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Cerebral cavernous malformations (CCMs) represent a common autosomal dominant disorder that predisposes patients to
haemorrhagic strokes and focal neurological signs. About 56% of the hereditary forms of CCMs have been so far associated with
mutations in the KRIT1 (Krev Interaction Trapped 1) gene, located at 7q21.2 (CCM1 locus). We described the complete loss of
7q21.2 locus encompassing the KRIT1 gene and 4 flanking genes in a CCM family by using a dense set of 12 microsatellite markers.
The complete loss of the maternal copy of KRIT1 gene region was confirmed by Real-Time Quantitative Polymerase Chain Reaction
(RT-QPCR) and the same approach was used for expression analysis. Additional RT-QPCR analysis showed the extension of the
deletion, for a total of 700 kb, to the adjacent downstream and upstream-located genes, MTERF, AKAP9, CYP51A1, as well as a
partial loss of the ANKIB1 gene. Here we report the molecular characterization of an interstitial small genomic deletion of the
7q21.2 region in a CCMs affected family, encompassing the KRIT1 gene. Our findings confirm the loss of function mechanism for
the already known CCM1 locus, without any evident involvement of the other deleted genes. Moreover, our investigations highlight
the usefulness of the RT-QPCR to the molecular characterization of the breakpoints genomic deletions and to the identification of
internal deleted genes involved in the human genetic diseases.

1. Introduction

Cerebral cavernous malformations (CCMs, [MIM 116860])
are congenital vascular defects mostly located within the CNS
with a prevalence of 0.1%–0.5% in the general population
[1]. They are characterized by abnormally enlarged capillary
cavities without intervening brain parenchyma [2]. The
presence of these altered vascular structures is believed to
account for all symptoms, ranging from headache to focal
neurological defects and rarely acute bleeding. CCMs are also
associated to an increased probability of stroke and epilepsy
[1, 3, 4]. Family cases are often characterized by the presence

of multiple lesions with an incomplete penetrance probably
related to gene involved [5, 6] and on the age at onset.
Heritable CCMs have been so far associated with mutations
in three genes: the KRIT1 (Krev Interaction Trapped 1)
[7] and the CCM2 (Cerebral Cavernous Malformation
2, Malcavernin) genes located, respectively, at the 7q21.2
(CCM1 locus) and 7p15-p13 (CCM2 locus) [8], and the
PDCD10 (Programmed Cell Death 10) gene is located at
the 3q26.1-27 (CCM3 locus) [9]. KRIT1 gene is responsible
for about 56% of the hereditary forms of CCMs, whereas
the MGC4607 gene accounted for 33% of them. The third
locus identified by mutational screening of the PDCD10 gene
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surprisingly showed mutations only in a low percentage of
familial case (6%), suggesting the existence of a fourth gene
located close to one of the three loci above mentioned [9, 10].

Recently, several papers reported that many probands
initially negative at the routine mutation screening for the
three CCM genes were positive for large genomic deletions or
duplications. Deletion of malcavernin seems to be the most
frequent genomic rearrangement reported in CCMs families
whereas one duplication, 9 partial deletions, and 1 deletion
of the whole KRIT1 gene were described [11–15].

Here we describe for the first time the molecular char-
acterization of the complete loss of CCM1 genomic region
in a CCMs family, by using a combination of microsatellite
markers analysis and an RT-QPCR approach. Other than
the KRIT1, four genes fall in the deleted region: MTERF
(mitochondrial transcription termination factor), AKAP9
(A-kinase-anchoring protein), CYP51A1 (cytochrome P450,
family 51), and ANKIB1 (ankyrin repeat and IBR domain
containing 1) gene whose first 10 exons were deleted. These
results were corroborated by gene expression analysis by
using RT-QPCR.

2. Patients and Methods

2.1. Patients. All the subjects belonged to a Northern Italian
family affected by cerebral cavernous malformation. The
index case is a 36-year-old male with a seizure history
and cerebral haemorrhages. The five family members were
investigated by brain TC and MRI and the diagnosis of
CCM was based on its characteristic radiographic findings.
Each subject underwent detailed clinical assessment, with
emphasis on neurological, dermatological, and ophthalmo-
logical examinations. Informed consent was obtained from
all family members to perform genetic analyses.

2.2. Microsatellite Analysis. DNA was extracted from periph-
eral blood using a standard phenol-chloroform proto-
col [16]. Linkage analysis was performed in order to
identify the disease associated gene. Haplotypes analyses
were performed for all CCMs family members by using
a dense set of 13 microsatellite markers flanking the
CCM1 locus (See Table 1 in Supplementary Material avail-
able online at doi:10.1155/2010/854737). Physical distances
between markers were based upon the electronic database
available from the University of California Santa Cruz
(http://www.genome.ucsc.edu/). Amplifications were carried
out in 25 ul reaction volume containing 100 ng of DNA,
10X PCR Buffer with 15 mM MgCl2, 200 µM each dNTPs,
20 pmol each primer, and 1 U AmpliTaq Gold DNA poly-
merase (Applied Biosystems, Foster City, CA). PCR cycling
conditions consisted of initial 12 minutes denaturation step
at 95◦C, followed by 35 cycles of 95◦C for 30 seconds,
annealing for 30 seconds, and extension at 72◦C for 30
seconds, with final extension at 72◦C for 7 minutes. PCR
products were visualised by ethidium bromide staining on
2% agarose gel. PCR products were loaded on a capillary
electrophoresis ABI 3100 (Applied Biosystems), and results
were analysed by using Genescan 3.7 and Genotyper 3.7 NT
software (Applied Biosystems).

2.3. KRIT1 Gene Screening. The mutational analysis of the
KRIT1 gene was performed as previously described [17].
Briefly, amplifications for all the 16 KRIT1 coding regions,
including the exon-intron boundaries, were carried out and
analysed by denaturing high-performance liquid chromatog-
raphy (DHPLC; Transgenomic Inc. Transgenomic, Inc.
Nebraska, USA) screening (primers sequences, annealing
temperatures, and size of PCR products are in Supplemen-
tary Table 1; oven temperatures and acetonitrile gradients are
available from the authors). Amplicons with an abnormal
elution profile were purified using the GFX PCR and Band
Purification Kit (Ge HealthCare, Buckinghamshire, UK),
sequenced with the BigDye Terminator Cycle Sequencing Kit
v. 1.1 (Applied Biosystems), loaded on ABI 3100 capillaries
(Applied Biosystems) and analysed using the Sequencing
Analysis software v2.0.

2.4. RT-QPCR Gene Copy Number Analysis. A new protocol
of RT-QPCR was developed to provide a sensitive method for
detecting large deletions encompassing the KRIT1 gene and
the 7q21 locus.

Three sets of primers were designed for amplification
of 7q21 region around the KRIT1 gene (Supplementary
Table 2). All primers were designed with Primer Express
2.0 software (Applied Biosystems) and tested for speci-
ficity using BLAT software (http://genome.ucsc.edu/cgi bin/
hgBlat?command=start). Primer sets 1 identify 8 amplicons
covering the KRIT1 gene (exons 3, 9, 17, and 20) and 5′

and 3′ flanking 4.5 Kb regions. Primer set 2 annealed on
the 10 KRIT1 flanking genes located into the 7q21 region
delimited by D7S2410 and D7S646 microsatellites: PFTK1
(NM 012395), FZD1 (NM 003505), MTERF (NM 006980),
AKAP9 (NM 005751), CYP51A1 (NM 000786), ANKB1
(NM 019004.1), GATAD1 (NM 021167), ERVWE1 (NM
014590), PEX1 (NM 000466), and CDK6 (NM 001259).

The identification of ANKIB1 gene breakpoint region was
performed using an additional set of primers (set 3) designed
on exons 7–13 of the gene (Supplementary Table 3). All
primers were purchased by PRIMM (PRIMM Labs, Inc. MI,
Italy).

Deletion of KRIT1 gene and of the flanking genes was
detected on the 384-well ABI Prism 7900 Sequence Detection
System (Applied Biosystems) by the measurements of the
amplicons Copy Number (CN) using a RT-QPCR approach
with SYBR-Green I detection. Reaction mixture (10 ul)
contained 2.5x Fast Start DNA master mix hybridization
SYBR Green (Roche Molecular Biochemicals, Mannheim,
Germany), 250 uM of each forward and reverse primers,
and 30 ng of DNA as template. Reactions were run on
ABI PRISM 7900HT Sequence Detection System (Applied
Biosystems). Cycling conditions were as follows: 10 minutes
at 95◦C, 40 cycles at 95◦C for 15 seconds, and 60◦C for
60 seconds. After PCR amplification, a melting curve was
generated for every PCR product in order to verify the
specificity of the PCR reaction. Calculation of the gene copy
number was made using the 2−ΔΔCT method as reported
(User Bulletin #2, Applied Biosystems) [18, 19]. Outlier
values with a differences between Ct and Ct mean >0.3 were
excluded from further data analysis. For normalization of the



Journal of Biomedicine and Biotechnology 3

Figure 1: Unenhanced CT image of the index case (Case II : 2)
showing a large lesion with a hyperattenuating centre surrounded
by little spots of increased density (suggestive for calcifications and
small areas of haemorrhage) in the left frontal lobe. Large edema
coexists. Further histological examination proved this lesion to be a
CCM.

relative amount, the gene copy numbers were divided by the
geometric mean of two described reference with a normal
copy number, ZNF80 (3q13.31) and MOX2 (3q13.2) [20].
Using this method, a Diploid Copy Number (D-CN) of 1.0
± 0.2 is expected for a normal sample and a value of 0.5 ±
0.2 for a sample with 7q21 genomic deletion (Haploid Copy
Number, H-CN).

2.5. Sample Processing, RNA Extraction and cDNA Synthesis.
Total RNA of I : 1, I : 2, II : 1, and II : 3 subjects was extracted
using PAXgene Blood RNA kit (PreAnalytix, Qiagen, Ger-
mantown, MD). RNA was eluted in RNAse free-water and
stored at −80◦C until used. RNA quality and concentration
were measured by using 2100 Expert Analyzer (Agilent
Technology, Inc. Headquarters) with an RIN (RNA Integrity
Number) ≥9.0. After heating at 65◦C for 5 minutes in
order to denature RNA and to inactivate RNases, 500 ng of
total RNA was subjected to reverse transcription using the
QuantiTect Reverse Transcription Kit (Qiagen). cDNA was
synthesized according to the manufacturer’s instructions.

2.6. RT-QPCR Gene Expression Analysis. Primers set were
designed with Primer Express 2.0 software (Applied Biosys-
tems) across the coding region of flanking KRIT1 genes into
the 7q21 deleted region: PFTK1, FZD1, MTERF, AKAP9,
CYP51A1, KRIT1, ANKB1, GATAD1, ERVWE1, PEX1, and
CDK6 (Supplementary Table 4).

SYBR Green amplification mixture (10 ul) contained 2.5x
QuantiTect SYBR Green PCR Master Mix (Qiagen), 250 nM
of each forward and reverse primer, and 1 ul of cDNA as
template. Reactions run on ABI PRISM 7900HT Sequence
Detection System (Applied Biosystems). Cycling conditions
were as follows: 10 minutes at 95◦C, 40 cycles at 95◦C for 15
seconds, and 60◦C for 60 seconds. Glyceraldehyde phosphate
dehydrogenase (GAPDH) was chosen as housekeeping gene,
and commercially available primers were used (see the User
Bulletin #2, Applied Biosystems, for the primers sequences).
Each assay was carried out in triplicate and the transcription
level was normalized using GAPDH as reference gene.

3. Results

3.1. Clinical Descriptions. The index case (Case II : 2) is a
36 years old male. When he was 11 years old, he had an
episode of severe headache and language disturbances. CT
examination performed at that moment showed a haemor-
rhagic lesion in the left frontal lobe (Figure 1). Therefore, he
underwent surgical treatment with good results. MRI follow-
up examination was performed every two years, the last
of which revealed two lesions suggestive for hemangiomas,
respectively, located at the cerebellopontine angle and at the
left lateral ventriculum. The mother of the index case (Case
I : 2) is a 61 years old female. When she was 48 years old, an
MRI examination of the orbit performed after an episode
of right blindness associated to acute headache showed an
area of haemorrhage at the superior right quadrant and at
the inferior left quadrant of the right eye. She underwent
surgical treatment. At present, a visual defect at the right
eye still persists. The brother of the index case (Case II : 1)
is a 38 years old male with a history of recurrent headaches
and seizures due to multiple cerebral hemorrhages from the
age of 9. Surgical treatment was performed on a cerebral
hemangioma located at the right parietal lobe. He underwent
MRI follow-up examinations every two years. The last one
revealed three lesions suggestive for hemangiomas: 1 in the
right fronto parietal lobe, 1 at the cerebellopontine angle,
and 1 in the cerebellum. The nephew of the index case
(Case III : 1) is an 11 years old male. When he was 5 years
old, he reported a seizure. MRI showed two cerebral lesions
suggestive for hemangiomas, one of them was bleeding. Only
the father of the index case (Case I : 1) showed negative
results at MRI and CT examinations. In the three patients
(Cases I : 2, II : 1, II : 2) who underwent surgical treatment,
the diagnosis of CCM was histologically confirmed. To date,
all the family members are alive.

3.2. Genetic Analysis

3.2.1. Identification of Hemizigosity at the 7q21 Chromosome
Region. Haplotype reconstruction of 13 microsatellite mark-
ers on chromosome 7q21 showed heterozygosity for markers
flanking the CCM1 locus (D7S2409, D7S1813, D7S1789) in
the healthy family member (I : 1), whereas all the affected
members (I : 2, II : 1, II : 3, III : 1) carried and shared only
the maternal haplotype, indicating a hemizygosity of the
specific chromosomal region of about 700 kb (Figure 2(a)).
The genetic screening of the whole coding regions of the
KRIT1 gene gave negative results.

3.2.2. Identification of Complete KRIT1 and Flanking Genes
Deletions by RT-QPCR. By using the RT-QPCR approach
with the three primer sets described above we confirmed the
complete deletion of KRIT1 gene and the hemizygous status
in all affected patients (Supplementary Figure 1). More-
over, the deletion of the 5′ and 3′ KRIT1 flanking region
was found involving the following genes: MTERF, AKAP9,
CYP51A1, located downstream to the KRIT1 gene, and
ANKIB1 located upstream to the KRIT1 gene (Figure 2(b)).
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Figure 2: (a) Haplotype analysis of microsatellites markers from chromosome 7q21.1. The haplotype shared by the affected individuals
(black-filled symbol) is “boxed”. In the affected patients, the symbol (∗) indicates the indefinite alleles, located in the deletion. Since the
hemizygosity for the non shared alleles in the affected patients, the analysis, shows “homozygosity” for three markers (D7S2409, D7S1813,
D7S1789), thus, the deleted alleles are indicated with the same symbol (∗). (b) Measurements of copy number status (± standard error
mean) of genes mapping in the 7q21 chromosomal region determined by RT-QPCR. On the Top: the genomic organization of genes. Genes
are shown above the horizontal axis, which also indicates the extension and orientation of each gene. Results from normal genomic DNA (2
normal controls mean), from the unaffected member of family (I : 1 sample), and in one affected members (II : 1) are visualized by a closed
triangle (�), a closed quare (�), and a closed circle (•), respectively. The genes between the two vertical gray dotted lines show a hemizigous
deletion detectable by the copy number loss of the associated amplicons.

3.2.3. Gene Expression Analysis. To further confirm the
inclusion of these genes into the genomic deletion, an
expression analysis approach was set up for all genes located
into the D7S2410 and D7S646 interval. FZD1 and PFTK1
were not analysed because these genes are not expressed in
peripheral blood (data not shown). Results confirmed the
decrease of expression of genes showing an H-CN score of
0.5 ± 0.2 and a normal expression of genes with a D-CN
of 1.0 ± 0.2 (Figure 3). The ANKIB1 gene was characterized
by a discrepancy between the normal DNA D-CN (detected
using a couple of primers located into the intron 14) and an
evident decrease of expression level (detected using a couple
of primers located into the exon 6).

3.2.4. RT-QPCR Analysis for the ANKIB1 Gene Breakpoint
Determination. For the ANKIB1 gene, additional RT-QPCR
analysis by using intragenic primers revealed that the dele-
tion affected a large segment of the gene with a breakpoint

located in the intron 10 flanked by the amplicons ANKIB1-
Ex11 (not deleted) and ANKIB1-Ex10 (deleted), (D-CN
= 1.08 ± 0.03 versus H-CN = 0.53 ± 0.02, respectively,
Figure 4).

4. Discussion

The use of MLPA in routine diagnostics increases dramat-
ically the identification of large/small genomic deletion in
human disease gene screening. Recently also for the three
CCM associated genes, MLPA kits have been assessed and
validated, and recent papers demonstrated the usefulness
of this application and identified different partial or total
deletions of these genes [11–15]. However, one limit of
these technique, is the lack of the information about the
heterozygosity of genomic region flanking the specific gene
under study. This limit can be overcome by other techniques
such as the RT-QPCR, or SNP Copy Number Variations
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Figure 3: Copy number status Expression level analysis (± standard
error mean) of genes mapping in the 7q21 chromosomal region
determined by RT-QPCR was determined by RT-QPCR. Average
relative mRNA expression genes level from two affected members of
CCM family (II : 1 and II : 3) related to the normal ones as calibrator
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Assay. Although these techniques are more expensive and
sometimes time consuming compared to the MLPA analysis,
nevertheless, the assessment of the breakpoints allows to
identify other possible deleted genes and to investigate their
contribution to the disease.

Here we report a genomic deletion of about 700 kb
across the CCM1 locus encompassing the MTERF, AKAP9,
CYP51A1 genes, and 90% of the ANKIB1 gene. We wondered
the possible relationship between the predicted function of
the corresponding encoded proteins and the clinical features
reported by our patients.

Few information about the function of ANKIB1 was
available at the time of this work. though the ANKIB1
was recently described as a UIM (ubiquitin-interacting
motif) protein with an ubiquitylation function [21]. Thus,
at the moment, we are still unable to deduce if the
haploinsufficiency of these proteins could influence the
clinical phenotype of cavernous angiomas. The CYP51A1
gene encodes for the Sterol 14-alpha-demethylase, a member
of the cytochrome P450 gene superfamily involved in sterol
biosynthesis in fungi, plants, and animals [22]. There are no
data about the possible involvement in human disease, and
with the chemistry analysis performed on our patients.

The MTERF gene encodes the mitochondrial termina-
tion factor with a complex role in mitochondrial transcrip-
tion arrest and transcription activation [23]. In particular,
the MTERF protein binds the specific mtDNA region respon-
sible for the MELAS syndrome, a mitochondrial disease char-
acterized by mitochondrial myopathy, encephalopathy, lactic
acidosis, and stroke-like episodes. The MELAS mutations
reported commonly occur within the mtDNA binding site
for the MTERF protein whose role is the termination of
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lines (exon1–10) show the copy number loss of the associated
amplicons.

transcription at the 16S rRNA/tRNA (LeuUUR) gene bound-
ary. One could ask if the stroke-like episodes and seizures,
as part of symptoms showed by our patients, could overlap
with those specific symptoms of MELAS diseases, rather
than exclusively due to the KRIT1 gene haploinsufficiency.
Unfortunately, there are no data supporting the assumption
that the MELAS syndrome could be caused by the loss of
expression of the MTERF protein as well as no relationship
was reported between these CCM and MELAS. Thus, this
hypothesis needs to be confirmed by wider epidemiological
studies.

The AKAP9 gene encodes for the A-kinase anchor
protein-9, a scaffolding protein that determines the sub-
cellular localization of protein kinase A and enzymes that
regulate the PKA pathway and the I(Ks) potassium channel
in the heart [24]. A recent functional study described a link
between genetic perturbations in AKAP9 and congenital long
QT syndrome (LQTS), electrocardiographically character-
ized by a prolonged QT interval and polymorphic ventricular
arrhythmias which may result in recurrent syncope, seizures,
or sudden death [25]. However, no alteration in ECGs was
observed in our CCM affected patients that could be related
to this syndrome.

One notable clinical feature in our family was the antic-
ipation of the symptoms. Although such anticipation was
already described, it does not represent a common feature
of the CCM and molecular mechanism remains unknown
[26, 27]. It is possible that in our family the anticipation
could depend on other genetic factors, mainly associated
with the intrinsic genomic variability that leads the mutation
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carriers to be more or less affected by haploinsufficiency of
the three CCM-associated genes.

In conclusion, we report the molecular characterization
of an interstitial small genomic deletion of the 7q21.2
region in a CCMs affected family, encompassing the KRIT1
gene. This paper focuses on the utility of a fine molecular
characterization of this type of genomic rearrangement in
CCM affected families to investigate a possible role of the
flanking deleted genes. However, taking into account the
absence in our survey of any other clinical features in
addition to the multiple cavernous angiomas, our results can
only confirm the loss of function mechanism for the already
known CCM1 locus. Further evaluations of clinical features
during the follow-up of our patients could contribute to
clarify this issue.
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