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Accurate assessment of skeletal maturity is important clinically. Skeletal age assessment is usually based on features encoded in
ossification centers. Therefore, it is critical to design a mechanism to capture as much as possible characteristics of features. We
have observed that given a feature, there exist stages of the skeletal age such that the variation pattern of the feature differs in
these stages. Based on this observation, we propose a Bayesian cut fitting to describe features in response to the skeletal age. With
our approach, appropriate positions for stage separation are determined automatically by a Bayesian approach, and a model is
used to fit the variation of a feature within each stage. Our experimental results show that the proposed method surpasses the
traditional fitting using only one line or one curve not only in the efficiency and accuracy of fitting but also in global and local
feature characterization.
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1. Introduction

Hand X-ray shown in Figure 1 is commonly used for skeletal
age assessment in pediatric radiology. A discrepancy between
skeletal maturity and the chronical age may indicate the
presence of some abnormality in skeletal growth. This abnor-
mality has been found to be related to various diseases such
as endocrine disorders [1], metabolic/growth abnormalities
[2], malformations and bone dysplasias [3], and gonadal
dysgenesis [4]. Therefore, the assessment of skeletal maturity
has become more and more important clinically. Clearly the
accuracy in assessment is of the first concern.

Features encoded in ossification centers form the basis
for assessment. If we know the exact characteristics of the
features with regard to different stages of ages, we can do the
best job on assessment. In reality, one needs a mechanism
to capture such characteristics of features. Given data of a
feature with respect to skeletal ages, a simple and common
approach is to fit a line or a curve, which in turn is used for
future prediction of new patients or assisting radiologists to
understand the variation rules of the feature.

For instance, Figure 2(a) shows the variation of a ratio
feature [5, 6] in vertical axis with regard to the increasing
skeletal age along the horizontal axis from newborn to 19
year old boys. (More details on this ratio are provided in
Section 3.2.) Here in the figure, a single line is used for fitting
the values of the feature. Obviously, a line is not enough
to capture the characteristic of the values of the feature. A
quadratic curve, shown in Figure 2(c), does not do a good
job either. Fitting a more complex curve does not seem to
be a feasible approach. This is because sometimes there are
available only a small amount of data which could restrict
the learning of complex curves, and local properties (with
respect to the time) of the feature are often lost when fitting
a global complex curve, and thus leading to inaccurate future
prediction.

In this paper, we propose to fit the variation of features of
the skeleton age via a multistage fitting approach. With our
approach, we divide the skeletal age axis into several stages
or phases, and within each stage, a relative simple model
(line or curve) is employed for the purpose of fitting. Usually,
the variation of a feature does not follow a simple rule
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Figure 1: Hand X-ray used in skeletal age assessment.

when skeletal age increases. Instead, it often shows different
variation patterns among different stages of age. As shown in
Figures 2(b) and 2(d), multistage fitting not only can capture
the entire pattern of feature variation but also carry the local
properties regarding the skeletal age. A critical question is
then, how does one determine the appropriate positions to
separate the stages? The proposed Bayesian cut in this paper
provides an answer via a Bayesian approach.

The rest of the paper is organized as follows. In Section 2,
we describe our models for fitting, where the Bayesian cut is
introduced. In Section 3, we present our experimental results
on multi-stage fitting for artificial and real data. We conclude
our paper in Section 4.

2. The Proposed Method

In this section, we first describe our proposed method for a
simple case and then extend it to a general scenario.

Given a sequence of values f1, f2, . . . , fn, which denotes
the skeletal age f in an ascending order, consider the linear
relationship between f and one feature y found in the hand
X-ray (e.g., length of digit). Usually, such a linear relationship
varies as the skeletal age increases. That is, one linear form
established for one interval of the skeletal age may not hold
for the next interval, where a different linear form should
be used. The time where two linear forms differ is called
a change point. Our model that takes into account linear
relationships and change points is stated as follows:

yi = β11 + β12 fi + ε1i, i = 1, . . . , t1 (t0 = 0),

yi = β21 + β22 fi + ε2i, i = t1 + 1, . . . , t2,

...

yi = βk1 + βk2 fi + εki, i = tk−1 + 1, . . . , tk (tk = n),

(1)

where t1, . . . , tk−1 (correspondingly f1, . . . , fk−1) indicate the
sequential change points, t j − t j−1 ≥ 3 ( j = 1, . . . , k), and
ε ji (for all i) are independent N(0, σ2

j ) and ε ji (for all i, j)

are independent of each other. In the model, the parameters
βj1, βj2, σ2

j , t j are all unknown, which will be estimated in
light of the given data. The interval [t j − t j−1] represents
the jth stage or phase, denoted by phj . The main task here
is to estimate the times t j . Given the estimates of t j , the
linear forms and the associated parameters can be obtained
through the traditional regression technique. We note that
the requirement t j − t j−1 ≥ 3 ( j = 1, . . . , k) is needed for
estimation of the regression lines. When k = 2, the model
will be reduced to the two-phase regression with a single
change point in [7].

The above model that uses only one dependent variable f
can be generalized to include multiple independent variables.
This generalization leads to the following model:

yi =
−→
β
T

1 fi + ε1i, i = 1, . . . , t1 (t0 = 0),

yi =
−→
β
T

2 fi + ε2i, i = t1 + 1, . . . , t2,

...

yi =
−→
β
T

k fi + εki, i = tk−1 + 1, . . . , tk (tk = n),

(2)

where fi is a p-dimensional vector of variables,
−→
β j ( j =

1, . . . , k) is a p-dimensional vector of parameters, t j − t j−1 ≥
p + 1, and ε ji are as the same as before. We refer p as
the cardinality of the input vector fi, denoted by C(fi),
and the number of sample points in phj as the cardinality
of [t j − t j−1], denoted by C(phj). We note that though
linear regression is used for each phase in model (2), this
model certainly encompasses other nonlinear cases such as
polynomial forms.

We now describe a Bayesian approach to estimate the
change points. Denote (ftj−1+1, . . . , ftj )

T by Fj , (FT1 , . . . ,FTk )T

by F, (ytj−1+1, . . . , ytj )
T by yj, (y1

T , . . . , yk
T)T by y, and

(t1, . . . , tk−1) by t. For simplicity, we assume the nonin-

formative or uniform prior for
−→
β j ( j = 1, . . . , k), ln(σj2)

and t. Noninformative priors are used when information
about parameters is completely unknown or when proper
priors such as conjugate priors do not apply. (For a vigorous
discussion on the choice of priors, see [8].) We can show
the following main result (see the Appendix). Given the

data y and the uniform prior for
−→
β j ( j = 1, . . . , k), ln(σj2)

and t, where the number k is predetermined, the posterior
probability that change points occur at t is

p
(

t | y
) = J2(n−kp)/2

∏

j

∣∣
∣Fj

TFj
∣∣
∣
−1/2

× Γ
(
t j − t j−1 − p

2

)
S
−(t j−t j−1−p)/2
j ,

(3)

where J = (
∑

t2(n−kp)/2
∏

j|FTj Fj|−1/2Γ((t j − t j−1 − p)/2) ×
S
−(t j−t j−1−p)/2
j )−1, and Sj = (yj − Fj

−̂→
β j)

T(yj − Fj
−̂→
β j) with

−̂→
β j = (FTj Fj)

−1FTj yj denoting the least-squares estimator of
−→
β j . Using this result, we estimate t by t∗ at which p(t | y)
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Figure 2: Examples of fitting the variation of the ratio feature. The horizontal axis represents the skeletal age and the vertical axis corresponds
to the values of the feature.

Table 1: Models for testing the performance of the Bayesian cut.

m1
yi = βj1 + βj2 fi + ε ji,
t = (t1, . . . , tk−1)

m2
yi = βj1 + βj2 fi + βj3 fi

2 + ε ji,
t = (t1, . . . , tk−1)

m3
yi = βj1 + βj2 fi + βj3 fi

2 + βj4 fi
3 + ε ji,

t = (t1, . . . , tk−1)

m4
yi = βj1 + βj2 fi + βj3 fi

2 + βj4 fi
3 + βj5 fi

4 + ε ji,
t = (t1, . . . , tk−1)

m5
yi = βj1 + βj2 fi + βj3 fi

2 + βj4 fi
3 + βj5 fi

4 + βj6 fi
5 + ε ji,

t = (t1, . . . , tk−1)

has its maximum, that is, t∗ = arg maxt p(t | y). We call t∗

the Bayesian cut, and the value 2(n−kp)/2
∏

j|FTj Fj|−1/2Γ((t j −
t j−1 − p)/2)S

−(t j−t j−1−p)/2
j the proportional posterior (pp).

3. Experiments

In this section, we perform the Bayesian cut on two data
sets: one is synthesized and the other is real. We use
the synthesized data for performance evaluation in terms
of recovery of changing points. The real data are used
to discover the Bayesian cut and describe the feature in
a multistage way which has more accurate prediction of
the skeletal age compared with fitting by a single line or
curve. Both linear and nonlinear regression are used for
comparison. For convenience, we call the fitting with a single
line or curve the single fitting and the fitting with the Bayesian
cut the Bayesian cut fitting.

Table 2: Experimental setting.

βji (−5.0, 5.0)

ε ji ∼ N(0, σ2
j ), σ2

j ∈ (0, 5C(fi)−1)

k 2, 3, 4

C(phj) (C(fi) + 1), . . . , (C(fi) + 1) + s

scale 1, . . . , 10

t0 0

t j t j−1 + C(phj−1)

fi 1, . . . , tk

L1 L2 L3

Figure 3: Illustration Of L1, L2 and L3.

3.1. Synthesized Data. We consider five cases or models
describing the relationship between the dependent and
independent variables. These are shown in Table 1 where
the input vector fi for models m1, m2, m3, m4, and m5

is (1, fi)
T , (1, fi, f 2

i )T , (1, fi, f 2
i , f 3

i )T , (1, fi, f 2
i , f 3

i , f 4
i )T , and

(1, fi, f 2
i , f 3

i , f 4
i , f 5

i )T , respectively. The data are generated
according to the setting given in Table 2. Specifically, βji is
randomly chosen from (−5.0, 5.0). ε ji is generated from a
normal distribution with mean 0 and variance σ2

j randomly

selected from (0, 5C(fi)−1). The number of sample points of
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Table 3: AD scores for models in Table 1.

k s m1 m2 m3 m4 m5

2

1 0.280 0.340 0.320 0.080 0.180

2 0.300 0.460 0.360 0.200 0.100

3 0.260 0.400 0.320 0.100 0.100

4 0.640 0.380 0.260 0.180 0.180

5 0.480 0.680 0.480 0.100 0.060

6 0.380 0.300 0.560 0.220 0.100

7 0.540 0.520 0.340 0.280 0.100

8 0.900 0.520 0.440 0.120 0.020

9 0.740 0.340 0.080 0.040 0.020

10 0.740 0.720 0.160 0.200 0.020

3

1 0.230 0.360 0.210 0.240 0.090

2 0.440 0.390 0.190 0.080 0.060

3 0.590 0.340 0.210 0.220 0.060

4 0.820 0.590 0.260 0.060 0.010

5 0.970 0.690 0.530 0.020 0.090

6 0.670 0.580 0.120 0.060 0.070

7 1.220 0.750 0.160 0.080 0.190

8 1.260 0.680 0.650 0.040 0.030

9 1.210 0.860 0.370 0.380 0.010

10 1.340 0.360 0.680 0.020 0.020

4

1 0.333 0.300 0.133 0.040 0.053

2 0.440 0.433 0.227 0.060 0.033

3 0.867 0.480 0.113 0.080 0.033

4 0.780 0.513 0.093 0.080 0.133

5 1.020 0.887 0.453 0.133 0.173

6 1.360 0.760 0.193 0.093 0.180

7 1.007 0.593 0.353 0.047 0.040

8 0.727 0.587 0.453 0.093 0.113

9 1.080 1.240 0.867 0.360 0.087

10 1.213 0.873 0.333 0.120 0.140

the jth phase C(phj) is randomly selected from the set
{(C(fi) + 1), . . . , (C(fi) + 1) + s}, where s is predetermined.
fi takes the value of i for i = 1, 2, . . . , tk. Note that we
use a variable bound for σ2

j for taking into account the
influence of the highest degree of the polynomial. Also, we
use the variable number of sample points for each phase by
introducing unbalance and scalability factors such that the
performance evaluation will be more objective.To present a
quantity on the performance of the Bayesian cut, we use the
metric absolute deviation (AD), defined as

AD =
∑

j

∣
∣
∣t∗j − t j

∣
∣
∣

k − 1
, j = 1, . . . , k − 1, (4)

where t∗j represents the jth element of t∗ (the Bayesian cut).
Intuitively, the smaller AD is, the closer is the Bayesian cut t∗

to the true change points t.
Table 3 shows the AD values. They are obtained by

ranging k from 2 to 4 and s from 1 to 10. For given k, s, and a
given model, 50 trials are performed to generate data, leading
to 50 datasets {(F, y)}. We find the Bayesian cut t∗ for each

Table 4: Some features of the skeletal age.

Age (yr) L1/L2 L2/L3 n(L1/L2) n(L2/L3)

0 0.6795 0.7016 41.8212 51.1987

3 0.6307 0.5853 6.4071 −17.6281

3.5 0.6220 0.6298 0.1020 8.6933

4.0 0.6060 0.5993 −11.4491 −9.3140

4.5 0.6111 0.5708 −7.7721 −26.1616

5.0 0.6172 0.5070 −3.3303 −63.8970

6.0 0.5675 0.5924 −39.3612 −13.4245

7.0 0.5947 0.6626 −19.6939 28.0937

8.0 0.5820 0.6097 −28.9032 −3.1878

9.0 0.5939 0.5968 −20.2149 −10.7828

10.0 0.5680 0.6643 −39.0383 29.1323

11.0 0.5776 0.6696 −32.0541 32.2560

11.5 0.5845 0.6550 −27.0602 23.6424

12.5 0.5979 0.6266 −17.3472 6.8003

13.0 0.6292 0.5670 5.3295 −28.4227

13.5 0.6000 0.6219 −15.8024 4.0436

14.0 0.6436 0.6065 15.7982 −5.0842

15.0 0.6703 0.6319 35.1558 9.9431

15.5 0.6843 0.5937 45.2891 −12.6564

16.0 0.6746 0.5843 38.2966 −18.2156

17.0 0.6632 0.6153 30.0081 0.1412

18.0 0.6589 0.6236 26.8770 5.0546

19.0 0.6452 0.6316 16.9420 9.7754

(F, y) and a given model. The final AD score is obtained by
averaging the 50 runs.

Our findings can be summarized as follows. Regardless
of linear or nonlinear regression, the Bayesian cut performs
well with low AD scores. Introducing the unbalance and
scalability factors does not deteriorate the performance of the
Bayesian cut significantly. The Bayesian cut scales well when
the number of change points increases.

3.2. Real Data. In this part, we apply the Bayesian cut fitting
to some real data from our database shown in Table 4. This
table describes feature values with regard to the increasing
skeletal age that ranges from newborn to 19-year-old boys
(shown in column 1) labeled by radiology experts. In order
to obtain features independent of the size and the length
of digits, two ratio features are used according to the paper
[5]. One is L1/L2, the ratio of the length of distal phalanx
L1 to that of middle phalanx L2 of the middle digit, and the
other is L2/L3, the ratio of the length of middle phalanx L2

to that of proximal phalanx L3. See Figure 3 for illustration
of L1, L2, and L3. These two features correspond to columns
2 and 3 which are generated in the light of the algorithm in
[6]. Columns 4 and 5 represent normalized values of L1/L2

and L2/L3, respectively. This normalization is done according
to (x − μ)/σ , where μ is the expectation of x and σ is the
variance. In our experiments, only normalized values are
used. Figure 4 shows some of the Bayesian cut fitting, where
features n(L1/L2) and n(L2/L3) are used, models describing
the relationship between the feature and the skeletal age are
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Figure 4: Illustration of the Bayesian cut fitting applied to the real data on features of the skeletal age.

m1 and m2 from Table 1, and k takes values of 2, 3, and
4. In Figure 4, the horizontal axis represents the age and
the horizontal axis indicates the feature. For model m1, the
blue straight line across the entire age range is from the
single (line) fitting. For model m2, the blue curve across the
entire age range is from the single (quadratic) fitting. All red
(broken) lines are from the Bayesian cut fitting.

4. Conlcusion

In this paper, we propose the Bayesian cut fitting to describe
features in response to the skeletal age. In the semantic
space derived by our approach, the axis of skeletal age is
divided into meaningful stages, within each of which the
variation pattern of a feature is consistent so that a traditional
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regression technique can apply to model the relationship
between the skeletal age and the feature. Our approach
is inspired by the observation that the variation pattern
of a feature can differ in different periods of the skeletal
age. A critical issue is to determine the times or change
points when the variation pattern of a feature changes.
This is handled by the Bayesian cut proposed in this paper.
Simulations have been used to demonstrate the efficiency
of the Bayesian cut fitting in terms of recovery of change
points. The experiments on real data show that given a
type of relationship (e.g., linear or quadratic) between the
skeletal age and a feature, the Bayesian cut fitting surpasses
the traditional single fitting when the consistency of the
variation pattern (over the entire skeletal age range) of the
feature is suspected. One major issue which is not addressed
in this paper is the determination of k, the number of stages.
Selection of k depends on the given data and the practical
need. We leave this as our future research work.

Appendix

A. Derivation of (3)

Proof. According to the Pythagorean theorem, we have the
following likelihood

l
(−→
β j , σ

2
j | y

)
∝ 1
(
σ2
j

)(t j−t j−1)/2

× exp

{

− 1
2σj2

[(
ytj−1+1 −

−→
β
T

j ftj−1+1

)2

+ · · · +
(
ytj −

−→
β
T

j ftj

)2
]}

∝ 1
(
σ2
j

)(t j−t j−1)/2

× exp

{

− 1
2σj2

[

Sj +
(−→
β j −

−̂→
β j

)T

×FTj Fj
(−→
β j −

−̂→
β j

)]}
,

(A.1)

where Sj = (yj−Fj
−̂→
β j)

T(yj−Fj
−̂→
β j) and

−̂→
β j = (FTj Fj)

−1FTj yj.
Since ε ji are independent of each other, the likelihood

function of
−→
β 1, . . . ,

−→
β k, σ2

1 , . . . , σ2
k , t is then

l
(−→
β 1, . . . ,

−→
β k, σ2

1 , . . . , σ2
k , t | y

)

∝
∏

j

1
(
σ2
j

)(t j−t j−1)/2

× exp

{

− 1
2σ2

j

[

Sj +
(−→
β j −

−̂→
β j

)T
FTj Fj

(−→
β j −

−̂→
β j

)]}

.

(A.2)

Due to the assumption of the uniform prior for
−→
β j , ln(σ2

j )
and t, we have

p
(−→
β 1, . . . ,

−→
β k, σ2

1 , . . . , σ2
k , t
)
∝ 1

σ2
1 · · · σ2

k

. (A.3)

Using (A.2) and (A.3), we have

p
(

t | y
)

∝
∫

−→
β 1

· · ·
∫

−→
β k

∫

σ2
1

· · ·
∫

σ2
k

∏

j

1
(
σ2
j

)(t j−t j−1)/2+1

×exp

{

− 1
2σj2

[

Sj+
(−→
β j−

−̂→
β j

)T

×FTj Fj
(−→
β j −

−̂→
β j

)]}

× d−→β 1 · · ·d
−→
β kdσ

2
1 · · ·dσ2

k .
(A.4)

Note that

∫

−→
β j

1
(
σ2
j

)(t j−t j−1)/2+1

× exp

{

− 1
2σj2

[

Sj +
(−→
β j−

−̂→
β j

)T
FTj Fj

(−→
β j−

−̂→
β j

)]}

d
−→
β j

=
exp
(
−Sj/2σ2

j

)

(
σ2
j

)(t j−t j−1)/2+1 (2π)p/2
(

2σ2
j

)p/2∣∣
∣FTj Fj

∣
∣
∣
−1/2

.

(A.5)

This equation exploits the fact

∫

exp
{(

x −−→μ )TΣ−1(x −−→μ )
}
dx = (2π)p/2|Σ|1/2, (A.6)

from the normal density for the p-dimensional random
vector X

f (x) = 1

(2π)p/2|Σ|1/2 exp
{(

x−−→μ )TΣ−1(x −−→μ )
}
dx, (A.7)

where −→μ is the expected value of X and Σ is the variance-
covariance matrix of X .

Substituting (A.5) into (A.4), we have

p
(

t | y
)∝

∏

j

∣
∣
∣FTj Fj

∣
∣
∣
−1/2

∫

σ2
j

exp
(
−Sj/2σ2

j

)

(
σ2
j

)(t j−t j−1−p)/2+1 dσ
2
j . (A.8)

In addition, we have

∫

exp
(
− a

2x

)
x−m/2−1dx = 2m/2Γ

(
m

2

)
a−m/2, (A.9)
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from the probability density function of X = aU

f (x) = 2−m/2
[
Γ
(
m

2

)]−1

am/2x−m/2−1 exp
(
− a

2x

)
, (A.10)

where the constant a > 0 and U−1 ∼ χ2
m.

By applying (A.9) to (A.8), we get

p
(

t | y
)∝ J2(n−kp)/2

∏

j

∣
∣
∣FTj Fj

∣
∣
∣
−1/2

× Γ
(
t j − t j−1 − p

2

)
S
−(t j−t j−1−p)/2
j ,

(A.11)

where J = (
∑

t2(n−kp)/2
∏

j|FTj Fj|−1/2Γ((t j − t j−1 − p)/2) ×
S
−(t j−t j−1−p)/2
j )−1. This completes the proof.
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