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Lotus seedpods (LSPs) are an abundant and underutilized agricultural residue discarded from lotus seed production. In this study,
ZnCl2 and FeCl3 coactivation of LSP for one-pot preparation of magnetic activated carbon (MAC) was explored for the frst time.
X-ray difraction (XRD) results showed that Fe3O4, Fe0, and ZnO crystals were formed in the LSP-derived carbonmatrix. Notably,
transmission electron microscopy (TEM) images showed that the shapes of these components consisted of not only nanoparticles
but also nanowires. Fe and Zn contents in MAC determined by atomic absorption spectroscopy (AAS) were 6.89 and 3.94 wt%,
respectively. Moreover, SBET and Vtotal of MAC prepared by coactivation with ZnCl2 and FeCl3 were 1080m2/g and 0.51 cm3/g,
which were much higher than those prepared by single activation with FeCl3 (274m2/g and 0.14 cm3/g) or ZnCl2 (369m2/g and
0.21 cm3/g). MAC was subsequently applied as an oxidation catalyst for Fenton-like degradation of acid orange 10 (AO10). As
a result, 0.20 g/LMAC could partially remove AO10 (100 ppm) with an adsorption capacity of 78.4mg/g at pH 3.0.When 350 ppm
H2O2 was further added, AO10 was decolorized rapidly, nearly complete within 30min, and 66% of the COD was removed in
120min. Te potent catalytic performance of MAC might come from the synergistic efect of Fe0 and Fe3O4 nanocrystals in the
porous carbon support. MAC also demonstrated efective stability and reusability after fve consecutive cycles, when total AO10
removal at 20min of H O addition slightly decreased from 93.9± 0.9% to 86.3± 0.8% and minimal iron leaching of 1.14 to
1.19mg/L was detected. Interestingly, theMAC catalyst with a saturationmagnetization of 3.6 emu/g was easily separated from the
treated mixture for the next cycle. Overall, these fndings demonstrate that magnetic activated carbon prepared from ZnCl2 and
FeCl3 coactivation of lotus seedpod waste can be a low-cost catalyst for rapid degradation of acid orange 10.

1. Introduction

Today, agricultural activities generate enormous amounts of
solid wastes all over the world. Tese agricultural wastes are
commonly disposed of by burning them in the felds. Tis
activity can cause a variety of ecological and environmental
problems [1]. Hence, numerous studies on the valorization
of agricultural residues have been done in light of diferent

economic, energy, and environmental concerns [2, 3].
Typically, agricultural wastes consist of lignocellulosic bio-
mass, which includes cellulose, hemicellulose, and lignin [4].
Due to their carbon resources, these wastes can be employed
in the production of carbon-based materials [5, 6].

Biochar (BC) is a carbon-richmaterial prepared from the
pyrolysis of diferent biomass resources in oxygen-free
environments [7–11]. Despite the vast variety of carbon-
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based materials, BC is an inexpensive, readily available, and
convertible material [12, 13]. Moreover, it possesses ad-
vantageous physicochemical features, porous structures, and
varied functional groups [14]. Tus, BC is widely utilized for
gas storage and separation, soil treatment, wastewater
treatment, electrodes, and energy storage [15–18]. Regard-
less of this, it is challenging to separate BC from its sus-
pension [19, 20]. Traditional separation techniques are often
expensive or insufcient, thereby severely limiting the ap-
plication of BC [21]. Consequently, introducing magnetic
components into BC can overcome this disadvantage.
Diferent magnetic components such as Fe0, Fe2O3, Fe3O4,
and MnFe2O4 particles could be dispersed on BC, resulting
in a new material known as magnetic biochar (MBC).

To synthesize MBC from biomass, magnetic precursors
are commonly loaded onto carbon surfaces [22]. Tis old
approach, however, is not only complex, but it also closes
existing pores in carbon supports [23]. In recent years,
a growing number of publications focusing on producing
MBC using one-pot pyrolysis of magnetic precursor-loaded
biomass have been developed [24, 25]. It involves directly
dispersing magnetic precursors like FeCl3 into biomass
resources and then pyrolyzing the obtained mixtures to yield
MBC [26, 27]. According to Bedia et al. [28], biomass ac-
tivated with FeCl3 produces MBC with well-dispersed iron-
based nanoparticles and well-developed porosity. However,
compared with other well-known activating agents, FeCl3
has limited activation efciency. Porous systems of MBC
grow slightly. For instance, specifc surface areas (SBET) of
MBC are obtained frommunicipal sludge (FeCl3/N2): 38m2/
g [29]; spent cofee grounds (FeCl3/N2): 8m2/g [30]; peanut
hull (FeCl3/N2): 159m2/g [31]; and lotus stem (FeCl3/O2-
limited): 374m2/g [32]. Increasing the FeCl3/biomass ratio
could improve the activation process. However, an excessive
ratio can afect the porous properties and application per-
formance of MBC [23, 33]. FeCl3 should be well impreg-
nated inside the natural holes of biomass. Terefore, high
FeCl3 loading may form bigger Fe-based particles and
clusters, decreasing the surface area of catalytic Fe sites. Te
bigger Fe-based particles may also block the pores of carbon
bases, negatively afecting mass transfer. Te interaction
between MBC and organic pollutants mainly comes from
surface porous carbon with functional groups rather than
Fe-based particles. High Fe loading content may decrease
adsorption sites, causing weaker adsorption. To expand the
porous system of MBC efectively, a few recent reports
propose the combination of FeCl3 with another activating
agent during one-pot pyrolysis of biomass. By replacing N2
with CO2, the SBET of MBC obtained from the FeCl3-acti-
vation of spent cofee grounds increased remarkably from 8
to 512m2/g [30]. Hence, the additional activation during
one-pot preparation of MBC is necessary, and the resulting
material can be referred to as magnetic activated carbon
(MAC).

Physical and chemical activation are the two most
common techniques used to activate carbon-based materials
[12]. Physical activation is a two-step technique that frst
produces activated carbon by carbonizing biomass and then
activates it at high temperatures with H2O or CO2 [34, 35].

For chemical activation, biomass resources are frst im-
pregnated with activating agents such as KOH, K2CO3,
H3PO4, H2SO4, AlCl3, ZnCl2, and FeCl3, and then car-
bonized and activated in one-step pyrolysis. Tose agents
might theoretically activate MBC [36, 37]. Te selection of
an efective approach for expanding a porous system should
not, however, impact the magnetic and other properties of
the original MBC. Physical activation must be conducted
within a range of high temperatures and high pressures,
resulting in the potential for severe changes in the diferent
properties of MAC products [34, 35]. Terefore, chemical
activation with a powerful activating agent like ZnCl2 is
preferable [38, 39]. Experiments revealed that ZnCl2-acti-
vated carbon possessed a greater surface area and a greater
number of micropores. In addition, the aromatic structure of
ZnCl2-activated carbon was enhanced [40]. Hence, it is
crucial to activate biomass with the combination of ZnCl2
and FeCl3 when few studies have been found in the liter-
ature. Lee and Ahmad Zaini [41] demonstrated that ZnCl2
and FeCl3 coactivation of palm kernel shell ofered MAC
with a very high SBET of 1775m2/g. As a result, the obtained
MAC demonstrated exceptional adsorption of rhodamine B
at 371mg/g. Similarly, Lou et al. [42] prepared MAC from
corn stover with a SBET of 1409m2/g for signifcantly en-
hanced Cr (VI) removal of 185.8mg/g. Based on the
abovementioned results, it is possible to use both ZnCl2 and
FeCl3 as an activatingmixture in a facile one-pot preparation
of MAC from biomass resources. In terms of adsorption, the
superiority of MAC over MBC has been proven; however, its
catalytic activity has been studied very little. Such reports
[21, 43] indicated that Fe-based particles in MBC could
become catalytic sites for efective treatment of organic
compounds through advanced oxidation processes. Tus, it
is anticipated thatMACwith Fe-based sites and an expanded
porous system could exhibit better catalytic performance. To
increase the possible use of MAC, its catalytic performance
must be investigated in greater depth.

Nowadays, numerous industrial processes, including
food processing, papermaking, printing, leather, textiles,
cosmetics, and pharmaceuticals, discharge vast quantities of
dyes into the aquatic environment [44–46]. Dye pollution is
a signifcant environmental concern because synthetic dyes
are typically not biodegradable, meaning they persist for
extended periods of time in the environment [47, 48]. In
addition to causing aesthetic issues, dyes can impair the
survival and reproduction of aquatic organisms [49–51].
Hence, efective remediation of dye pollution in wastewater
is essential for environmental protection and sustainable
development. Biodegradation, adsorption, coagulation-
focculation, photocatalytic treatment, and chemical treat-
ment are typical techniques [52–55]. With chemical treat-
ment, dye molecules can be oxidized and broken down using
chemicals, such as hydrogen peroxide, ozone, and persulfate,
rendering them less toxic and simpler to remove from the
environment [56]. Hydrogen peroxide (H2O2) ofers several
advantages over other oxidizing agents, including its safety,
environmental friendliness, versatility, cost-efectiveness,
simple operation, and mild conditions [57, 58]. However,
the use of H2O2 alone is less efective. To accelerate the
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treatment of organic pollutants by H2O2, catalysts can be
used. As mentioned before, magnetic biochar has proven
that it is an efective catalyst for the treatment of synthetic
dyes by H2O2 owing to its efectiveness, stability, low cost,
and environmental friendliness [27, 59].

Lotus seedpods (LSP) are released from seed gathering in
markets and factories, resulting in massive agricultural waste
[60, 61]. LSP is a prospective carbon resource for the pro-
duction of various carbon-based products on account of its
availability, abundance, underutilization, and low cost. In
our previous studies, LSP was used to prepare MBC through
one-pot FeCl3 activation [19, 27]. Te developed MBCs
exhibited efcient catalytic activity for the elimination of
organic contaminants by H2O2. Herein, LSP was continu-
ously selected as a biomass resource for one-pot preparation
of MAC using ZnCl2 and FeCl3 coactivation. To evaluate the
catalytic performance of as-prepared MAC samples in
a Fenton-like process, acid orange 10 (AO10), a synthetic
azo dye with extensive usage, limited biodegradability, and
potential toxicity [62–64] was selected.

2. Materials and Methods

2.1.Materials. Raw lotus seedpod residue was received from
a factory for lotus seed production located in Tap Muoi
District, Dong Tap Province, Vietnam. Te pods were
washed with tap and distilled water to remove all dirt before
being dried in an electric drying oven at 105°C for 24 h.Ten,
the raw material was cut and milled to obtain a fne powder.
To avoid moisture, the powder was stored in an airtight
vessel for later use. FeCl3.6H2O (≥99.0%), ZnCl2 (≥98.0%),
H2SO4 (95.0–98.9%), NaOH (≥96.0%), Na2S2O3.5H2O
(≥99.0%), H2O2 (≥30.0%), KH2PO4 (≥99.5%), Na2H-
PO4.12H2O (≥99.0%), and acid orange 10 were obtained
from Xilong Scientifc Co., Ltd., China. All analytical grade
chemicals were used directly, without further refnement.

2.2. Preparation of Magnetic Activated Carbon from Lotus
Seedpod. Magnetic activated carbon was prepared via the
one-pot pyrolysis of ZnCl2 and FeCl3-loaded lotus seedpod
residue. First, 4.00 g of LSP powder, 0.80 g of FeCl3, and
a certain amount (4x g) of ZnCl2 were added to 100mL of
distilled water. After 3.0 h of stirring, the mixture was dried
in an oven at 105°C for 24 h. Te dried sample was then
added to a glass reaction tube in a vertical furnace. A
constant nitrogen fow rate of 250mL/min maintained the
inert atmosphere inside the tube. To pyrolyze, the tube was
heated from room temperature to 600°C at an average rate
of 5°C/min and then held at that temperature for 60min.
Te obtained solid was washed repeatedly to remove all
residual FeCl3 and ZnCl2. Wastewater was tested with
a pH meter, an electrical conductivity meter, an aqueous
NaOH solution, and an aqueous AgNO3 solution to detect
ion leaching (Fe3+, Zn2+, and Cl−). Lastly, the sample was
dried at 80°C for 24 h to obtain MAC. Due to the mass ratio
of ZnCl2/FeCl3/LSP being x/0.2/1.0, the as-prepared MAC
samples were denoted as MAC-x. Moreover, biochar (BC),
magnetic biochar (MBC), and activated carbon (ZAC),

which served as reference samples, were prepared by the
pyrolysis of LSP, FeCl3-loaded LSP, and ZnCl2-loaded LSP
under the same procedure. Tese labels are presented in
Table 1.

2.3. Characterization of Magnetic Activated Carbon.
Powder X-ray difraction (XRD) in the 2θ�10–80° range
was measured on a Bruker AXS D8 difractometer using
CuK α radiation (λ�1.5418 Å). Fe and Zn contents in MBC
andMAC samples were analyzed by a Perkin Elmer Analyst
800 atomic absorption spectrophotometer (AAS). Tese
metal elements were extracted from MBC and MAC
samples in a HCl (6M) solution at 60°C for 60min. Ni-
trogen adsorption and desorption isotherms of MBC, ZAC,
and MAC were measured at 77 K on a Micromeritics®TriStar II Plus. All samples were degassed at 250°C for 5 h.
Te specifc surface area (SBET) was calculated from the
Brunauer–Emmett–Teller equation. Te total pore volume
(Vtotal) was determined at P/Po � 0.995. Te average pore
size (daverage) was obtained from 4Vtotal/SBET. Te pore size
distribution was determined by the BJH method. Te
magnetic properties of MBC andMACwere examined with
a vibrating sample magnetometer (VSM) at room tem-
perature. Fourier transform infrared (FTIR) spectroscopy
of MAC was performed using a Tensor 27 spectrometer.
Scanning electron microscope (SEM) images, energy dis-
persive X-ray (EDX) spectroscopy, and elemental mapping
of MAC were analyzed using a JEOL JSM-IT200 in-
strument. Transmission electron microscopy (TEM) im-
ages of BC, MBC, and MAC were recorded by a JEOL
JEM-1010 instrument.

2.4. Degradation of Acid Orange 10 UsingMagnetic Activated
Carbon. Te catalytic performance of MAC samples was
explored through the degradation of acid orange 10 using
H2O2 as an oxidizing agent at room temperature (30°C). In
brief, 500mL of AO10 (100 ppm) and a certain MAC dosage
were added to a 1000mL glass cylinder. Te initial pH value
of the mixture was adjusted using H2SO4 (0.5M) and NaOH
(0.1M) solutions.Te adsorption step was carried out within
the frst 20min. Te adsorption capacity (Q), therefore, was
calculated from the following equation:

Q
mg
g

  �
C

A
0 − C

A
20

CM

, (1)

where CM (g/L) is the material dosage, and CA
0 and CA

20
(ppm) are the AO10 concentrations at the beginning and
after 20min of adsorption.

After the adsorption step, the oxidation step was initi-
ated by the rapid addition of H2O2 to the mixture. Samples
taken were added immediately to a solution of phosphate
bufer and Na2S2O3 (2.0 g/L) to adjust the pH to 7.0 and
eliminate excess H2O2. AO10 concentrations were quanti-
tatively examined at 480 nm with a UV-Vis spectropho-
tometer (Lovibond PC Spectro). Te decolorization
efciency and total removal of AO10 were calculated as
follows:
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where CO
0 and CO

30 (ppm) are the AO10 concentrations at the
beginning and after 30min of oxidation.

Te chemical oxidation demand (COD) was quantifed
using the closed-refux titrimetric method (5220C) [65]. To
minimize the infuence of residual H2O2 on COD results,
samples were mixed with a solution of 20.0 g/L Na2CO3 and
incubated at 90°C for 60min [66].

To evaluate the stability and reusability of the MAC
catalyst, a sample was used in fve consecutive experiments.
Te used catalyst was recovered using a magnet, rinsed with
distilled water and ethanol, and then placed in an oven at
110°C. Te dried catalyst was weighed in preparation for the
subsequent experiment. At the end of each cycle, the treated
solution was analyzed with the previously mentioned AAS
instrument to identify Fe leaching.

3. Results and Discussion

3.1. Characterization of Magnetic Activated Carbon

3.1.1. XRD Patterns of MBC, ZAC, andMAC. XRD was used
to examine the development of crystals on MBC, ZAC, and

MAC samples, as shown in Figure 1. Peaks of Fe3O4 crystals
were found in MBC at 2θ�18.3, 30.1, 35.4, 42.4, 52.4, 56.0,
and 61.5°, respectively, corresponding to the (111), (220),
(311), (400), (422), (511), and (440) planes (JCPDS 19-0629).
Te following reactions are proposed for the formation of
Fe3O4 during the one-pot pyrolysis of FeCl3-loaded LSP:

Lotus seedpod⟶ H2O,H2,CO,C (3)

FeCl3 + 3H2O⟶ Fe(OH)3 + 3HCl (4)

2Fe(OH)3 ⟶ Fe2O3 + 3H2O (5)

3Fe2O3 + CO⟶ 2Fe3O4 + CO2 (6)

3Fe2O3 + H2 ⟶ 2Fe3O4 + H2O (7)

3Fe2O3 + C⟶ 2Fe3O4 + CO (8)

Fe3O4 + 4C⟶ 3Fe + 4CO (9)

With ZnCl2 activation, ZAC possessed the peaks at
2θ � 31.7, 34.3, 36.1, 47.4, 56.3, 62.7, 67.7, and 68.9°, which
respectively correspond to the (100), (002), (101), (102),
(110), (103), (112), and (201) planes of hexagonal ZnO
crystals (JCPDS 36-1451). Based on a report by Ma [40], the
following equations might explain the production of ZnO:

Lotus seedpod CxHyOz  + 2ZnCl2 ⟶ CxHy−6Oz−3 + Zn2OCl2.2H2O + 2HCl (10)

Zn2OCl2.2H2O⟶ ZnCl2 + ZnO + 2H2O (11)

At high temperatures, molten ZnCl2 can promote
dehydration processes to cleave polymer chains of
lignocellulosic biomass, yielding H2O and a thermoplas-
tic carbonaceous phase [67]. ZnCl2 can then combine
with H2O to produce Zn2OCl2.2H2O. Subsequently, the
decomposition of Zn2OCl2.2H2O can produce ZnCl2
vapor, and its difusion can activate the thermoplastic
phase to ofer the last porous carbon system [68].
Moreover, the formed ZnO can be kept in the carbon
structure.

By coactivation of LSP with ZnCl2 and FeCl3, all MAC
samples produced Fe3O4 and ZnO. Notably, the presence
of zero-valent Fe crystals was demonstrated at 2θ� 44.6

and 64.9° (JCPDS 06-0696). Tus, Fe3O4, Fe0, and ZnO
were the main products present in MAC. Compared to
MBC and ZAC samples, MAC samples contained a greater
amount of background noise. In MAC samples, strong
activation could signifcantly reduce crystallinity and
increase amorphous components, such as carbon base.
Terefore, intense scattering may obscure the low peaks of
the available crystals. In fact, several peaks of ZnO and
Fe3O4 crystals in MAC samples were overlapped by
background noise.

As the ZnCl2/LSP mass ratio rose from 0.1 to 0.4,
the peak intensities of Fe3O4 declined while those of Fe0
increased. Tese results demonstrate that higher

Table 1: Properties of MBC, ZAC, and MAC prepared with diferent ZnCl2/FeCl3/LSP mass ratios.

Materials ZnCl2/FeCl3/LSP
(w/w/w)

Pyrolysis
efciency (%) Fe (wt%) Zn (wt%) SBET

(m2/g)
Vtotal

(cm3/g) daverage (nm) Saturation magnetization
(emg/g)

ZAC 0.4/−/1.0 — — — 369 0.21 1.2 —
MBC −/0.2/1.0 49.9± 0.3 5.69 — 274 0.14 2.0 1.4
MAC-0.1 0.1/0.2/1.0 53.7± 0.3 6.94 2.24 531 0.31 2.4 1.9
MAC-0.2 0.2/0.2/1.0 51.2± 0.3 6.92 2.49 780 0.46 2.4 3.3
MAC-0.4 0.4/0.2/1.0 49.6± 0.2 6.89 3.94 1080 0.51 1.9 3.6
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ZnCl2-loading content could enhance the decomposition of
LSP into carbon base and H2O, and more ZnO could be
formed. As shown in Table 1, Zn content increased from
2.24 to 3.94 wt% when the ZnCl2/LSP mass ratio increased
from 0.1 to 0.4. Faster carbonization boosted by ZnCl2
could provide more decomposition products (e.g., C and
H2O) to accelerate equations (4)–(9). As a consequence,
the Fe content in MAC samples (6.89–6.94 wt%) was
generally higher than that in MBC (5.69 wt%). With MBC,
unreacted FeCl3 was eliminated via washing with distilled
water. In contrast, the similar Fe content in MAC samples
reveals that nearly all FeCl3 may be converted into Fe3O4
and Fe0, which were embedded in the carbon matrix.
Moreover, the reduction of Fe3O4 to Fe was enhanced.
Together with ZnCl2, this reaction could activate the
porous carbon system. In fact, as the ZnCl2/LSP mass ratio
increased, the pyrolysis efciency fell marginally (Table 1).
Despite the higher Zn-loading content, the stronger ac-
tivation might reduce the remaining carbon content
in MAC.

3.1.2. Porous Properties of BC, MBC, and MAC. As pre-
sented in Table 1, SBET and Vtotal of MBC were 274m2/g and
0.14 cm3/g, respectively. Tese results are similar to previous
studies for LSP-derivedMBC [19, 27].With ZnCl2 activation
alone, SBET and Vtotal of ZAC were 369m2/g and 0.21 cm3/g,
respectively. Te combination of FeCl3 and ZnCl2 was
therefore expected to strongly enhance the porous properties
of MAC. As a result, when the ZnCl2/LSP mass ratio in-
creased from 0.1 to 0.4, SBETof MAC gradually rose from 531
to 1080m2/g, which was 1.9–3.9 and 1.4–2.9 times more
than that of MBC and ZAC, respectively. Similarly, Vtotal of
MAC samples was 0.31–0.51 cm3/g, which was 2.2–3.6 and
1.5–2.4 times higher than that of MBC and ZAC, re-
spectively. Tese results demonstrate that the combination
of ZnCl2 and FeCl3 improved the porous carbon system
remarkably.

Figure 2(a) displays the nitrogen adsorption and de-
sorption isotherms for MBC and MAC-0.4. Extremely slim
hysteresis loops resulting from capillary condensation in-
dicated that few mesopores were formed. As a result, MBC
and MAC were composed primarily of micropores. Indeed,
BJH pore size distribution revealed that both the MBC and
MAC-0.4 samples contained predominant micropores with
similar typical pore sizes of around 1.2 nm (Figure 2(b)).
Nonetheless, MAC-0.4 contained slightly more mesopores
and macropores than MBC. Based on these fndings,
coactivation led to a signifcant increase in the number of
micropores and a moderate enlargement in pore size inside
the carbon structure.

3.1.3. Magnetic Properties of MBC and MAC. All MBC and
MAC samples were easily attracted by an external magnetic
feld from a magnet, as illustrated in Figure 3. Furthermore,
VSM investigated their magnetic properties in depth. In
general, all samples displayed similar magnetic hysteresis
curves with extremely low coercivity, which was indicative
of superparamagnetic behavior. Consequently, these ma-
terials may be magnetized and demagnetized simply.
Similar trends have been uncovered in prior research
[69, 70]. In particular, MBC possessed a saturation mag-
netization of approximately 1.4 emu/g. Te saturation
magnetizations of MAC-0.1, MAC-0.2, and MAC-0.4 were
1.9, 3.3, and 3.6 emu/g, which were 1.4, 2.4, and 2.6 times
that of MBC, respectively. Tese results indicate that
coactivation could enhance the magnetic properties of the
obtained MAC. As presented in Table 1, the Fe content in
all MAC samples (6.89–6.94 wt%) was not much higher
than that in MBC (5.69 wt%). However, Fe3O4 was pre-
dominant in MBC, whereas Fe3O4 and Fe0 coexisted in
MAC samples. As previously discussed, when the ZnCl2/
LSP mass ratio increased from 0.1 to 0.4, more Fe0 crystals
were formed. Consequently, the magnetic nature of dif-
ferent Fe-based materials may be the primary reason for the
variation in the magnetic properties of MBC and MAC.
According to Feng et al. [71], when Fe3O4 was reduced to
Fe, the magnetic properties of the resulting material in-
creased because Fe can possess stronger magnetic prop-
erties than Fe3O4. In addition, other factors, such as the
size, shape, magnetic anisotropy, and crystallinity of Fe3O4
and Fe0, which strongly depend on the preparation con-
ditions, could infuence their magnetic properties [72, 73].

3.1.4. FTIR Spectroscopy of MAC. FTIR spectroscopy of
MAC-0.4 is presented in Figure 4. Diferent peaks were
found in MAC, including 3270 cm−1 (O-H stretching vi-
brations), 2900 cm−1 (C-H stretching vibrations), 2300 cm−1

(O�C�O stretching vibrations), 1756 cm−1 (C�O stretching
vibrations), 1570 cm−1 (C�C stretching vibrations),
1144 cm−1 (C-O stretching vibrations), and 826 cm−1 (C-H
stretching vibrations) [74–76]. Notably, peaks at 525 cm−1

could be Fe-O bonds [77, 78], and 466 cm−1 could be Zn-O
bonds [41, 79]. More importantly, the presence of polar
oxygen-rich functional groups on the surface of MAC-0.4

Fe3O4

In
te

ns
ity

 (a
.u

.)

ZnO

MBC

Fe

ZAC

MAC-0.1

MAC-0.4

MAC-0.2

20 30 40 50 60 70 8010
2θ (°)

Figure 1: XRD patterns of MBC, ZAC, and MAC samples.
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could improve its interaction with organic pollutants and
oxidizing agents during catalytic treatment processes.

3.1.5. SEM Images of MAC. Te surface morphology of
MAC-0.4 was observed by SEM images (Figure 5). Sharp-
edged fragments could be generated from vigorously
crushing LSP. In addition, such macropores at the micro-
scale were found. Depending on the porous properties,
ZnCl2 and FeCl3 coactivation of LSPmight afect micropores
more than mesopores and macropores. Terefore, those
macropores could come from the natural vascular bundles of
LSP [80, 81]. Especially, it seems that few Fe- and Zn-based
particles were observed. Tese components may be em-
bedded in the carbon framework without forming clusters
on theMAC surface.Tis fnding is similar to that of MBC in
previous studies [27, 28]. Of particular importance, the frm
immobilization is anticipated to enhance the stability and
reusability of the MAC catalyst.

3.1.6. EDX Spectroscopy and Elemental Mapping of MAC.
EDX spectroscopy and elemental mapping were used to
determine the chemical composition and elemental distri-
bution on the surface of MAC-0.4 (Figure 6). Te pre-
dominant elements included C (84.71wt%), Fe (5.78 wt%),
and O (8.19wt%). Notably, the surface Fe content detected
by EDX was close to the bulk Fe content analyzed by AAS
(6.89wt%). Te EDX result may show the surface distri-
bution of Fe, whereas the AAS analysis may give the bulk Fe
content (both outside and inside the carbon matrix). In
traditional methods, the Fe element is normally decorated
on the surface of the carbon base rather than inside the
carbon framework. As a result, the surface Fe content from
EDX may be much higher than the bulk Fe content from
AAS. Herein, FeCl3 was impregnated inside LSP. Hence, the
distribution of Fe may be spread throughout the carbon
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structure, resulting in comparable Fe contents from EDX
and AAS results. Unlike Fe, the minor surface Zn content
(0.29wt%) was much lower than the bulk Zn content
(3.94wt%). It reveals that Zn on the carbon surface may
readily be removed during pyrolysis. As previously in-
dicated, ZnCl2 vapor could be formed and difused into
porous carbon. Due to its high mobility, ZnCl2 vapor may
escape of the MAC surface and be carried away by the fow
of N2 gas. Ten, only the inner carbon matrix may retain Zn
better. Interestingly, the atomic ratio of O/Fe was approx-
imately 5.0, which is much higher than that of Fe3O4. Tis
comparison demonstrates that a considerable surface O
content was present in the functional groups, as listed in the
FTIR results.

For the remaining elements in MAC, Si and Cl were
identifed at 0.45 and 0.59wt%, respectively. Several reports
demonstrate that minor elements, including Si, can be
present in LSP [82, 83]. However, Cl may be partially or
entirely derived from the additional FeCl3 and ZnCl2. As
previously stated, MAC was cleaned until no Fe3+, Zn2+, or
Cl− leaching was detected. Terefore, these elements could
be frmly bound within the carbon matrix by strong me-
chanical or chemical linkages [27]. Lastly, element mapping
showed that Fe, Zn, O, Cl, and Si elements were uniformly
distributed on the carbon surface at the microscale. Te
consistent spread of Fe and Znmay be a result of well-loaded
FeCl3 and ZnCl2 in LSP. Following is a discussion on
nanoscale TEM analysis for clarifying the interior structure
of materials.

3.1.7. TEM Images of BC, MBC, and MAC. TEM images
were used to observe the internal structures of BC,MBC, and
MAC-0.4 (Figure 7). BC shows a smooth surface with
a gradual transition in brightness. Contrarily, the in-
consistent brightness in MBC reveals the morphology of
Fe3O4. At the nanoscale, dust-like Fe3O4 particles were
observed throughout the carbon matrix.Tese nanoparticles
seem to group together in clusters. In addition to nano-
particles, MBC contained nanowires of Fe3O4. Intriguingly,
the existence of magnetic nanowires in MBC is rare. It
appears possible that Fe3O4 nanowires may be formed in
nanopores that resemble tubes [27]. Similar to MBC, MAC-
0.4 had nanoparticles and nanowires that were well

distributed throughout the carbon matrix. However, not
only Fe3O4 but also Fe0 and ZnO crystals were present in
MAC. It was suggested that the initial natural porous
structure of LSP for ZnCl2 and FeCl3 loading played an
important role in the morphology of Fe- and Zn-based
products. LSP contains natural cellulose fbers [84]. Wire-
like morphology may, therefore, result from crystallization
in an extremely narrow fbrous matrix. More importantly,
well-distributed Fe-based components at the nanoscale in
the porous carbon system of MAC could not only improve
its catalytic stability but also provide a greater contact area
with other species for higher catalytic activity [78]. Tese
advantages were explored in Fenton-like catalysis for the
degradation of acid orange 10.

3.2. Removal of Acid Orange 10 Using Magnetic Activated
Carbon

3.2.1. MAC as an Adsorbent for AO10 Removal. Te catalytic
activity of MAC in AO10 degradation using H2O2 was in-
vestigated. For complete oxidation of 100 ppm AO10,
a minimum of 316 ppm H2O2 is theoretically required [44].
According to Do et al. [27], 350 ppm was an appropriate
dosage for the degradation of 100 ppm AO10. Tus, that
dosage was selected. In addition to MAC, BC, ZAC, and
MBC were used as blank samples. Because BC, ZAC, MBC,
and MAC samples could potentially adsorb a certain
amount of AO10, the experiments were divided into two
stages: adsorption for the frst 20min, followed by 30min
of oxidation (Figures 8–13). Parameters, including MAC
catalysts, MAC dosage, pH, and AO10 concentration, are
presented in Table 2. All results revealed that the ad-
sorption process closely reached equilibrium within 20min
before the next oxidation step. Although the experimental
parameters were designed for catalytic oxidation, MAC
exhibited excellent adsorption performance for AO10. In
actuality, low MAC-0.4 dosages (0.10 to 0.40 g/L) elimi-
nated AO10 with adsorption capacities ranging from 49.9
to 106.0mg/g. Moreover, these quantities were much
higher than those of BC, MBC, and ZAC. Tese results
indicate that porous carbon systems (SBET and Vtotal) in
carbon-based materials could play an important role in
AO10 removal. Furthermore, π-π, hydrogen, and

Figure 5: SEM images of MAC-0.4.
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electrostatic interactions between functional groups on the
MAC surface and AO10 [23, 85] may aid in efective ad-
sorption processes.

3.2.2. Efects of MAC Prepared by Diferent ZnCl2/LSP Mass
Ratios on AO10 Degradation. AO10 degradation was car-
ried out with BC, ZAC, MBC, and MAC catalysts, as shown
in Figure 8. BC removed a small amount of AO10, mainly by
adsorption.With ZnCl2 activation, ZAC eliminated 10.0% of
AO10 through adsorption, and then almost lacked catalytic
AO10 degradation in the subsequent step. Conversely, all
MBC and MAC catalysts showed certain catalytic activity

toward AO10 degradation. Tese results indicated that Fe-
based components rather than ZnO and carbon-based
support were the active sites for these catalytic processes.
Te MBC sample contained Fe3O4 crystals, while the MAC
samples contained both Fe3O4 and Fe0 crystals. Tese Fe
sites could catalyze AO10 degradation as follows (C− de-
notes that the Fe sites were incorporated into the carbon
matrix) [77]:

C − Fe0 + H2O2 + 2H+⟶ C − FeII + 2H2O (12)

C − FeII + H2O2 ⟶ C − FeIII + •OH + OH− (13)
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Figure 6: EDX spectroscopy and elemental mapping of MAC-0.4.
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C − FeIII+H2O2 ⟶ C − FeII + H+
+ •OOH (14)

Acid orange 10 + •OH⟶ Intermediates⟶ Mineralization

(15)

Compared with MBC, all MAC samples showed much
faster AO10 decolorization rates. In addition, increasing the
ZnCl2/LSP mass ratio improved the decolorization rate of
AO10. As presented in Table 2, the Fe content in diferent
MAC samples (6.89–6.94wt%) was not much diferent and
slightly higher than that in MBC (5.69wt%). It reveals that
other parameters, such as the nature, distribution, shape,
and size of Fe-based crystals, may afect the catalytic activity
of MBC and MAC. Several reports found that the composite
of Fe0 and Fe3O4 exhibited higher catalytic performance
than each component [86, 87]. Te galvanic cell formed
between Fe0 and Fe3O4 may facilitate electron transfer and
•OH generation. MAC contained not only Fe0 but also
Fe3O4, which may follow this synergic efect. Furthermore,
Fe-based components were fxed in the carbon supports,
which could afect the process indirectly. MBC and MAC
samples had diferent porous properties (SBETandVtotal) and
crystal structures of Fe-based components. As mentioned
before, the nanoscale Fe sites were well dispersed in the
porous carbon system of MAC-0.4, which had a high SBET
and a large Vtotal. Hence, mass transfer in these pores might
become more convenient, and more catalytic sites with high
residual energy might be accessible. Tese main advantages

might explain the robust enhancement of the catalytic ox-
idation of AO10 by H2O2.

Te presence of minor elements in MAC might impact
its catalytic activity. According to such reports, Cl− ions
could be detrimental to AO10 degradation [88, 89]. Te
inhibitory efect of Cl− ions may be a result of their in-
teraction with •OH. However, MAC was carefully rinsed to
remove all water-soluble components. Consequently, trace
quantities of Cl and Si may not exist as ions or be frmly
bound within the carbon framework. It may be challenging
to leach those elements into the treatment media. Due to the
strong catalytic activity of MAC on AO10 degradation, the
signifcance of these trace elements may be negligible.

3.2.3. Efects of MAC Dosage on AO10 Degradation.
Figure 9 depicts the relationship between MAC dosage and
AO10 degradation. Without a catalyst, it was nearly im-
possible for H2O2 to eliminate AO10. In contrast, when
MAC was applied, AO10 decolorization occurred rapidly.
With MAC dosages between 0.20 and 0.60 g/L, AO10 was
nearly completely decolored within 30min. Tese results
demonstrated that MAC catalyzed this decolorization ef-
fectively. In addition, the decolorization rate generally in-
creased when the MAC dosage rose from 0.10 to 0.60 g/L. A
high catalyst dosage may increase the number of active sites
for H2O2 decomposition into •OH radicals. However, in-
creasing theMAC dosage from 0.40 to 0.60 g/L did not result
in a signifcant improvement. According to reports in the

BC MBC

MAC-0.4MAC-0.4

Nanowires Nanoparticles

Nanoparticles

Nanowires

Figure 7: TEM images of BC, MBC, and MAC-0.4.
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literature, the excess catalyst might deactivate the originally
generated •OH radicals, as shown in the following equation
[90-91]:

C − FeII + •OH⟶ C − FeIII + OH− (16)

3.2.4. Efects of pH on AO10 Degradation Catalyzed by MAC.
pH can be a crucial variable for AO10 degradation catalyzed
by MAC on the basis of the Fenton-like mechanism. As
shown in Figure 10, AO10 degradation in the pH range of
2.0–5.0 was investigated. Te AO10 concentration almost
remained constant at pH 5.0. In high pH conditions, Fe(OH)
3 can be formed from Fe(III) and cover the active sites of the
catalyst, making H2O2 adsorbed and reducing the amount of
free •OH radicals formed [92, 93]. Nonetheless, AO10 de-
colorization occurred rapidly at low pH. In general, when
pH decreased from 3.5 to 2.0, the AO10 decolorization rate
increased remarkably. At pH 2.0, the AO10 decolorization
nearly fnished within 15min, while that at pH 3.0 required

30min. In acidic conditions, the transition between Fe(II)
and Fe(III) could become convenient. As a result, a large
number of •OH radicals could be produced rapidly. Tese
results were consistent with other Fenton-like research in the
literature. Although pH 2.0 ofered robust and complete
AY23 decolorization within 30min of H2O2 addition, low
pH could promote Fe leaching, leading to a homogeneous
mechanism for catalytic decolorization [93]. Overall, pH 3.0
may be appropriate for achieving a heterogeneous mecha-
nism and maintaining high decolorization efciency.

3.2.5. Degradation of Diferent AO10 Concentrations by
MAC Catalyst. One of the important factors infuencing
degradation efciency is the concentration of pollutants.
Terefore, AO10 degradation at diferent concentrations
of 50–200 ppm was explored. As discussed before,
100 ppm of AO10 was efectively decolorized by 350 ppm
of H2O2. In the same H2O2/AO10 mass ratio, 50 and
200 ppm of AO10 were investigated with 175 and 700 ppm
of H2O2, respectively. Although the MAC dosage was kept
at 0.20 g/L, AO10 was completely eliminated within
30min of oxidation (Figure 11). As presented in Table 3,
the average decolorization rates in 30min at 100 and
200 ppm AO10 were 16.7 and 33.3mg AO10/g MAC/min,
respectively. Tese results demonstrated that MAC could
catalyze AO10 degradation efectively over a wide
concentration range.

Te Fenton-like catalytic performance ofMAC for AO10
degradation was compared with that of other catalysts
(Table 3). In general, most catalysts require long treatment
times and high catalyst dosages at low AO10 concentrations.
In a previous study, LSP-derived MBC showed good cata-
lytic activity for AO10 degradation, with almost all AO10
being decolorized within 90min [27]. Its average de-
colorization rate was 2.8mg AO10/g MBC/min, which was
much higher than that of other catalysts. However, at
a similar condition, the average decolorization rate catalyzed
by MAC was 6.0-fold higher than that by MBC. Tese
comparisons prove that the catalytic performance of MAC is
superior to that of other catalysts. As discussed before, well-
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dispersed Fe-based nanocrystals in the porous carbon sys-
tem with high SBET and Vtotal and the synergic efect of Fe0
and Fe3O4 might explain the robust enhancement of the
catalytic oxidation of AO10 by H2O2.

3.2.6. COD Reduction during AO10 Degradation Catalyzed
by MAC. COD is defned as the total amount of oxygen
required for the oxidation of organic matter into CO2 and
H2O [97]. It is an important parameter to determine the
degree of mineralization during the treatment of organic
compounds and is subject to strict regulation by environ-
mental regulatory agencies [98]. Here, changes in COD and
AO10 concentrations during Fenton-like degradation cat-
alyzed by MAC were carried out (Figure 12). At the be-
ginning, 100 ppm AO10 provided 91mg/L COD. In the
initial adsorption step, AO10 and COD concentrations were
lowered in part. With the MAC-catalyzed acceleration, the
AO10 concentration in the subsequent oxidation process fell
rapidly and nearly complete in 30min. At the same time,
COD declined gradually from 88 to 53mg/L, and this
tendency continued throughout the later period. At 120min,
COD dropped to 31mg/L, corresponding to 66% of COD
elimination. Tus, despite the fact that AO10 was de-
colorized during the frst period, certain organic in-
termediates might require additional time to be completely

mineralized [99, 100]. Unselectively, reactive •OH radicals
can attack species. As a result, AO10 can be converted into
numerous intermediates like aniline, phenol, 7-hydroxy-8-
(hydroxyamino) naphthalene-1,3-disulfonic acid, 7,8-dihy-
droxy-naphthalene-1,3-disulfonic acid, alpha naphthol, and
carboxylic acid. To completely mineralize AO10, additional
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Table 3: Comparison of catalytic activity of MAC and other catalysts for AO10 degradation.

Catalyst pH AO10
(ppm)

H2O2
(ppm) Catalyst (g/L) Time

(min)
Decolorization
efciency (%)

Average
decolorization rate

(mg/g/min)
Reference

α-FeOOH 3.0 50 1000 1.0 180 99.6 0.3 [94]
Nano Fe0 3.0 40 20 0.7 120 93.7 0.4 [95]
Fe/biochar 3.0 100 75 0.5 300 99.7 0.7 [43]
Nano Fe3O4/
CeO2

2.5 50 1020 2.0 120 98.2 0.2 [96]

MBC 3.0 100 350 0.4 90 100.0 2.8 [27]
MAC 3.0 100 350 0.2 30 100.0 16.7 Tis work
MAC 3.0 200 700 0.2 30 99.8 33.3 Tis work
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treatment time may be necessary, or the Fenton-like process
can be combined with other treatments [27, 96].

3.2.7. Stability and Reusability of MAC Catalyst. Catalyst
stability and reusability play crucial roles in industrial
pollutant remediation. In order to investigate those char-
acteristics of the MAC catalyst, fve consecutive cycles of
AO10 degradation were performed in triplicate. Figure 13
depicts the mean values for the experiments. After 20min of
adsorption, H2O2 was added to each cycle, and the treated
solution was analyzed for Fe leaching. As a result, the
catalytic performance of MAC-0.4 remained efective even
after fve cycles. At 20min of oxidation, the total AO10
removal after each cycle was 93.9± 0.9%, 88.4± 3.5%,
86.9± 0.9%, 86.2± 1.4%, and 86.3± 0.8%, respectively. Te
removal decreased slightly in the second cycle, then stabi-
lized in the subsequent three cycles. It appears that unstable
Fe sites were leaked into the treated medium in the frst step.
Te remaining Fe sites in a recycled catalyst may be frmly
anchored in the MAC framework and ofer stable catalytic
performance in the following cycles. Furthermore, the ad-
sorption capacity of MAC on AO10 decreased with each
cycle. It seems that distilled water and ethanol cannot
eliminate adsorbates entirely. Consequently, it may impact
the catalytic performance of the used MAC-0.4 in the
subsequent cycle. Lastly, AAS results revealed that
1.14–1.19mg/L of Fe leaching was detected after each cycle.
Tis leaching was below the limit concentration of 2mg/L
established by European Union directives for treated water.

4. Conclusion

In summary, magnetic activated carbon was successfully
prepared using one-pot pyrolysis of ZnCl2 and FeCl3-loaded
lotus seedpod waste. Te as-prepared MAC had a high SBET
of 1080m2/g, a large Vtotal of 0.51 cm3/g, and a strong sat-
uration magnetization of 3.6 emu/g, which were 3.9-fold,
3.6-fold, and 1.8-fold higher than those of MBC. With
6.89wt% Fe and 3.94wt% Zn, diferent crystals of Fe3O4, Fe0,

and ZnO were present in MAC. Interestingly, TEM images
showed that their nanoparticles and nanowires were de-
veloped inside the carbon matrix. Subsequently, MAC was
investigated for the treatment of acid orange 10. As a result,
MAC demonstrated both a useful adsorbent and an efcient
Fenton-like catalyst. At pH 3.0, 0.20 g/L MAC removed
AO10 (100 ppm) with an adsorption capacity of 78.4mg/g.
When 350 ppm of H2O2 was added, AO10 decolorization
occurred rapidly and was practically complete within
30min. At 120min, 66% of the COD was removed.
Moreover, the catalytic performance remained stable, with
total AO10 removal slightly decreasing from 93.9± 0.9% to
86.3± 0.8% after fve consecutive cycles. Te minimal iron
leaching ranged from 1.14 to 1.19mg/L. In conclusion, these
results indicated that magnetic activated carbon derived
from ZnCl2 and FeCl3 coactivation of lotus seedpod residue
is an efcient catalyst for robust acid orange 10
decolorization.
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