nomical and cost-effective biological control of culicidae
larvae in urban and semiurban areas [166, 167]. ,e most
effective agents of copepods that control mosquitoes bio-
logically are Mesocyclops, i.e., Mesocyclops pericornis, Mes-
ocyclops longisetus, Mesocyclops guangxiensis, and
Mesocyclops thermocyclopoides [113]. Recently, the effect of
NPs on the predation behavior of these natural predators has
been studied (Table 2). ,e striking findings are the increase
in predation efficiency. It has been clearly demonstrated that
the rate of predatory activity rises up administering NPs;
however, the underlying exact mechanism is yet to be ex-
plored. ,e efforts, however, have been made to investigate
the nontarget effects of NPs towards predatory copepods are
somewhat limited.

6. Conclusion and Insights for Future Research

In the synthesis of the metal nanoparticles, the green syn-
thesis method stands out due to its eco-friendly and sus-
tainable nature. Based on the available research, it can be
concluded that the biogenic nanoparticles have an enormous
potential to answer the pressing healthcare challenges, such
as the mitigation of the dengue infections. Dengue virus is
now considered as global threat that requires innovative
approaches for its control. Nano-biotechnology interven-
tions can be helpful in reducing the disease burden in a cost-
effective and sustainable manner. Biogenic nanoparticles can
reduce the dengue infection with by direct interaction or
indirect interaction with the vector. Numerous studies have
supported the potential of biogenic NPs for manifesting the
anti-dengue effect by interfering and downregulating the
critical structural genes necessary for the viral assembly.
Furthermore, these biogenic NPs have successfully dem-
onstrated vector control potential which is manifested
through their biocidal nature. From an application stand-
point, the production of these biogenic NPs is free of any

hazardous chemicals, with no special energy requirements
and an easy scale up potential. ,e challenge is to implement
these nano-biotechnology-based interventions on ground.

,e major focus in the green synthesis is centered on the
synthesis of silver and gold nanoparticles; however, these
studies should be extended to other innovative composite
nanomaterials. Literature of the mechanistic insights of
green synthesis is scarce and further studies should be
undertaken to critically evaluate the mechanistic insights
during synthesis of the biogenic nanoparticles. Similarly,
detailed studies should be conducted to evaluate the toxicity
of the nanoparticles and their long-term impact in the
environment should be critically assessed.
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Table 2: Effect of NPs on the efficiency of predators of dengue vector.

S.No Predator Plant used Nanoparticles
(NPs)

Salt used (as a
precursor)

Efficiency
Reference

Before After

1 Mesocyclo ps
aspericornis

Cymbopogon
citratus AuNPs HAuCl4 56% 77.30% [113]

2 Megacyclo ps
formosanus

Hedychium
coronarium AgNPs AgNO3

7.22, 5.88, 1.28,
and 0.28 larvae

8.11, 6.88, 1.95, 1.06
larva/day [168]

3 Poecilia sphenops Psychotria
nilgiriensis AgNPs AgNO3

65% (larva I),
49.62% (larva II)

92.25% (larva I),
76.50% (Larva II) [148]

4 Gambusia affinis Mimusops elengi AgNPs AgNO3 81.7% (larvae III) 88.60% [169]

5 Poecilia reticulata Sonneratia alba AgNPs AgNO3
6.5, 4.8, 3.8, 2.6

larvae/day
8.2, 6.4, 5.0, 3.9

larvae/day [66]

6 Oryzias
melastigma

Chenopodium
ambrosioides AgNPs AgNO3

65.5 (II) and
59.0% (III)

91.0 (II) and 85.5%
(III) [170]
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