Hindawi Publishing Corporation

Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 415148, 10 pages
doi:10.1155/2010/415148

Research Article

Optimal Fluxes, Reaction Replaceability, and Response to
Enzymopathies in the Human Red Blood Cell

A. De Martino," 2 D. Granata,? E. Marinari,? C. Martelli,> and V. Van Kerrebroeck?

TCNR Institute for Physico-Chemical Processes (IPCF), Rome Sapienza Unit, Roma, Italy
2 Dipartimento di Fisica, Sapienza Universita di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy
3 Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA

Correspondence should be addressed to A. De Martino, andrea.demartino@romal.infn.it

Received 30 November 2009; Accepted 14 May 2010

Academic Editor: Jamey Young

Copyright © 2010 A. De Martino et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Characterizing the capabilities, key dependencies, and response to perturbations of genome-scale metabolic networks is a basic
problem with important applications. A key question concerns the identification of the potentially most harmful reaction
knockouts. The integration of combinatorial methods with sampling techniques to explore the space of viable flux states may
provide crucial insights on this issue. We assess the replaceability of every metabolic conversion in the human red blood cell
by enumerating the alternative paths from substrate to product, obtaining a complete map of he potential damage of single
enzymopathies. Sampling the space of optimal steady state fluxes in the healthy and in the mutated cell reveals both correlations
and complementarity between topologic and dynamical aspects.

1. Introduction

Understanding metabolic activity from the underlying geno-
type is one of the most addressed problems in computational
biology. Of particular interest is the issue of the identification
of the reactions that are indispensable for an organism to
survive, grow or perform a specific function in a given
growth medium or, conversely, of the potentially most
harmful knock-outs or enzymopathies. Several experimental
protocols are able to assess the essentiality of gene products
(and hence of the corresponding metabolic reactions), rang-
ing from individual knock-outs to transposon mutagenesis
and RNA interference [1-5]. Computational approaches on
the other hand might provide important clues on the system-
level organization by investigating genome-scale network
reconstructions.

The functional modularity of metabolic networks sug-
gests that topological aspects may provide a key to identify
a class of essential pathways [6, 7]. However the metabolic
genotype only constitutes the frame on the top of which
the dynamic phenotype is built. The essentiality of a
metabolic pathway will in general depend on both structural
considerations based on the network reconstruction from

genomic information, and on the “model of metabolism”
defined on it, for example, on the corresponding steady
state fluxes. In E.coli, phenotypical essentiality of metabolic
genes has been associated with a reduced allowed variability
of the corresponding fluxes, suggesting that dynamically
stiff reactions may constitute an evolutionarily robust
backbone of metabolism conserved over different species
[8].

Here we attempt a more thorough integration of topo-
logical and dynamical views to obtain a more comprehensive
insight into a metabolic network’s organization, efficiency,
and ability to respond to perturbations. We will first associate
the essentiality of a reaction with a measure of its topological
replaceability by enumerating the alternative paths from
substrate to product along the network edges, with the
rationale that from a purely structural viewpoint more
replaceable reactions are less likely to be crucial nodes of the
network. Then we will validate and compare the essentiality
map thus obtained with the metabolic phenotype resulting
from the definition of a general constraint-based model for
metabolic flux prediction. We shall see that dynamical and
structural measures of essentiality may offer complementary
views of a reaction network’s robustness.



We carry out our analysis on the metabolic network of
the human red blood cell (hRBC), one of the most studied
complexes in systems biology, from the earliest mathematical
models of single biochemical pathways [9, 10] to the
currently available genome-scale reconstructions [11]. The
reason for this choice lies essentially in its limited size. On
the one hand, it allows to compute reaction replaceabilities
exactly by a suitable modification of Johnson’s algorithm
for counting loops in a directed graph [12]. On the other,
it allows for the efficient application of various sampling
methods to the space of viable flux states [8, 13]. The latter
is a vital ingredient to address many important properties
of erythrocytes. Indeed for some organisms under certain
conditions it is reasonable to assume that the metabolic
activity is aimed at maximizing a subset of the metabolic
reactions (or a function of them) associated with a cer-
tain biological function. In such cases the relevant flux
configuration can be computed by standard optimization
algorithms. For example, E. coli’s metabolism has been
shown to maximize biomass production under evolutionary
pressure [14], but after a genetic knockout it responds with
a minimum rearrangement of fluxes [15]. While the produc-
tion of the cofactors ensuring the maintenance of osmotic
balance and the release of oxygen may be argued to be their
metabolic goal, erythrocytes do not generically allow for such
a simplification. Information-rich directions in flux space
must be retrieved by coupling the underlying constraints
on fluxes with other types of analyses. Much understanding
has indeed been obtained from the uniform sampling of
feasible states [13, 16, 17] and by functional studies, like
the computation of extreme pathways [18], of metabolic
regulatory structures [19, 20] and of metabolic pools [21].
These aspects combined make hRBCs a key benchmark for
both theories of metabolism and computational tools.

It is worth noting that the detailed structural informa-
tion we derive (i.e., the full map of alternative paths for
each substrate/product pair) cannot be retrieved by other
methods. Unluckily, computation times still prevent scaling
the approach we employ up to networks larger than a few
hundred nodes. More refined algorithms are currently being
developed to overcome this limitation.

2. Approach

2.1. Structural Analysis. Given a reaction network, we want
to compute, for any pair of metabolites a and b that
are, respectively, substrate and product in a reaction i

(this situation will be indicated by a - b), the number
Nu(’) »(€) of alternative pathways, excluding reaction i, of

length ¢ allowing for the conversion a — b, see Figure 1.
The rationale is that a reaction performing a metabolite
conversion a — b for which Na(’ib(E) (or, more properly,
> :Na('l »(£)) is large will be more easily substituted, in case
of an enzymopathy or a knockout, than one for which the
above quantity is small.

Finding paths connecting two points of a directed
network is a long-studied problem in computer science. The
focus is usually on locating the shortest paths or the fastest
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FiGUure 1: Bipartite graph representation of a reaction network,
with circles (resp. squares) denoting reactions (resp. metabolites).
Here, reaction R uses metabolites a and a’ as substrates to produce
metabolite b. If R is removed, the conversion of a to b is still
permitted by the alternative pathwaya — ¢ — d — e — b. When
R is fictitiously reversed, this chain forms a directed loop of length
5 reactions, formed by R and by a path passing through € = 4 other
reactions.

way to find any path. Enumerating all the distinct paths
between two vertices is however a less confronted issue. In
our case it is crucial to avoid overcounting, for example,
due to self-intersecting paths. Therefore we shall resort to an
exhaustive algorithm. We will identify the substitutive paths
using the following trick: for each pair (a,b) of metabolites

such that a = b, revert i fictitiously. This results in a new
graph where an auxiliary edge b - a replaced the edge

a = b, see again Figure 1. Counting the number of alternative
reaction chains producing b from a then comes down to
computing the number of directed cycles, that is, non self-
intersecting directed closed paths along the edges of the new

graph, passing through the fictitious edge b - a. Thanks to
the limited size of the hRBC network it is possible to solve
this enumeration problem exactly via Johnson’s algorithm

[12], briefly described in the following section. N, (L) »(€) can
now be trivially inferred. For simplicity, € will denote here
the number of reactions in the alternative pathway (¢ = 4 in
Figure 1).

2.2. Flux Analysis. The space of viable fluxes will be defined
through a constraint-based approach which relies on more
general assumptions than flux-balance analysis (FBA, [22]).
FBA is the standard method to model steady-state reaction
networks where mass balance constraints are imposed to
every metabolite. For a reaction network with N reactions
and M metabolites, let us denote by A and B, respectively,
the M X N matrices of output and input stoichiometric
coefficients. The stoichiometric matrix is given by S = A — B.
Letting » = (v;)}, denote a vector of fluxes (with properly
chosen bounds Y™ < y; < V"), the concentrations

i



Journal of Biomedicine and Biotechnology

c = (¢"™, of metabolites vary in time according to ¢ =
S» — u, where u = (u*)™, stands for the net cellular uptake
of metabolite a (u* > 0 if a is a global output of metabolism,
u® < 0 if a is consumed by the organism, u® = 0 if a is mass-
balanced). Assuming a steady state, the concentrations are
constant in time (i.e., ¢ = 0) and vectors ¥ satisfying Sy = u,
or

(A-B)y=u, (1)

represent flux configurations ensuring that each metabolite
meets its production or consumption constraints at fixed
concentrations. As N is typically larger than M, the system is
underdetermined and feasible flux states form a convex set of
dimension N-rank(S) embedded in the N-dimensional space
of fluxes. In absence of a selection criterion that allows to
pick one solution out of this set (as e.g., a maximum biomass
principle), a uniform sampling of the solution space should
be carried out. When N is sufficiently small (as for hRBCs),
this can be achieved effectively, albeit at a considerable
computational cost, by Monte Carlo methods [13, 16] or by
message-passing procedures [17].

Here we will consider a different but related flux scheme
based on Von Neumann’s (VN) model of reaction networks
[8]. In the VN framework, one fixes the environment
through a small set of intakes on nutrients and defines
a self-consistent flux problem where the network chooses,
given a target growth rate, how much of the nutrients
to use and which metabolites are globally produced. Mass
balance then emerges as a property of the solutions for some
metabolites.

The equations describing the VN model have been
studied by statistical mechanics methods in [23, 24]. For
an intuitive derivation, note that the quantities Ay and By
represent, respectively, the total output and the total input of
each metabolite for a given flux vector . Then a flux vector
such that Ay = pBw, with some constant p > 0, describes
a network state where metabolites are being produced at
a rate at least equal to p, since for each of them the total
output is at least p times the total input. It is simple to see
that as p increases the volume of such flux vectors shrinks
continuously (for p = 0 every flux vector is a solution).
In particular, there exists a value p* of p, representing
the maximum metabolic production rate compatible with
the stoichiometric constraints, above which no suitable flux
vectors exist. The presence of conserved metabolic pools [25]
implies p* = 1 [26], so that in metabolic networks optimal
steady state fluxes correspond to the solutions of

(A-B)y=0. (2)

The solutions of (2) do not coincide with those of (1)
even for u = 0. Interestingly, a finite volume of (optimal)
flux states turns out to satisfy the above constraints [8]. This
trait is at odds with both the behavior of the solutions of
(2) for a random reaction network (where a single solution
survives at p* [24]) and with the optimization that is usually
coupled to FBA (where typically a single flux state maximizes
the objective function), and points to the robustness of
metabolic phenotypes. For E.coli, in particular, the solutions

FIGURE 2: Scheme of the hRBC metabolic network used in our
analisys. Squares correspond to metabolites, numbers to reactions
(see Table 1).

of (2) have been shown to reproduce both the large-
scale organization of fluxes and the individual measured
rates. In addition, fluxes with the smallest solution-to-
solution fluctuations, representing the most susceptible parts
of the network, turn out to be strongly correlated with
E.coli’s phenomenologically essential genes [8]. The main
technical advantage in using the VN scheme lies in the fact
that its solution space can be sampled uniformly at very
modest computational costs even for genome-scale models.
The algorithm allowing for this, which has been recently
applied to sample E.coli’s solution space [8], is detailed
in the following section. Its running times for hRBCs are
negligible.

3. Methods

3.1. Reconstructed Network. We consider the hRBC meta-
bolic network studied in [16], a map of which is shown
in Figure 2; Table 1 lists reactions and the corresponding
abbreviations. The network comprises three main pathways,
namely, glycolysis (reactions 1-13), the pentose phosphate
(PP) pathway (14-21) and the adenosine metabolism, with
a total of M = 39 metabolites linked by N = 59 reactions:
49 internal reactions (34 of which come from the splitting
of 17 reversible processes), 3 auxiliary fluxes to maintain
the osmotic equilibrium and the redox state of the cell
(ATPase, NADHase, NADPHase) and 7 uptake reactions
to guarantee the intake of the necessary nutrients (GLU,
ADE, ADO, INO), and of the cytosol elements (H,O, H,
P;). The forward and backward parts of reversible reactions
are treated separately throughout this study, both in the
structural and in the flux analysis.
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TaBLE 1: List of reactions considered in this work, including the corresponding number in the map of Figure 2, the abbreviation and the
process. The 7 uptake fluxes, numbered 36 to 42, are as shown in Figure 2.

No. Abbreviation Chemical reaction
1 HK GLU + ATP — G6P + ADP + H
2 PGI G6P ~ FeP
3 PFK F6P + ATP — FDP + ADP + H
4 ALD FDP < GA3P + DHAP
5 TPI DHAP ~ GA3P
6 GAPDH GA3P+NAD+ P; < 13DPG+NADH+H
7 PGK 13DPG + ADP -~ 3PG + ATP
8 DPGM 13DPG — 23DPG + H
9 DPGase 23DPG + H20 — 3PG + P;
10 PGM 3PG - 2PG
11 EN 2PG < PEP + H20
12 PK PEP + ADP+ H — PYR + ATP
13 LDH PYR + NADH + H < LAC + NAD
14 G6PDH G6P + NADP — 6PGL + NADPH + H
15 PGL 6PGL + H,O -~ 6PGC+ H
16 PDGH 6PGC + NADP — RL5P + NADPH + CO,
17 RPI RL5P —~ R5P
18 XPI RL5P «~ X5P
19 TKI X5P + R5P —~ S7P + GA3P
20 TA GA3P + S7P — E4P + F6P
21 TKII X5P + E4P — F6P + GA3P
22 PRPPsyn R5P + ATP — PRPP + AMP
23 PRM R1P < R5P
24 HGPRT PRPP + HX + H,O — IMP + 2P;
25 AdPRT PRPP + ADE + H,O — AMP + 2P;
26 PNPase INO + Pi <« HX + R1P
27 IMPase IMP + H,O - INO+P; +H
28 AMPDA AMP + H,O — IMP + NH;
29 AMPase AMP + H,0 - ADO+P; + H
30 ADA ADO + H,O — INO + NHj;
31 AK ADO + ATP — ADP + AMP
32 ApK 2ADP — ATP + AMP
33 ATPase ATP — ADP + P;
34 NADHase NADH — NAD + H
35 NADPHase NADPH — NADP + H

3.2. Structural Analysis. Structural vulnerabilities are iden-
tified by analyzing the loop structure of a modified
metabolic reaction network, created from the original one by
inverting—in turn—the direction of the single reaction for
which we want to compute the replaceability, as explained
in Figure 1. The fastest known exact algorithm (for the
worst case scenario) of this cycle enumeration problem for
a directed graph was introduced by Johnson [12]. We shall
now shortly describe its key ideas, referring to [12] for a
pseudocode.

Given a directed graph with n vertices and e edges, the
algorithm is designed to build non self-intersecting paths
from a root vertex r to itself, loading them onto stacks. The

main ingredients allowing for an optimal exploration of the
graph are (a) a smart choice of the root vertex, and (b) an
efficient method to avoid duplicating cycles and repeating
searches on the same portions of the graph. To achieve this,
vertices are initially ordered in a lexicographic sequence, and
the algorithm only selects as roots those nodes that are the
“least” vertex (in the initial ordering) of at least one cycle.
The algorithm described in [27] guarantees to find such
vertices in O(n + e) operations. Moreover, to avoid self-
intersections, each time a node is loaded onto a stack it
is also given a “blocked” status. It was proven by Johnson
that if a vertex v stays blocked as long as every path from
v to the root vertex r intersects the current path at a vertex
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other than 7, the algorithm outputs all cycles exactly once. By
sufficiently delaying the unblocking of each of these vertices
and by keeping track of the portions of the graph that have
been searched holding the current stack, the maximum time
that can elapse between two consecutive cycle outputs can be
reduced to O(n + e). The same holds for the time window
before the first cycle is delivered and for the one after the
output of the last cycle. Hence, the total time needed to list
the, say, c cycles of the graph is O((n +¢e)(c + 1)). In our case,
each fictitious reaction reversal generates a new graph, so that
computing the complete substitutability map for a network
of N reactions requires a time of the order O(N(n + e)(c +
1)). For practical reasons, we perform this analysis on the
bipartite metabolic network (as in Figure 1) rather than the
reduced network of Figure 2. This implies that in our case
n=N+M.

One can in principle consider different measures of
replaceability of a metabolic conversion a - b. The quantity
Rfl’)_, b = e N;’l »(€), counting the total number of paths
alternative to i from a to b of any length, is perhaps the
most obvious option. Taking into account the fact that,
typically, longer detours can be less convenient than shorter
ones from an energetic viewpoint one could instead consider
¢-weighted functions like 'W,i'l p = e exp(—E)eN(llb(f),
with the caveat that shorter pathways might require more
ATP than longer ones. R-based and ‘W-based rankings
of metabolic conversions are rather different. They are
fully available from http://chimera.romal.infn.it/SYSBIO. To
focus on the basics, here we limit ourselves to identifying
three key reaction groups that are independent of the
replaceability measure used:

(a) the group of reactions such that each substrate-
product pair involved in them can be substituted (this
is putatively the part of the network that is most
robust to enzymopathies);

(b) the group of reactions that cannot be substituted,
corresponding to the most harmful enzymopathies;

(c) the group of reversible reactions that are only replace-
able in one direction, corresponding to the situation
in which a conversion a < b can only be substituted
in one direction in case of a knockout.

All essentiality maps we show relate to this classification.
Note that, for topological reasons, intakes are not replaceable.

3.3. Flux Analysis. Optimal flux vectors, that is, solutions
of (2), are computed by the algorithm introduced in [24]
based on [28]. The idea is to modify fluxes iteratively until
all inequalities in (2) are satisfied. Specifically, for a fixed
0 <p<p* (withp* = 1in our case) define E(p) = A — pB
and let £*(p) denote the rows of E(p), fora € {1,...,M}. Let
also, for each iteration step ¢, ¥(¢) be the flux vector at step ¢
and

m(t) = arg muinfa(p) -9(1), (3)

At each t, the algorithm runs as follows. If E"’m (p) -¥(t) <0,
update fluxes according to

vi(t+1) = max{O, vi(t) + &MY (P)}’ (4)

and iterate in t. Else, if Em(t) (p) - »(t) = 0 stop, that is, ¥(t) is
a solution.

Convergence to a solution is rigorously ensured for all
0 < p < p*,and p* can be approximated with the desired
resolution by iterating the above process for increasing values
of p [24]. To guarantee that solutions are well defined one
can either resort to setting fixed upper bounds on ;s or, as
we do, impose a linear constraint of the form > ;v;(t) = N
on the solutions (this is equivalent to singling out one flux
as the reference unit for the other fluxes). It is convenient to
initialize the algorithm with a random vector %(0). Different
initial points generate trajectories to different solutions at p*
and the sampling of the solution space thus obtained turns
out to be uniform [8].

Contrary to FBA, the solution space of VN’s model is
generically not a polytope. Indeed much useful information
can be retrieved from its shape. As a means to characterize it
we employ the average overlap between different optimal flux
vectors, defined as follows. Let %, and s denote two distinct
solution vectors of (2) and, for each flux i, let

2ViqVip

Q(xﬁ(i) = (5)

Vi + Vg
This quantity, called the “overlap” between solutions & and
B, equals 1 if flux i takes on the same value in solutions
a and 3 and decreases as the values differ more and more.
Averaging q.(i) over different pairs of solutions provides a
measure of the allowed variability of flux i (smaller variability
corresponds to larger average overlap), complementary to
the standard deviation of the resulting flux distribution.
The complexity of the solution space can then be roughly
understood by distinguishing narrower directions with larger
overlap or less variable fluxes from broader ones. It is reason-
able to think that a cell will be more sensitive to perturbations
(e.g., knockouts) of fluxes with larger overlap. Analyzing the
susceptibility of the solution space to perturbations along the
directions identified by different fluxes then allows to extract
a list of the potentially more deleterious perturbations, in
analogy with previous work on E.coli [8].

3.4. Response to Enzymopathies. In order to test the hRBC
network against enzymopathies, we can focus on two types
of perturbations. One can first employ a structural criterion:
the knockout of a metabolic conversion a — b that is less
easily “substituted” is more likely to be deleterious for the
cell than the knockout of a highly replaceable conversion.
As said above, we concentrate here on a coarse-grained
view of replaceability based on classifying reactions into the
groups (a), (b), and (c) defined above, with groups (b) and
(c) containing potentially essential reactions. The second
criterion is based on fluxes: fluxes with smaller allowed
variability (i.e., larger overlap) in the healthy cell are more
likely to be essential links of the network than fluxes whose



FiGure 3: hRBC’s structural reaction replaceability map. Thick
black arrows denote unreplaceable reactions (group (b) above);
thick white-filled arrows denote reversible reactions that can be
replaced only in the direction indicated by the arrow (group (c));
all other reactions are fully replaceable (group (a)).

value can be changed over a larger range without losing
optimality.

As is to be expected, the essentiality maps produced in
these ways have a large degree of similarity, and reactions in
the group (b) discussed above coincide with the physiologi-
cally most critical parts of hRBC’s metabolism. The simplest
way to simulate an enzymopathy on flux 7 is to constrain
its value below a certain upper bound %;. Deficiencies can
be partial, that is, of a smaller degree, the closer ¥; is to the
upper limit of the allowed range in the healthy cell, or total if
7; = 0. Such constraints cause in principle a modification
of the solution space along the direction i which in turn
cascades on the entire volume, modifying the optimal states
of the metabolic network.

4. Results

4.1. Structural Analysis. The substitutability map derived
from the loop analysis is displayed in Figure 3. (For the
sake of simplicity we exclude the highly replaceable currency
exchange fluxes from this discussion.) The most replaceable
core of the network lies in the PP pathway (reactions 17—
21), which constitutes the main source of NADPH, the
key metabolite that in erythrocytes limits the accumulation
of peroxides protecting the cell from hemolysis. The high
reliability coming with replaceability partly explains the
reason why this group of reactions plays a central role
not just as an auxiliary pathway for glycolysis, see the
following analysis of fluxes. Unreplaceable reactions are
instead lined up along glycolysis (numbers 1,6,8-13), in
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the bridge between glycolysis and the PP-pathway (14 and
16) or in auxiliary modules (22, 27, 29; the ADE — AMP
conversion in 25 is also not replaceable being directly linked
to the ADE uptake). The physiologically most deleterious
knockouts (HK, PK, and G6PDH) all belong to this group.
For instance, deficiency in the level of G6PDH is the basis
of different types of hemolytic anemias, including favism,
and is also linked to malaria resistance [29]. Finally, there
is a group of reversible reactions (numbers 2, 4, 7, 15, 23,
26) that can be replaced only in one direction. Note however
that the last three of these could still be replaced in case of an
enzymopathy if a proper medium is selected. For instance,
if reaction 15 is removed, it could be substituted by an
alternative chain of reactions provided 6PGC is externally
supplied. This is instead not possible for reaction 4 and
possibly 23 (depending on the directionality of reaction 26),
as a knockout in these cases would necessarily result in a net
production of FDP and RIP.

4.2. Flux Analysis. The flux distribution corresponding to
optimal states in the healthy and enzyme deficient hRBC
are displayed reaction by reaction in Figure 4, obtained
by sampling 10000 solutions of (2), while a pictorial
representation of the optimal flux states is given in Figure 5.
For the healthy cell (black line in Figure 4 and top left
panel in Figure 5) the large flux backbone is formed by
the second part of glycolysis (crucial for ATP, NADH,
and 23DPG production) and the PP pathway (NADPH
production). The latter gives a substantial contribution to the
former, not just as salvage way. The adenosine metabolism
shows instead lower flux values. In addition to GLU, which
is the fundamental substrate for hRBCs, the INO uptake
plays an important role as an alternative way to the PP
pathway. It is worth stressing that these solutions imply a
net production of 23DPG, the crucial regulator for oxygen
release, which is obtained without any imposed constraint.
This picture is strongly reminiscent of the first eigenpathway
obtained by extreme pathways analysis in [19], though the
thermodynamic constraints and production requirements
used in [19], including one on 23DPG, are more strict
than the self-consistent analysis presented here. Comparing
the distributions with FBA studies on the same system
[16], one notices instead a general rearrangement of fluxes
in the network apart from glycolysis. A close inspection
reveals that such a rearrangement is mostly quantitative, as
preferred reaction directions are generically preserved, the
noteworthy exception being the RPI flux, that in the VN
solution strengthens the PP pathway with respect to the FBA
solution. This scenario is not surprising in view of the basic
difference between FBA and the VN approach. It should be
kept in mind however that the a priori constraints on flux
variability are quite more strict in FBA than they are in the
VN model, and the flux distribution appear to be particularly
sensitive to the assumed upper and lower bounds for the
fluxes.

In Figure 6 we report the overlap map of the hRBC.
Comparing this with Figure 3 one sees that the large overlap
backbone (signaling dynamically stiff fluxes) coincides to
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FiGgure 4: Distributions of differential fluxes (measured for each reaction by the difference between the direct and the reverse flux, when
possible) for the healthy cell (thick black lines) and for the hRBC with knockout PK (thick gray lines) e GoPDH (dashed lines).

a large degree with the structurally most vulnerable parts
of the network. Note that the overlap of reactions 2, 4, 15
and 26 is larger in the direction that cannot be replaced,
further pointing to a higher susceptibility, and that currency
reactions (31-35) belong to the most constrained part of the
network. Revealingly, however, topological and dynamical
characterizations prove to be complementary in some cases.
This is seen, for example, from reaction 3, which is flux-
constrained but also highly replaceable, so that the damage
due to removal is limited even in presence of a small allowed
dynamical range. (A similar picture holds for reaction 23.)

To conclude, we remind that in our framework uptake
fluxes are optimized variables not fixed by boundary condi-
tions. In the optimal state five of the uptakes have a limited
allowed variability, implying rather severe constraints on the
cell’s environment.

4.3. Response to Enzymopathies. We have simulated the
most studied enzymopathies by constraining the flux of
the corresponding reaction. Generically speaking, the hRBC

metabolism displays a large resilience against partial pertur-
bations. Indeed, we have observed appreciable differences in
relevant cellular functions compared to the nondeficient case
only under full enzyme deficiencies, as also observed in [11]
within a standard FBA optimization approach. Even under
the most serious enzyme deficiencies the network appears
to be able to maintain the production of ATP, NADH and
NADPH almost constant, see also [30]. We focus here on PK
and G6PDH deletions. As shown in Figure 4, the alterations
in the flux distributions are not particularly striking and
indeed we do not observe global flux rearrangements on the
network’s scale. The G6PDH enzymopathy appears to only
cause local changes, confirming the structural predictions,
the overlap calculations and also in agreement with clinical
observations [31]. The response to PK knockout is instead
more marked. The synoptic analysis of Figure 5 shows
that in general the response to the perturbation consisted
in a drop of the GLU uptake, and in a reduction of
the glycolytic flux, while the Rapoport-Leubering shunt
(reactions 8-9) for the production of 23DPG remains
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FIGURE 5: Maps of fluxes in the healthy hRBC (a) and flux rerouting in three full enzymopathies: PK (b), G6PDH (c) and HK (d). The thick
arrows are dark grey if the reaction rates diminish with respect to the healthy cell, light grey if they are higher, black if they remains the same.
The widths of the arrows are proportional to the mean value of the corresponding distributions.

particularly stable, as does the adenosine metabolism. For
the glycolytic deficiencies PK and HK we further observe
an increase of the INO uptake to sustain the PP pathway
and allow for the second part of glycolysis, and with it
the production of ATP and NADH, to take place. Detailed
flux configurations corresponding to the next most severe
enzymopathies (HK, EN, PGK and PGM) are available from
http://chimera.romal.infn.it/SYSBIO.

5. Final Remarks

In this work we compare two robustness measures for
biochemical networks, one based on structural properties
(the reaction replaceability), the other based on dynamical
stiffness (the overlaps). The former can be exactly assessed
by enumerating the alternative paths joining substrates and
products of a given reaction in a network. The latter depends
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FiGUurg 6: Large overlap backbone of hRBC: thick black arrows
mark reactions with an overlap larger than 0.9 in an optimal healthy
cell.

on both the network topology and the model defined on it.
Within VN’s frame, we found that unreplaceable reactions
mostly correspond to processes with a smaller allowed flux
variability. In such directions, reaction removals as well
as constraints on the fluxes are expected to be generically
harmful. Reactions with limited (but non zero) replaceability
tend to have instead smaller overlap, so that while the
reaction is difficult to substitute still its flux can be largely
adjusted. In an evolutionary perspective [32], the former
pathways appear as “frozen”, and perturbations at these
nodes will require large-scale flux rearrangement, while a
mutation affecting the latter group may be neutral and could
be preserved across generations. Interestingly, some reactions
have both a large overlap and a large replaceability. These,
albeit structurally robust, are dynamically constrained and
should be considered as essential pathways of the metabolism
as well. Integrating dynamical and structural characteriza-
tions may thus provide a rather complete picture of the
emerging network robustness. The fact that topological and
dynamical essentiality may not coincide could also prove to
be important in view of the present challenges to understand
the dynamical basis of topological modularity [33].

Extended flux state sampling was achieved here by an
algorithm that is easily scalable to larger networks, see [8].
Exhaustive structural analysis instead was made possible by
the small size of hRBC’s metabolic network, which has served
here as a model system to test basic concepts and algorithms.
The use of the same procedure on a larger network, such as E.
coli’s, is likely to be prevented by CPU time growth. However,
message-passing algorithms, designed specifically to solve
combinatorial optimization or counting problems—albeit
approximately—on graphical models, may be a suitable
replacement [34].
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