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BioMed Research International has retracted the article titled
“Gelsolin Restores Af-Induced Alterations in Choroid
Plexus Epithelium” [1], due to concerns with duplicated fig-
ures as initially raised on PubPeer [2].

Figures 1(a) and 1(b) appear to be identical to Figure 1(a)
in [3]. Additionally, in Figure 2, the control and Apf1-42
panels appear very similar to the control and A31-42 panels
in Figure 5(e) [4].

Following an investigation into these concerns, the edito-
rial board has recommended the retraction of the article. The
authors do not agree to the retraction.
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Histologically, Alzheimer’s disease (AD) is characterized by senile plaques and cerebrovascular amyloid deposits. In previous
studies we demonstrated that in AD patients, amyloid-f (Af) peptide also accumulates in choroid plexus, and that this process
is associated with mitochondrial dysfunction and epithelial cell death. However, the molecular mechanisms underlying Af
accumulation at the choroid plexus epithelium remain unclear. Af3 clearance, from the brain to the blood, involves Af carrier
proteins that bind to megalin, including gelsolin, a protein produced specifically by the choroid plexus epithelial cells. In this study,
we show that treatment with gelsolin reduces Af-induced cytoskeletal disruption of blood-cerebrospinal fluid (CSF) barrier at the
choroid plexus. Additionally, our results demonstrate that gelsolin plays an important role in decreasing Af-induced cytotoxicity
by inhibiting nitric oxide production and apoptotic mitochondrial changes. Taken together, these findings make gelsolin an

appealing tool for the prophylactic treatment of AD.

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder
characterized by a progressive loss of cognitive function
and is associated with neuropathological hallmarks that
include amyloid plaques, neurofibrillary tangles, synaptic
loss, and neurodegeneration. Senile plaques mainly consist of
an extracellular accumulation of the 40—42-aminoacid long
peptide amyloid 3 (Af3) [1, 2], although intracellular deposits
of Af3 have also been reported [3, 4]. Besides accumulating in
the brain parenchyma, Af3 also accumulates in choroid plexus
epithelial cells [5] and in cerebrovascular walls, where it
induces blood-brain barrier disruption [6-8]. Several studies
have shown that AB_4 and Af_4 alter transmembrane
and cytoplasmic tight junction proteins in brain microvessel
endothelial cells, including ZO-1, which ultimately leads to
disruption in the integrity of the blood-brain barrier [9, 10].

In support of these findings, recent results from our
laboratory have suggested direct relationship between Af
accumulation at the choroid plexus epithelium and the

development of functional and structural dysfunctions [5,
11]. In addition, we demonstrated the existence of a link
between Af-induced choroid plexus cell death, increased
production of nitric oxide (NO), and mitochondrial dys-
function in the choroid plexus of patients with AD and
amyloid precursor protein (APP)/PS1 mice [11].

The choroid plexus, which is made up of a single epithe-
lial cell layer, is responsible for producing cerebrospinal fluid
(CSF) and constitutes the blood-CSF barrier. Additionally,
choroid plexus cells produce proteins involved in several
processes important for normal brain function, such as
prevention of Af fibrillization. One of such proteins is
gelsolin [12], which is a potent actin-regulatory protein that
controls cytoskeletal assembly and disassembly [13]. Gelsolin
can be found both as an intrinsic cytoplasmic protein and
as a secreted protein [14]. Besides controlling formation of
cytoplasmic actin filaments, gelsolin plays an important role
in apoptosis and amyloidosis. The secretory form of gelsolin
is known to bind A under normal physiological conditions
[15], inhibit the fibrillation of Af, and defibrillize preformed



fibrils of this peptide [16]. Some groups have suggested that
gelsolin could be used in the prophylactic treatment of AD as
Af; sequestering agent [17, 18].

In this study, we hypothesize that the secreted form of
gelsolin could be an effective therapeutic approach for the
preservation of blood-CSF barrier integrity and function,
and thus an attractive tool for the prophylactic treatment
of AD. To test the hypothesis that secreted gelsolin can
reduce Af cytotoxicity on choroid plexus epithelium, we
analyzed cytoskeletal alterations, including the distribution
and expression of ZO-1. In addition, we assessed AB-induced
NO production, cell death, and mitochondrial changes in
choroid plexus epithelial cells.

2. Methods

Cell Culture. Epithelial cell monolayers from P3-P5 Wistar
rats were prepared as described previously [19]. Cells were
grown to confluence for 5-7 days and serum starved for
2 hours. Human analog peptides corresponding to Af1_49,
A4, or scrambled Af;_4(5ug/mL; AnaSpec, Inc.), and
gelsolin, extracted from bovine plasma (5ug/mL; Sigma),
were added. Forty-eight hours after stimulation, cells were
either fixed for immunocytochemical analysis or homoge-
nized for immunoblot determination.

Antibodies. The following antibodies were used: mouse
monoclonal anti-Af;_4 (Chemicon), rabbit polyclonal anti-
Afi_4, (Chemicon), goat polyclonal anti-megalin (Santa
Cruz Biotechnology), mouse ‘monoclonal anti-gelsolin
(Sigma), mouse monoclonal anti-pSer (Sigma), goat poly-
clonal anti-ZO-1 (Santa Cruz Biotechnology), mouse mon-
oclonal anti-CoxVa (Molecular Probes), BIODIPY FL phal-
lacidin (Invitrogen), Alexa-coupled (Molecular Probes), and
HRP-conjugated (Bio-Rad).

Western-Blot Analysis. Western-blot (WB) analysis and
immunoprecipitation were performed as described previ-
ously [19]. WB membranes were reblotted with the same
antibody used for immunoprecipitation, and to normalize
for protein load. Densitometric analysis was performed using
Image] software (NIH). Nonimmune normal rabbit serum
was used as a control for immunoprecipitation studies.

Blue Native Electrophoresis. Mitochondrial membranes were
isolated according to the method described by Nijtmans
et al. [20]. Enzyme activity of mitochondrial complexes
from choroid plexus epithelial cell cultures was measured
as described previously [11]. Gels were washed in distilled
water, scanned, photographed immediately, and quantified
with the aid of Image] software (NIH) [11].

Determination of NO Production. For NO detection, choroid
plexus epithelial cell cultures were processed using the Nitric
Oxide Colorimetric Assay Kit (BioVision, Inc.) as described
previously [11].
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Cell Death Quantification. After 48-hour incubations with
Afi_4, and gelsolin, DNA fragmentation in choroid plexus
epithelial cells undergoing apoptosis was detected with a
Cell Death Detection ELISAP™YS kit (Roche) as described
previously [11].

3. Results

Gelsolin Binds to Megalin and Forms a Complex with AB. We
observed that megalin from rat choroid plexus cells binds
to A4 and to gelsolin (Figure 1(a)). Furthermore, our
results indicate that both the cytoplasmic and the secreted
forms of gelsolin bind to megalin (Figure 1(a), top panel).
These findings were corroborated by imunoprecipitation and
double immunostaining, which showed that gelsolin co-
localizes with megalin and Af in choroid plexus epithelial
cells (Figure 1(b)).

Gelsolin Inhibits AB-Induced Disruption on Choroid Plexus
Epithelial Cell Cytoskeleton. Choroid plexus epithelial cells
exposed to Afi_4; for 48 hours showed a disrupted plasma
membrane pattern of ZO-1 with relocation of this protein
to the cytoplasm (Figure 2(a)). Afi_4-induced disruption
of epithelial barrier integrity was also confirmed by an
increase on serine phosphorylation rate. Immunoprecipita-
tion with anti-ZO-1, followed by immunoblotting with anti-
pSer, showed an increase in serine ZO-1 phosphorylation
and a reduction in ZO-1 expression in choroid plexus
epithelial cells (Figure 2(b)). We found that coadministration
of gelsolin restored these Afi_s>-induced effects (Figures
2(a) and 2(b)). Moreover, this Af3;_4,-induced effect on the
behavior of this tight junction protein was also accompanied
by cytoskeletal disruption, as we observed the formation
actin stress fibers (Figure 2(c), middle panel). The immuno-
cytochemical analysis revealed a restoration of cytoskeletal
assembly when gelsolin was added to the culture medium
(Figure 2(c), right panel).

Gelsolin Inhibits AB-Induced NO Production and Neuronal
Death in Choroid Plexus Epithelial Cells. Gelsolin blocked
Api_s-induced NO production by cultured choroid plexus
epithelial cells after 48 hours of treatment (Figure 3(a)). In
vitro, AfS1_sz-induced cell death in choroid plexus epithelial
cells was also reversed after 48 hours of gelsolin administra-
tion (Figure 3(b)).

Gelsolin Increases Mitochondrial Respiratory Chain Activity in
Choroid Plexus Epithelial Cells. When gelsolin was added to
the choroid plexus culture, an increased activity of complex
IV was observed as compared with control cells (Figure 3(c)).
Moreover, gelsolin was able to reverse the inhibitory effect of
Af in complex IV activity (Figure 3(c)). WB performed to
assess protein level alterations revealed a parallel activation in
complex IV, reflected by an increase in Cox Va subunit levels
(Figure 3(c)).
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FIGURE 1: Gelsolin expression in choroid plexus epithelial cells. (a) Antimegalin immunoprecipitation of rat choroid plexus cell extracts,
followed by blotting with respective antibodies, revealed an association between megalin, endogenous gelsolin, the exogenously added
secreted gelsolin form, and the exogenously added AB. Immunoprecipitation with nonspecific serum showed no unspecific Af association.
Binding of gelsolin with exogenously added Af was also observed. Representative blots are shown (n = 4). (b) Megalin colocalized with
gelsolin and exogenously added Af in choroid plexus cultures. Confocal images also show gelsolin colocalization with AfS. Scale bars =

10 pm. IP: Immunoprecipitation; NRS: normal rabbit serum.

4. Discussion

Gelsolin, an actin-regulatory protein, exists both as an
intracellular and extracellular protein [14] and is present
in all nervous system cell types, including neurons [21] and
choroid plexus [12]. Our findings indicate that secreted
gelsolin is involved in the pathology of AD through the
regulation of brain Af and its neurotoxic effects. Plasma
gelsolin has been found to bind and reduce brain Af
[15, 17, 18]. In the present study we had confirmed
the formation of a complex between cytoplasmic and
secreted gelsolin with Ap, accordingly with previously
published studies [15, 22]. Our current results extend these
observations, suggesting that megalin, an endocytic receptor

involved in Af clearance [23-27], has a functional role
in the formation of this complex. We show that megalin
binds Af3/gelsolin complex in the choroid plexus epithelium,
suggesting a role in clearance of Af from CSF to the blood.
The latter is not surprising in view of megalin’s ability to
transport a large variety of proteins [28].

Abnormalities in cytoskeletal organization are a common
feature of many neurodegenerative disorders, including AD.
Interestingly, Afi_4-induced cytoskeletal alterations known
to be associated with the proteolytic degradation of the
tight junction-associated protein ZO-1 [10, 11] were reversed
after secreted gelsolin treatment, with relocation from the
cytoplasm to the original position in the cell membrane of
choroid plexus epithelial cells. In addition, our results suggest
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FIGURE 2: Secreted gelsolin inhibits AB-induced disruption on choroid plexus epithelial cell cytoskeleton. (a) Representative confocal images
of choroid plexus confluent monolayer labeled with anti-ZO-1 antibody. Under control conditions, ZO-1 immunostaining is distributed
along the plasma membrane. In contrast, after exposure to Af3;_4, for 48 hours, a disruption of the plasma membrane pattern of ZO-1 was
observed, resulting in increased cytoplasmic localization. Note the ability of gelsolin treatment to prevent this AB-induced alteration in ZO-1
pattern. (n = 3). (b) ABi4, treatment resulted in increased serine phosphorylation of ZO-1 and decreased ZO-1 expression in choroid plexus
epithelial cells. Gelsolin coadministration markedly attenuated AS;_4, alteration in ZO-1 (n = 3). (c) BIODIPY FL phallacidin staining of
choroid plexus epithelial cells showed a disruption of the actin cytoskeleton after treatment with Af;_y, for 48 hours, and reversion when
gelsolin was simultaneously added. Magnification: x40. Scale bars = 10 ym.

that the secretory form of gelsolin prevents the internaliza-
tion of ZO-1 by blocking serine phosphorylation, as has been
also demonstrated in other studies [29-31]. The presence of
structures characterized by aggregates of polymerized actin
(F-actin) has been described in AD [32]. Also, F-actin levels
have been shown to increase in hippocampal neurons treated
with AB [33]. Furthermore, cortical neurons expressing the
APP intracellular domain suffer from pronounced changes
in the organization of the actin cytoskeleton, including
destabilization of actin fibers [34]. We found that fibrillar
Ai_4, also caused alterations in cytoskeletal actin in choroid
plexus epithelial cells, as reflected by an increase in the
F-actin content, and that gelsolin was able to protect
against this effect. In this way, gelsolin contributes to the

maintenance of the choroid plexus monolayer and the blood-
CSF barrier integrity. A possible explanation for these effects
could be that Af increases metalloproteinase 9 [11, 35,
36], which is capable of cleaving cytoplasmic gelsolin [37],
thereby resulting in the destabilization of actin filaments and
the disruption of tight junctions. Secreted gelsolin, which
binds and sequestrates Af3, would then be able to prevent and
diminish Af toxic effects.

On the other hand, our results also indicate that gel-
solin prevents Af-induced cell death and NO production
from choroid plexus cell cultures. Using several models
of neuronal cell death, others studies have demonstrated
that cytoplasmic gelsolin has antiapoptotic properties that
correlate with its dynamic actions on the cytoskeleton [38].
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FIGURE 3: Secreted gelsolin expression modulates NO production and cell death in choroid plexus epithelial cells. (a) Choroid plexus
epithelial cells treated with A4, for 48 hours exhibited a significantly enhanced NO production compared with untreated cells. Secreted
gelsolin coadministration completely blocked this effect (n = 3); **P < .01. (b) Increased cell death was observed in choroid plexus
cell cultures 48 hours after Af;_s, treatment, and gelsolin addition totally reversed this toxic effect (n = 3); *P < .05. (c and d) Afi_p
treatment reduced mitochondrial complex IV in-gel activity in choroid plexus epithelial cells, whereas secreted gelsolin administration
increased complex IV activity and reversed this decrease in Af;_4,-induced activity. Blue native analysis of these culture samples showed
altered protein expression in the mitochondrial complex IV. Representative blue native blots and quantitative histograms are shown (n = 4

per group); *P < .05.

Indeed, gelsolin-null neurons have enhanced cell death [39]
and increased vulnerability to glutamate toxicity [40]. In a
previous study we reported that A-induced mitochondrial
dysfunction could ultimately activate a programmed cell
death pathway in the choroid plexus epithelial cells [11].
In this study, we show that secreted gelsolin prevents
Ap-induced cell death by increasing enzyme activity of
the respiratory chain complex IV in the choroid plexus
epithelial cells. These observations are in line with other
studies showing an Af-induced reduction of mitochondrial
membrane potential by cytoplasmic gelsolin [41, 42]. The
intracellular form of gelsolin is associated to the mitochon-
drial membrane, where it can inhibit Af-induced loss of
mitochondrial membrane potential, cytochrome c release,

and regulate voltage-dependent channels [40, 41]. Since
extracellular gelsolin has also been detected in CSF, where its
concentration is significantly altered in certain neurological
conditions [43], this extracellular isoform of gelsolin may
well reduce choroid plexus Ap-induced pathology in a
similar manner to intracellular gelsolin [17, 18].

In conclusion, our results demonstrate that secreted
gelsolin can modulate Af3-induced alterations in the blood-
CSF barrier. We suggest that secreted gelsolin have a
neuroprotective role against Af neurotoxicity. In summary,
enhancement of gelsolin levels may represent a novel way to
protect against Af neurotoxicity and, in the future, could be
considered a potential therapeutic strategy for the treatment
of patients with AD.
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