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Multidrug resistance (MDR) is a major obstacle towards a successful treatment of gastric cancer. However, the mechanisms of
MDR are intricate and have not been fully understood. To elucidate the molecular mechanisms of MDR in gastric cancer, we
employed the proteomic approach of isobaric tags for relative and absolute quantification (iTRAQ), followed by LC-MS/MS, using
the vincristine-resistant SGC7901/VCR cell line and its parental SGC7901 cell line as a model. In total, 820 unique proteins were
identified and 91 proteins showed to be differentially expressed in SGC7901/VCR compared with SGC7901. Several differentially
expressed proteins were further validated by western blot analysis. Furthermore, the association of MVP, one of the highly expressed
proteins in SGC7901/VCR, with MDR was verified. Our study is the first application of iTRAQ technology for MDR mechanisms
analysis in gastric cancer, and many of the differentially expressed proteins identified have not been linked to MDR in gastric cancer
before, which showed the value of this technology in identifying differentially expressed proteins in cancer.

1. Introduction

Despite the decreasing incidence and mortality, gastric
cancer remains the second leading cause of cancer-related
death in the world [1]. Chemotherapy plays an important
role in the treatment of gastric cancer at various stages.
However, a major problem in gastric cancer treatment is
the development of resistance to multiple chemotherapeutic
agents in tumor cells [2]. Several mechanisms have been
found to be responsible for anticancer drug resistance such
as increased drug efflux, DNA repair activity, and altered
survival and apoptotic signaling pathways [3]. These patho-
genesis studies on multidrug resistance (MDR) of tumors
have been undertaken successfully, but the mechanisms of
MDR are intricate and have not been fully elucidated yet.
To further characterize the mechanisms of MDR, in recent
years many model cell lines selected by anticancer drugs
are available. Vincristine-resistant SGC7901/VCR, which is
derived from human gastric cancer cell line SGC7901 by
stepwise selection in vitro using vincristine, and can also
cross-resist to other anticancer drugs such as cisplatin,

adriamycin, etoposide, mitomycin C, and 5-fluorouracil (5-
FU), has been widely employed as a cell culture model for the
investigation of the mechanism underlying MDR in gastric
cancer [4]. Though the overexpression of the membrane P-
glycoprotein in SGC7901/VCR was highly correlated with
its MDR phenotype, treatment with verapamil, a potent
inhibitor of P-glycoprotein, did not fully restore the sensi-
tivity of SGC7901/VCR to vincristine [5], suggesting that
other still unknown mechanisms might be involved in the
development of MDR of SGC7901/VCR.

2-DE is the principal step of proteomics and widely
used in comparative studies of protein expression levels.
However, this technique has several disadvantages, including
poor reproducibility between gels, low sensitivity in the
detection of proteins in low concentrations and hydrophobic
membrane proteins, limited sample capacity and low linear
range of visualization procedures [6, 7]. To overcome these
major limitations of 2-DE technique, we focused in recent
years on newly emerging proteomic approaches, including
ICAT, iTRAQ, 18O, and stable isotope labeling with amino
acids in cell culture (SILAC) [8]. Among these methods,
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isobaric tags for relative and absolute quantification (iTRAQ)
analysis provides a more comprehensive approach for the
discovery and quantification of the proteome [9]. In this
study, we used iTRAQ method to perform quantitative
protein profiling of the SGC7901/VCR and its parental cell
line SGC7901. Furthermore, the differential expression levels
of partial proteins were validated by Western blot analysis.
Many unique proteins identified using this approach have
not previously been associated with MDR of gastric cancer.
Thus, the results presented here will no doubt provide
important clues to the mechanisms of MDR in gastric cancer.

2. Materials and Methods

2.1. Cell Lines. Vincristine-resistant human gastric cancer
cell line SGC7901/VCR and its parental cell line SGC7901
were a gift from Dr. DM Fan (The Fourth Military Medical
University, China). SGC7901 was cultured with RPMI1640
medium containing 10% fetal calf serum (Gibico BRL,
Grand Island, NY, USA). To maintain biologic characteristics
of MDR, SGC7901/VCR was cultured with RPMI1640
medium containing 10% fetal calf serum and 1 mg/L vin-
cristine (Sigma-Aldrich, St. louis, MO, USA).

2.2. Reagents. The iTRAQ kits were purchased from Applied
Biosystems (Foster City, CA, USA). Sequence grade mod-
ified trypsin was purchased from Promega (Madison, WI,
USA). PVDF membrane, goat antimouse, goat antirabbit or
rabbit antigoat IgG-conjugated with horseradish peroxidase,
and the enhanced chemiluminescence (ECL) system were
purchased from Amersham Biosciences (Uppsala, Sweden).
Monoclonal or polyclonal antibodies against MIF, MCM3,
MVP, YWHAG, HSPB1, SRI, ABCB1, and Actin were from
Santa Cruz Biotechnology, Santa Cruz, CA, USA.

2.3. Protein Sample Preparation and iTRAQ Labeling. The
cells were harvested and lysed in lysis buffer (7 M urea,
1 mg/mL DNase I, 1 mM Na3VO4, and 1 mM PMSF).
The lysates were incubated at 37◦C for 1 hour, and then
centrifuged at 15,000 rpm for 30 minutes at 4◦C. The
supernatant was collected and the concentration of the
total proteins was determined using 2D Quantification
kit (Amersham Biosciences). For each sample, a total of
100 μg of protein was precipitated by the addition of four
volumes of cold acetone and stored in −20◦C for 2 hours.
The precipitated protein was then dissolved in solution
buffer, denatured, and cysteines blocked according to the
manufacturer (Applied Biosystems). Each sample was then
digested with 20 μL of 0.25 μg/μL trypsin (Promega) solution
at 37◦C overnight and labeled with the iTRAQ tags as
follows: (i) parental cell line SGC7901-119 tag and (ii)
Vincristine-resistant cell line SGC7901/VCR-121 tag. The
labeled samples were pooled prior to further analysis.

2.4. Strong Cation Exchange Chromatography. To reduce
sample’s complexity during LC-MS/MS analysis, the pooled
samples were diluted 10-fold with SCX buffer A (10 mM
KH2PO4 in 25% acetonitrile at pH 3.0) and subjected to

a 2.1 × 200 mm Polysulfoethyl A SCX column (Poly LC,
Columbia, MD, USA). The column was eluted with a gra-
dient of 0%–25% SCX buffer B (10 mMKH2PO4 at pH3.0 in
25% acetonitrile containing 350 mM KCl) over 30 minutes,
followed by a gradient of 25%–100% SCX buffer B over 40
minutes. The fractions were collected at 1-minute intervals.
These SCX fractions were lyophilized in vacuum concentra-
tor, and subjected to C-18 clean-up using a C18 Discovery
DSC-18 SPE column (100 mg capacity, Supelco, Sigma-
Aldrich). The cleaned fractions were then lyophilized again
and stored in −20◦C prior to mass spectrometric analysis.

2.5. ESI-Q-TOF-MS Analysis and Data Processing. Mass
spectrometric analysis was performed using a nano-LC
coupled online to QStarXL mass spectrometer (Applied
Biosystems). Peptides were loaded on a 75 cm × 10 cm, 3-
mm fused silica C18 capillary column, followed by mobile
phase elution: buffer A (0.1% formic acid in 2% acetonitrile)
and buffer B (0.1% formic acid in 98% acetonitrile). The
peptides were eluted from 2% buffer B to 100% buffer B
over 60 minutes at a flow rate 300 nL/min. The LC eluent
was directed to ESI source for Q-TOF-MS analysis. The mass
spectrometer was set to perform information-dependent
acquisition (IDA) in the positive ion mode, with a selected
mass range of 300–2000 m/z. Peptides with +2 to +4 charge
states were selected for tandem mass spectrometry, and the
time of summation of MS/MS events was set to 3 seconds.
The two most abundantly charged peptides above a 10
count threshold were selected for MS/MS and dynamically
excluded for 60 seconds with ±50 mmu mass tolerance.

Peptide identification and quantification were performed
using ProteinPilot software packages (Applied Biosystems).
Each MS/MS spectrum was searched against the IPI
human protein database v3.49 and protein identification
was accepted based on ProteinPilot confidence scores.
Relative quantification of proteins, in the case of iTRAQ,
is performed on the MS/MS scans and is given by the peak
areas ratio at m/z 119 and 121 Da. Error factor (EF) and P-
value are calculated using ProteinPilot software which gave
an indication of the deviation and significance in the protein
quantification.

2.6. Western Blot Analysis. The cells were lysed at 4 ◦C for
30 minutes in a lysis buffer (50 mM Tris, pH 7.4, 100 mM
NaCl2, 1 mM MgCl2, 2.5 mM Na3VO4, 1 mM PMSF,
2.5 mM EDTA, 0.5% Triton X-100, 0.5% NP-40, 5 μg/mL of
aprotinin, pepstatin A, and leupeptin). The cell lysates were
centrifuged at 15,000 rpm for 15 minutes at 4◦C. Protein
concentration was determined using 2D Quantification
kit (Amersham Biosciences). The protein samples (about
20 μg) were separated using SDS-PAGE. After SDS-
PAGE electrophoresis, proteins were transferred to PVDF
membranes. The membranes were blocked overnight at 4◦C
with 5% nonfat dry milk in TBS-T buffer (20 mM Tris, pH
7.6, 100 mM NaCl2, 0.5% Tween-20), followed by 3 hours
of incubation with the primary antibody (1 : 1500–1 : 2000
dilution) in TBS-T buffer containing 5% nonfat dry milk at
room temperature. After washing three times with TBS-T
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buffer, the membranes were incubated with a horseradish
peroxidase-conjugated goat antimouse IgG, goat antirabbit
IgG, or rabbit anti-goat IgG as a secondary antibody
(1 : 3000 dilution) for 1 hour at room temperature. The
membranes were then washed three times in TBS-T buffer
and the reactions were visualized with ECL detection system.
All of the Western blot analyses were repeated at least three
times.

2.7. Transfection of the Full-Length MVP Gene to Cells.
The full-length MVP gene was amplified from cDNA
synthesized by RT-PCR using the total RNA extracted
from cells SGC7901/VCR as the template. The following
primers were used for PCR: forward: 5-CCCAAGCTTGTC-
ACCATGGCAACTGAAGAG-3 (HindIII site underlined);
reverse: 5-CGGGATCCCGCAGTACAGGCACCACGTGG-
3 (BamHI site underlined). The purified PCR products
were digested with HindIII and BamHI, and then cloned
into the pcDNA3.1 vector (Invitrogen Life Technologies,
Grand Island, NY) followed by sequence confirmation by
DNA sequencing analysis. SGC7901 cells were transfected
with pcDNA3.1/MVP or pcDNA3.1/control vector using
lipofectamine 2000 following the manufacturer’s protocol
(Invitrogen Life Technologies). Briefly, SGC7901 cells were
seeded into 6-well plates, and when the cells were 90%
confluent, they were transfected with 4 μg pcDNA3.1/MVP
or pcDNA3.1/control vector. Two days following transfec-
tion, the cells were replated and selected with 800 μg/mL
G418 for 2 weeks, and stable clones were propagated for
further analysis. The cytotoxicity was determined using
MTT assay described previously [10]. Briefly, the transfected
SGC7901/MVP cells and SGC7901/vector cells were seeded
in each well of 96-well plates. The adriamycin and vincristine
of different concentrations were then added to the cells, and
the cells were cultured for 24 hours before the cell viability
examination using the MTT assay.

2.8. Administration of MVP siRNA to Cells. The cells
were transfected with MVP siRNA (sc-35824) (Santa Cruz
Biotechnology) according to the siRNA transfection protocol
provided by the manufacturer. Briefly, SGC7901/VCR cells
were plated into 6-well plates and 96-well plates at the
density of 105 cells/mL medium, respectively. When the
cells were 60%–80% confluent, they were transfected with
10 nmol/L of MVP siRNA and control siRNA after a pre-
incubation for 20 minutes with siRNA transfection reagent
in siRNA transfection medium (Santa Cruz Biotechnology).
After 4 hours of transfection, the medium was replaced with
RPMI1640 medium containing 10% fetal calf serum, and
continued to culture the cells for additional 44 hours. The
cells were then incubated with different concentrations of
adriamycin and vincristine. After 24-hour incubation, MVP
expression level was determined by Western blot analysis
described above, and the cell viability of SGC7901/VCR was
examined using the MTT assay.

2.9. Statistical Analysis. The data were expressed as mean
± SE, and analyzed with the Student’s t-test between two

groups. It was considered statistically significant if P-value
was less than .05.

3. Results

3.1. iTRAQ Analysis of Differentially Expressed Proteins.
To investigate the molecular consequences of multidrug
resistance in gastric cancer, we employed a quantitative pro-
teomics iTRAQ method for this study using the vincristine-
resistant gastric cancer cell line SGC7901/VCR and its
parental gastric cancer cell line SGC7901 as a model.
To reduce extreme sample’s complexity, a batch of 70
fractions was separated per iTRAQ experiment using strong
cation exchange chromatography. These fractions were then
combined in 20 samples and analyzed by LC/MS/MS. A
schematic flow of the iTRAQ method is shown in Fig-
ure 1(a). MS/MS spectrum of Sorcin b (peptide sequence:
FISFDTDR) is illustrated in Figure 1(b). Vincristine-resistant
SGC7901/VCR cells were labeled with iTRAQ 121 tag, and
SGC7901 cells were labeled with iTRAQ 119 tag. Thus the
ratio of 121 : 119 would indicate the relative abundance of
the Sorcin b protein (Figure 1(c)). To increase the coverage
of protein identification and/or the confidence of the data
generated, two separate preparations were made, and each
was analyzed by LC/MS/MS. A total of 820 unique proteins
were identified with 95% confidence by the ProteinPilot
search algorithm against the IPI human protein database
v3.49. Although relative quantification analysis by Protein-
Pilot 2.0 software come with statistical analysis and since
most methods are prone to technical variation, we included
an additional 1.3-fold change cutoff for all iTRAQ ratios
to reduce false positives for the selection of differentially
expressed proteins. This filtering measure resulted in a final
set of 91 differentially expressed proteins in SGC7901/VCR
versus SGC7901. Of those, 35 proteins were increased and
56 were decreased in SGC7901/VCR (Table 1). These 91
proteins, which were differentially expressed between the
SGC7901/VCR and SGC7901, could be classified into 14
functional categories using the PANTHER classification
system (http://www.pantherdb.org) (Figure 2). The top three
molecular functions categories were nucleic acid binding
(25.3%), cytoskeletal protein (13.2%), and oxidoreductase
(9.9%).

3.2. Validation of Differential Expression Proteins. The
differential expression levels of the proteins identified
by iTRAQ approach were validated using Western blot
analysis. In this study, seven proteins including SRI, ABCB1,
HSPB1, YWHAG, MVP, MCM3, and MIF were chosen
for further analysis. As expected, ABCB1 (P-glycoprotein),
one of the differentially expressed proteins identified, was
overexpressed in vincristine-resistant gastric cancer cell line
SGC7901/VCR. It is well known that expression of ABCB1
is considered as the primary, but not the only, contributing
factor to drug resistance in human tumor cells. Figure 3
showed a representative Western blot analysis result of
SRI, ABCB1, HSPB1, YWHAG, MVP, MCM3, and MIF
expression in the two cell lines. Compared with SGC7901,
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Figure 1: (a) Flow chart of iTRAQ proteomics approach. (b) A representative MS/MS spectrum showing the peptides from Sorcin (peptide
sequence: FISFDTDR). The cells SGC7901/VCR and SGC7901 were labeled with iTRAQ reagents 121 and 119. So the ratio of 121 : 119
would indicate the relative abundance of Sorcin protein in vincristine-resistant SGC7901/VCR versus SGC7901 (c).
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Figure 2: Pie chart showing the various functional categories as a
percentage of the 91 differentially expressed proteins based on the
PANTHER classification system.

vincristine-resistant gastric cancer cell line SGC7901/VCR
had an obvious up-regulation of SRI, ABCB1, HSPB1,
YWHAG, and MVP, and a marked down-regulation of
MCM3 and MIF. This trend is similar to their protein
expression level obtained in iTRAQ approach.

3.3. The Association of MVP with MDR. To study the
functional role of MVP up-regulation in SGC7901/VCR,
we did an experiment to ectopically overexpress MVP in
SGC7901 followed by determining the possible changes in
mutidrug resistance. Firstly, we cloned the full-length MVP
cDNA into pcDNA3.1, and transfected it into the parental
drug-sensitive SGC7901 cells. As shown in Figure 4(a), two
stable clones with overexpression of ectopic MVP were gen-
erated. Then these clones with overexpression of MVP were
subjected to drug resistance analysis using the MTT assay.
As shown in Figure 4(b), overexpression of ectopic MVP
caused resistance to both vincristine and adriamycin, with
significant increase in cell viability. The above results showed
that the increased expression of MVP in the vincristine-
resistant SGC7901/VCR cells contributed significantly to
the observed drug resistance phenotype in these cells. To
further determine if the decreased expression of MVP
potentially restores chemosensitivity of SGC7901/VCR, we
also transfected the MVP siRNA to SGC7901/VCR cells.
As showed in Figure 5, MVP siRNA transfection could
significantly decrease the cell viability of SGC7901/VCR after
incubated with 1 mg/L vincristine and 0.8 mg/L adriamycin
for 24 hours, compared with control siRNA. All these clearly
demonstrated that MVP involved in multidrug resistance in
gastric cancer.

4. Discussion

Quantitative proteomics has been proved to be a useful
technique for investigation of the molecular mechanism in
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ABCB1, HSPB1, YWHAG, MVP, MCM3, and MIF expression in
the two cell lines. Compared with SGC7901, vincristine-resistant
SGC7901/VCR had an obvious up-regulation of SRI, ABCB1,
HSPB1, YWHAG, and MVP, and a marked down-regulation of
MCM3 and MIF.

cancer. With regard to relative and absolute quantification
(iTRAQ) analysis, which is currently the most widely used
approach for high throughput protein quantitation, enables
simultaneous quantitation of up to 8 different biological
samples [11]. The aim of this study was to gain insight
into the molecular mechanisms of multidrug resistance in
gastric cancer. So we used iTRAQ proteomic approach to
identify proteins with differential expression between the
parental drug-sensitive SGC7901 and vincristine-resistant
SGC7901/VCR cells. As a result, 91 proteins with significant
alterations in expression between the two cell lines were
identified. The seven of them, that is, SRI, ABCB1, HSPB1,
YWHAG, MVP, MCM3, and MIF were confirmed using
Western blot analysis. We further validated the functional
role in drug resistance of one protein, MVP, highly expressed
in SGC7901/VCR, and found overexpression of MVP could
contribute considerably to the drug resistance in gastric
cancer cell. In addition, interestingly enough, our approach
led to the identification of ABCB1 (P-glycoprotein), which
was highly correlated with MDR, but never reported before
in proteomic studies on tumor MDR owing to its inherently
hydrophobic nature and low abundance of membrane
proteins [12]. It provides evidence that the iTRAQ reagents
labeling method for the large scale protein quantification was
powerful and reliable. Based on the PANTHER classification
system, all the 91 proteins could be classified into 14
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Figure 4: The effect of enforced expression of MVP on drug
resistance in SGC7901 cells. (a) Western blot analysis showed
that two stable clones with overexpression of ectopic MVP were
generated. Subsequently, MTT assay showed that overexpression of
ectopic MVP could result in vincristine and adriamycin resistance,
with the significant increase of the cell viability (b). The experiment
was repeated in triplicate. Points: mean viable cells (% of control)
from three experiments; bars: SE ∗: P ≤ .05 differ from control by
t-test.
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Figure 5: The effect of MVP siRNA treatment on chemosensitivity
in SGC7901/VCR cells. (a) Western blot analysis showed that
treatment of SGC7901/VCR cells with MVP siRNA significantly
reduced MVP protein levels, whereas MVP protein expressions
was not significantly suppressed by control siRNA. (b) MTT assay
showed that MVP siRNA transfection could significantly decrease
the cell viability of SGC7901/VCR cells incubated with adriamycin
and vincristine. The experiment was repeated in triplicate. Points,
mean viable cells (% of control) from three experiments; bars, SE.
∗, P ≤ .05 differ from control by t-test. Oligofectamine, cells treated
with oligofectmine only.

functional categories. We discuss some of the key proteins
discovered in this work in the following text.

Among the nucleic acid binding proteins identified, the
level of major vault protein (MVP) markedly increased
in vincristine-resistant SGC7901/VCR. The expression level
changes of MVP were also confirmed by Western blot analy-
sis. Major vault protein is the main component of ubiquitous
cellular ribonucleoprotein particles called vaults [13, 14]).
Increased levels of MVP are found in many human cancer
cell lines, characterized as a MDR phenotype [15]. It led to
the assumption of a possible role for MVP in mechanisms
of MDR. Treatment of colon cancer cell lines SW620 with
sodium butyrate induced MVP expression, which resulted in
an increase of the resistance to doxorubicin. Moreover anti-
MVP polyclonal antibody reversed this drug resistance [16].
These findings suggested that MVP may be involved in drug
resistance. However, the role for MVP in the development
of MDR has been disputed. Drug resistance is not conferred
when vault particles are produced in the MVP-transfected
ovarian cancer cell line AC16 [17]. In addition, treatment
of MVP wild-type and deficient mice with the anthracycline
doxorubicin, Mossink et al. found that both groups of mice
responded similarly to the doxorubicin treatment [18]. In
our study, to investigate the functional role of MVP up-
regulation in SGC7901/VCR, the full-length MVP cDNA was
transfected into the parental drug-sensitive SGC7901 cells.
We demonstrated that the overexpression of ectopic MVP
in parental cell line SGC7901 can confer resistance to both
vincristine and adriamycin. Furthermore, when suppression
of MVP expression using MVP siRNA in SGC7901/VCR
cells, the cells increased the sensitivity to vincristine and adri-
amycin. Therefore, our results supported MVP correlated
with chemotherapeutic resistance in gastric cancer. We also
found that the expression of 6 ribosomal proteins (RPS20,
RPL7, RPL11, RPL24, RPL4, RPS3A) were decreased and 1
protein (RPL23) was significantly enhanced in vincristine-
resistant SGC7901/VCR. Recently it has been shown that
some of ribosomal proteins can exhibit various secondary
functions besides protein synthesis [19, 20]. Using differen-
tial display PCR Shi et al. identified RPS13 and RPL23 as
two up-regulated genes in multidrug-resistant gastric cancer
cells. In addition, they further demonstrated that RPS13 and
RPL23 can promote MDR in gastric cancer cells by sup-
pressing drug-induced apoptosis, and RPL23 may also pro-
mote MDR through regulation of glutathione S-transferase-
mediated drug-detoxifying system [21]. Ribosomal 28S and
ribosomal S15a also were identified when comparing the
differentially expressed gene profiles between human head
and neck carcinoma cell line UMSCC10b and its cisplatin-
resistant counterpart UMSCC10b/Pt-S15 [22]. These data
suggest a role for ribosomal proteins in tumor MDR.

The expressions of eight calcium-binding proteins obvi-
ously changed in SGC7901/VCR. Soluble resistance-related
calcium-binding protein (Sorcin), which has four typi-
cal “E-F” hand structures of calcium-binding sites, was
highly expressed in vincristine-resistant SGC7901/VCR. In
our previous studies, siRNA-mediated sorcin loss in the
SGC7901/VCR cells led to an increased sensitivity to vin-
cristine. Furthermore, transfection of full-length sorcin gene
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Table 1: iTRAQ analysis of differentially expressed proteins between vincristine-resistant SGC7901/VCR (iTRAQ 121) and SGC7901 (iTRAQ
119).

N Accession Gene symbol Name 121 : 119
P-value
121 : 119

Function

1 IPI : IPI00013214.2 MCM3
DNA replication licensing factor
MCM3

0.38 .03 Hydrolase

2 IPI : IPI00218831.4 GSTM1 Glutathione S-transferase Mu 1 0.41 .02 Transferase

3 IPI : IPI00293276.10 MIF
Macrophage migration
inhibitory factor

0.42 .05 Calcium binding protein

4 IPI : IPI00025277.5 PDCD6 Programmed cell death protein 6 0.42 .00 Calcium binding protein

5 IPI : IPI00873768.1 NEDD8
Putative uncharacterized protein
NEDD8 (Fragment)

0.42 .04 Nucleic acid binding

6 IPI : IPI00017617.1 DDX5
Probable ATP-dependent RNA
helicase DDX5

0.45 .02 Nucleic acid binding

7 IPI : IPI00887678.1 PPIA
Peptidyl-prolyl cis-trans
isomerase A

0.52 .00 Chaperones

8 IPI : IPI00013679.1 DUT

Isoform 1 of Deoxyuridine
5′-triphosphate
nucleotidohydrolase,
mitochondrial

0.53 0.01 Hydrolase

9 IPI : IPI00453473.6 HIST4H4 Histone H4 0.53 .01 Nucleic acid binding

10 IPI : IPI00794659.1 RPS20 40S ribosomal protein S20 0.56 .01 Nucleic acid binding

11 IPI : IPI00441498.1 FOLR1 Folate receptor alpha 0.57 .00 Transporter

12 IPI : IPI00003348.3 GNB2
Guanine nucleotide-binding
protein G(I)/G(S)/G(T) subunit
beta-2

0.59 .02 Hydrolase

13 IPI : IPI00027497.5 GPI Glucose-6-phosphate isomerase 0.61 .00 Hydrolase

14 IPI : IPI00216953.1 LMNA Isoform ADelta10 of Lamin-A/C 0.61 .01 Cytoskeletal protein

15 IPI : IPI00472171.3 RPL7 60S ribosomal protein L7 0.62 .04 Nucleic acid binding

16 IPI : IPI00419833.8 HIST1H2BL Histone H2B type 1-L 0.62 .01 Nucleic acid binding

17 IPI : IPI00746438.2 RPL11
Isoform 2 of 60S ribosomal
protein L11

0.62 .01 Nucleic acid binding

18 IPI : IPI00219910.2 BLVRB Flavin reductase 0.64 .04 Oxidoreductase

19 IPI : IPI00024915.2 PRDX5
Isoform Mitochondrial of
Peroxiredoxin-5, mitochondrial

0.64 .03 Oxidoreductase

20 IPI : IPI00304596.3 NONO
Non-POU domain-containing
octamer-binding protein

0.65 .04 Nucleic acid binding

21 IPI : IPI00219217.3 LDHB L-lactate dehydrogenase B chain 0.66 .04 Oxidoreductase

22 IPI : IPI00872107.1 ILF2
Interleukin enhancer binding
factor 2 variant (Fragment)

0.66 .03 Nucleic acid binding

23 IPI : IPI00329801.12 ANXA5 ANXA5 Annexin A5 0.66 .02 Calcium binding protein

24 IPI : IPI00299024.9 BASP1 Brain acid soluble protein 1 0.67 .01 Signaling molecule

25 IPI : IPI00479186.6 PKM2
Isoform M1 of Pyruvate kinase
isozymes M1/M2

0.67 .03 Kinase

26 IPI : IPI00382470.3 HSP90AA1 Hsp89-alpha-delta-N 0.69 .01 Chaperones

27 IPI : IPI00217966.8 LDHA L-lactate dehydrogenase A chain 0.70 0.03 Oxidoreductase

28 IPI : IPI00220362.5 HSPE1
10 kDa heat shock protein,
mitochondrial

0.71 .04 Chaperones

29 IPI : IPI00027463.1 S100A6 S100A6 Protein S100-A6 0.72 .03 Calcium binding protein

30 IPI : IPI00553185.2 CCT3
T-complex protein 1 subunit
gamma

0.72 0.01 Chaperones
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Table 1: Continued.

N Accession Gene symbol Name 121 : 119
P-value
121 : 119

Function

31 IPI : IPI00873403.1 RPL24 60S ribosomal protein L24 0.74 .01 Nucleic acid binding

32 IPI : IPI00003918.6 RPL4 60S ribosomal protein L4 0.74 .03 Nucleic acid binding

33 IPI : IPI00216298.6 TXN Thioredoxin 0.74 .02 Oxidoreductase

34 IPI : IPI00472119.2 RPS3A 40S ribosomal protein S3a 0.75 .01 Nucleic acid binding

35 IPI : IPI00014898.3 PLEC1 Isoform 1 of Plectin-1 0.76 .00 Cytoskeletal protein

36 IPI : IPI00784154.1 HSPD1
60 kDa heat shock protein,
mitochondrial

1.32 .00 Chaperones

37 IPI : IPI00301311.1 SET Isoform 2 of Protein SET 1.32 .00 Signaling molecule

38 IPI : IPI00646512.1 RBBP7 Histone-binding protein RBBP7 1.33 .03 Nucleic acid binding

39 IPI : IPI00168849.3 TRIP10
Isoform 1 of Cdc42-interacting
protein 4

1.33 .03 Cytoskeletal protein

40 IPI : IPI00856098.1 RRBP1
Isoform 1 of Ribosome-binding
protein 1

1.33 .01 Extracellular matrix

41 IPI : IPI00026216.4 NPEPPS
Puromycin-sensitive
aminopeptidase

1.34 .03 Protease

42 IPI : IPI00298547.3 PARK7 Protein DJ-1 1.35 .00 Nucleic acid binding

43 IPI : IPI00420014.2 SNRNP
Isoform 1 of U5 small nuclear
ribonucleoprotein 200 kDa
helicase

1.35 .03 Nucleic acid binding

44 IPI : IPI00396485.3 EEF1A1 Elongation factor 1-alpha 1 1.36 .00 Nucleic acid binding

45 IPI : IPI00645208.3 FUS
Isoform Short of RNA-binding
protein FUS

1.37 .01 Nucleic acid binding

46 IPI : IPI00879160.1 RANBP1
Ran-specific GTPase-activating
protein

1.38 .01 Signaling molecule

47 IPI : IPI00029079.5 GMPS
GMP synthase
[glutamine-hydrolyzing]

1.38 .02 Transferase

48 IPI : IPI00019502.3 MYH9 Isoform 1 of Myosin-9 1.38 .00 Cytoskeletal protein

49 IPI : IPI00009904.1 PDIA4 Protein disulfide-isomerase A4 1.39 .03 Isomerase

50 IPI : IPI00186290.6 EEF2 Elongation factor 2 1.39 .01 Nucleic acid binding

51 IPI : IPI00438229.2 TRIM28
Isoform 1 of Transcription
intermediary factor 1-beta

1.39 .01 Nucleic acid binding

52 IPI : IPI00333541.6 FLNA Isoform 1 of Filamin-A 1.40 .00 Cytoskeletal protein

53 IPI : IPI00022228.2 HDLBP Vigilin 1.40 .01 Transporter

54 IPI : IPI00747237.1 NOP16 HSPC185 1.40 .04 Signaling molecule

55 IPI : IPI00012197.1 DCTPP1
XTP3-transactivated gene A
protein

1.41 .04 Extracellular matrix

56 IPI : IPI00025252.1 PDIA3 Protein disulfide-isomerase A3 1.41 .00 Isomerase

57 IPI : IPI00304925.5 HSPA1B Heat shock 70 kDa protein 1 1.42 .02 Chaperones

58 IPI : IPI00219622.3 PSMA2 Proteasome subunit alpha type-2 1.42 .00 Protease

59 IPI : IPI00395646.1 TXNDC5
MUTED thioredoxin domain
containing 5 isoform 2

1.43 .02 Isomerase

60 IPI : IPI00147874.1 NANS Sialic acid synthase 1.44 .02 Synthase

61 IPI : IPI00021812.2 AHNAK
Neuroblast
differentiation-associated protein
AHNAK

1.44 .00 Signaling molecule

62 IPI : IPI00789285.1 TXNDC17
Thioredoxin domain-containing
protein 17

1.45 .01 Isomerase

63 IPI : IPI00020599.1 CALR Calreticulin 1.46 .03 Calcium binding protein

64 IPI : IPI00007926.1 C6orf108 c-Myc-responsive protein Rcl 1.46 .01 Signaling molecule

65 IPI : IPI00101037.3 RCN3 Reticulocalbin-3 1.48 .01 Calcium binding protein

66 IPI : IPI00307162.2 VCL Isoform 2 of Vinculin 1.48 .01 Cytoskeletal protein

67 IPI : IPI00017726.1 HSD17B10
Isoform 1 of 3-hydroxyacyl-CoA
dehydrogenase type-2

1.48 .00 Oxidoreductase
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Table 1: Continued.

N Accession Gene symbol Name 121 : 119
P-value
121 : 119

Function

68 IPI : IPI00645078.1 UBA1
Ubiquitin-like
modifier-activating enzyme 1

1.49 .02 Signaling molecule

69 IPI : IPI00844348.1 PON2 paraoxonase 2 isoform 1 1.51 .01 Hydrolase

70 IPI : IPI00719669.4 MRLC2 Myosin regulatory light chain 1.53 .01 Cytoskeletal protein

71 IPI : IPI00000105.4 MVP Major vault protein 1.53 .00 Nucleic acid binding

72 IPI : IPI00000873.3 VARS Valyl-tRNA synthetase 1.54 .05 Synthase

73 IPI : IPI00871312.1 NUDC
Putative uncharacterized protein
NUDC (Fragment)

1.55 .01 Cytoskeletal protein

74 IPI : IPI00215637.5 DDX3X
ATP-dependent RNA helicase
DDX3X

1.56 .02 Nucleic acid binding

75 IPI : IPI00873622.2 WDR1
Putative uncharacterized protein
WDR1

1.58 .00 Cytoskeletal protein

76 IPI : IPI00011937.1 PRDX4 Peroxiredoxin-4 1.62 .00 Oxidoreductase

77 IPI : IPI00409590.1 LMO7
Isoform 1 of LIM domain only
protein 7

1.64 .01 Cytoskeletal protein

78 IPI : IPI00022793.5 HADHB
Trifunctional enzyme subunit
beta, mitochondrial

1.65 .01 Transferase

79 IPI : IPI00884896.1 TXNRD1
Isoform 1 of Thioredoxin
reductase 1, cytoplasmic

1.67 .03 Oxidoreductase

80 IPI : IPI00020632.4 ASS1 Argininosuccinate synthase 1.73 .00 Synthase

81 IPI : IPI00795408.1 RPL23 60S ribosomal protein L23 1.74 .01 Nucleic acid binding

82 IPI : IPI00218343.4 TUBA1C Tubulin alpha-1C chain 1.82 .02 Cytoskeletal protein

83 IPI : IPI00027223.2 IDH1
Isocitrate dehydrogenase
[NADP] cytoplasmic

1.82 .01 Oxidoreductase

84 IPI : IPI00015018.1 PPA1 Inorganic pyrophosphatase 1.98 .00 Hydrolase

85 IPI : IPI00910593.1 CNN2 Calponin-2 2.00 .01 Cytoskeletal protein

86 IPI : IPI00014424.1 EEF1A2 Elongation factor 1-alpha 2 2.05 .00 Nucleic acid binding

87 IPI : IPI00220642.7 YWHAG 14-3-3 protein gamma 2.07 .01 Chaperones

88 IPI : IPI00745868.3 ANXA3
Putative uncharacterized protein
ANXA3 (Fragment)

2.37 .01 Calcium binding protein

89 IPI : IPI00025512.2 HSPB1 Heat shock protein beta-1 2.69 .00 Chaperones

90 IPI : IPI00027481.1 ABCB1 Multidrug resistance protein 1 4.38 .02 Transporter

91 IPI : IPI00414264.2 SRI sorcin isoform b 4.90 .00 Calcium binding protein

to SGC7901 cells can cause resistance to vincristine [23]. It
was obvious that the overexpression of sorcin was involved
in the MDR phenotype of SGC7901/VCR. Programmed cell
death protein 6 (ALG-2) was originally discovered as a gene
to participate in T cell receptor-, Fas-, and glucocorticoid-
induced programmed cell death [24, 25]. Transfection of T
cells with antisense RNA of ALG-2, apoptosis induced by
a variety of stimuli was blocked [24]. However, ALG-2 has
been shown to be up-regulated in a variety of human tumors
questioning its pro-apoptotic function. Rencently, Hoj et al.
reported that ALG-2 down-regulation induced accumulation
of HeLa cells in the G2/M cell cycle phase and increased
the amount of early apoptotic and dead cells [26]. Nev-
ertheless, in our experiment, ALG-2 was sharply decreased
in vincristine-resistant SGC7901/VCR, which supported the

previously published results demonstrating proapoptotic
functions of ALG-2. It is therefore important in further
research to address the question of whether down-regulation
of ALG-2 will enhance the viability of gastric cancer cells.

One of the major differentially expressed proteins groups
is chaperones, such as HSPB1, HSPD1, HSPA1B, HSPE1, and
YWHAG, expression level changes of which were obvious
in SGC7901/VCR as compared with SGC7901. It has been
reported HSPD1 was overexpression in 3 different cell
model systems including cisplatin-resistant ovarian cancer,
oxaliplatin-resistant ovarian cancer, and cisplatin-resistant
bladder cancer [27]. Work by our group also showed
that HSPD1 was overexpressed in cisplatin-resistant ovarian
cancer cell line COC1/DDP. Furthermore, HSPD1 siRNA
transfection could significantly decrease the cell viability of
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COC1/DDP cells incubated with cisplatin, which supported
that the increased expression of HSPD1 was correlated
with the MDR of cancer cells (see [5] in press). 14-3-3
protein gamma (YWHAG) belongs to the high conserved
and ubiquitous 14-3-3 protein family that participates in a
wide variety of cellular processes [28]. 14-3-3 gamma has
not previously been linked to chemoresistance. However,
elevated levels of 14-3-3 gamma may confer resistance
to microtubule inhibitors and enable cells to reenter the
cell cycle in the absence of mitosis [29]. Hermeking et
al. discovered that 14-3-3 sigma is strongly induced by
gamma irradiation and other DNA-damaging agents [30].
In addition, inhibition of 14-3-3 sigma may sensitize human
lung cancers to ionizing radiation [31]. In light of the
function of 14-3-3 gamma above, it is conceivable that
over-expression of 14-3-3 gamma in vincristine-resistant
SGC7901/VCR may be important for cells to escape injury
of chemotherapeutic agents.

We showed that argininosuccinate synthase (ASS1),
which catalyzes the penultimate step of the arginine biosyn-
thetic pathway, was overexpressed in vincristine-resistant
SGC7901/VCR. Down-regulation of ASS1 expression has
been implicated in resistance to platinum in a series of
patients with ovarian cancer treated with platinum-based
adjuvant chemotherapy [32]. Nicholson et al. demonstrated
ASS1 silencing resulted in a significant increase in resistance
to carboplatin, while resistance to taxol was unchanged
[33]. This is obvious that decrease of ASS1 only con-
ferred selective resistance to platinum-based drugs. The
correlation between ASS1 and MDR in vincristine-resistant
SGC7901/VCR needs further study. Oxidoreductase, such
as Thioredoxin, Peroxiredoxin-4, Isocitrate dehydrogenase
(NADP) cytoplasmic, Isoform 1 of Thioredoxin reductase 1,
and Glutathione S-transferase Mu 1, were closely correlated
with the development of MDR. Inside cells, GSH and thiore-
doxin represented the major reducing agents, detoxification
of which was commonly recognized as one of the major
mechanisms of MDR [34].

This is the first comprehensive study of the multidrug
resistance mechanisms in gastric cancer using iTRAQ pro-
teomics approach. In total, 820 unique proteins were identi-
fied and 91 proteins were differentially expressed proteins by
at least 1.3-fold in SGC7901/VCR versus SGC7901. Then the
differential expression levels of partially identified proteins
were confirmed by western blot analysis. Furthermore, the
association of MVP, one of the highly expressed proteins in
SGC7901/VCR, with MDR was verified. This study revealed
many novel proteins that have not been associated with MDR
in gastric cancer before, and thus new targets are provided for
future development of MDR reversing drugs.
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