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Besides the second generations bio fuels, one of the most promising products is the bio gas oil, which is a high iso-paraffin
containing fuel, which could be produced by the catalytic hydrogenation of different triglycerides. To broaden the feedstock of the
bio gas oil the catalytic hydrogenation of waste lard over sulphided NiMo/Al2O3 catalyst, and as the second step, the isomerization
of the produced normal paraffin rich mixture (intermediate product) over Pt/SAPO-11 catalyst was investigated. It was found that
both the hydrogenation and the decarboxylation/decarbonylation oxygen removing reactions took place but their ratio depended
on the process parameters (T = 280–380◦C, P = 20–80 bar, LHSV = 0.75–3.0 h−1 and H2/lard ratio: 600 Nm3/m3). In case of
the isomerization at the favourable process parameters (T = 360–370◦C, P = 40–50 bar, LHSV = 1.0 h−1 and H2/hydrocarbon
ratio: 400 Nm3/m3) mainly mono-branching isoparaffins were obtained. The obtained products are excellent Diesel fuel blending
components, which are practically free of heteroatoms.

1. Introduction

Nowadays the production and utilisation of agricultural
origin fuels have come to the front because of environmental
protection, political and economical reasons. In the increase
of the utilisation of these bio-fuels the energy policy of the
European Union has a dominant role, of which the aim is
the decrease of the energy and the crude oil dependency.
In consequence, the EU implemented the 2003/30/EC and
the 2009/28/EC directives to inspire the utilisation of bio-
fuels by determining the suggested and specified ratio of
bio-fuels in the transportation fuels. In order to attain
these objectives, the fuel blending components produced
from different natural triglyceride containing feedstocks (like
vegetable oils, used frying oils, animal fats, algae oils, trap
grease of sewage works) could have an important role.

Currently only the biodiesels (fatty acid methyl esters)
belonging to the first generation bio-fuels are used as bio-
origin fuel or a blending component for Diesel engines.
But the production and utilisation of these have numerous
disadvantages (formation of hazardous wastes, difficulties of
glycerol sales, high content of olefinic double bond → poor
heat and oxidation stability → poor storage stability; ester
bonds and high water content → hydrolysis sensitivity →

corrosion; phosphor content → poisonous effect on the
three-way catalyst, etc.) [1–3].

Because of these disadvantages and the demand for
better quality, the production possibilities of biofuels for
diesel engines which have different chemical structure, con-
sequently dissimilar service properties are keenly researched.
The research, production and utilization of this kind of
second generation biofuels are supported with high priority
by the European Union. Besides these the so-called bio gas
oils could come to the front in the short and middle-term.
The bio gas oils are the mixtures of gas oil boiling point
range hydrocarbons (mainly >99% normal and isoparaffins)
produced from mainly triglyceride containing feedstocks
(vegetable oils, used frying oils, animal fats, etc.) by hetero-
genic catalytic hydrogenation in one or more stages. The bio
gas oils eliminate every disadvantage of the biodiesels (fatty
acid esters), accordingly their economical production with
high yield could have high importance in the future [4, 5].

The mixtures of the gas oil boiling point range hydrocar-
bons produced by the catalytic hydrogenation of triglycerides
contain mainly normal paraffins. They have outstanding
cetane number (>85), but their cold flow properties (e.g.,
cold filter plugging point) are unfavourable (e.g., the freezing
points of the C16–C18 normal paraffins are between +18◦C
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and +28◦C). For this reason, the chemical structure of
the n-paraffins has to be modified to be excellent gas oil
blending components. For this purpose, the most suitable
technical solution is the catalytic hydroisomerisation. During
the isomerization the normal paraffins having high freezing
point and outstanding cetane number could be converted to
isoparaffins having by far lower freezing points and still high
cetane number [4, 5].

Accordingly, the mentioned two-stage catalytic conver-
sion of the triglycerides of different vegetable oils to bio
gas oil is discussed in several publications. But there is
only a little information about the utilisation of waste fats.
Because of these, and to broaden the range of the feedstock
of the bio gas oils, we investigated the two-stage catalytic
transformation of lard produced from slaughterhouse waste.

The aim of our experimental work was the investigation
of the fuel purpose convertibility (to good quality gasoil
boiling range product with high isomer content) of properly
pretreated Hungarian lard produced from slaughter house
waste over an expediently chosen NiMo/Al2O3 then on a
Pt/SAPO-11 catalyst. The experiments were carried out in
a laboratory scale reactor system in continuous operation,
while the activity of the catalyst, the yield and composi-
tion of the products, the possible reaction routes of the
deoxygenation and the quantity of isomers, as well as the
applicability of the products were investigated in function of
the process parameters (temperature, pressure, liquid hourly
space velocity, H2/hydrocarbon volume ratio).

2. Experimental Part

2.1. Feedstocks. The feedstock of the hydrogenation experi-
ments was properly pretreated (filtered, purified by bleaching
earth) lard which was produced from slaughter house wastes.
Its important properties are summarized in Table 1. For the
catalytic hydrogenation of the feedstock, the applied catalyst
was a conventional hydrotreating NiMo/Al2O3 catalyst. The
Ni-content of the catalyst was 3.23% and the Mo-content was
13.4%; the BET surface area was 214 m2/g and the acidity
was 0.489 mmol NH3/g. The catalyst was presulphided before
the experiments with previously deep desulphurized gas oil
having enhanced (2.5% with dimethyl-disulphide) sulphur
content. To maintain the sulphided form of the catalyst, the
sulphur content of the feedstock was adjusted to 1000 mg/kg
with dimethyl-disulphide. This compound easily dissociates
in the applied temperature range. For the isomerization of
the intermediate paraffin rich mixture the catalyst was a
0.5% Pt/SAPO-11 catalyst. The dispersion of the platinum
was 91%, the BET surface area was 100.1 m2/g, and the
acidity of the catalyst was 0.66 mmol NH3/g. Prior to the
activity measurements, the catalysts were pre-treated in situ,
as described in our earlier publication [5].

2.2. Experimental Apparatus and Product Separation. The
experimental tests were carried out in a high pressure reactor
system containing two tubular reactors with effective catalyst
volume of 100 cm3 [5]. The reactor system contained all
the equipment and devices applied in the reactor system of

a hydrogenation and isomerization plant. The apparatus was
suitable to keep the major process parameters with at least
such precision as used in the industry.

The intermediate product mixtures obtained from the
hydrogenation of the waste lard were separated to gas phase,
water phase and liquid organic phase (hereafter organic
phase) (Figure 1). The gas phase obtained from the separator
of the reactor system contained mainly hydrogen, carbon-
monoxide, carbon-dioxide, propane, hydrogen-sulphide,
ammonia which evolved during the heteroatom removal of
the triglyceride molecules, furthermore the lighter hydrocar-
bons (C1–C4 as valuable by-products) which formed during
the hydrocracking reactions. The liquid product mixtures
obtained from the separator of the reactor system contained
water, hydrocarbons and oxygen containing compounds.
After the separation of water, we obtained the light (C5–
C9) hydrocarbons (gasoline boiling range) from the organic
fraction by distillation up to 180◦C.

The residue of atmospheric distillation was separated
by vacuum distillation into the intermediate product (gas
oil boiling range fraction, mainly C11–C19 hydrocarbons)
and the residue. The residue contained the unconverted
triglycerides, the evolved and unconverted diglycerides and
monoglycerides, furthermore fatty acids and esters, which
evolved as intermediate products or were originally in the
feedstock. After the isomerization of the normal paraffin
rich intermediate product the bio gas oil and some light
hydrocarbons were obtained.

2.3. Analytical Methods and Calculation Methods. The prop-
erties of the lard feedstock, the hydrogenated intermediate
products and the target products were measured according
to standard methods (see Table 1).

The composition of the organic product mixtures,
obtained from the catalytic conversion of triglycerides was
determined by high temperature gas chromatograph (Shi-
madzu 2010 GC) at the following measurement parame-
ters:

(i) Zebron DB-1HT (30 m× 0.32 mm× 0.1 μm) column,

(ii) PTV (Programmed Temperature Vaporization)
injector (temperature program: 100◦C → 400◦C,
30◦C/min heating rate, then 18 min at 400◦C),

(iii) oven temperature program: 40◦C (4 min) → 240◦C,
15◦C/min heating rate → 400◦C 8◦C/min heating
rate, then 11 min at 400◦C,

(iv) FID (flame ionization) detector (400◦C),

(v) carrier gas: H2 (5.0), pressure 58.0 kPa, column flow
4.00 cm3/min.

The nickel and molybdenum content of the hydro-
genation catalyst was measured with ICP-OES method.
The SAPO-11 catalysts were prepared as described and
characterized according to HU 225 912 patent [6]. The
platinum content of the isomerization catalyst was deter-
mined according to UOP-274 standard. The dispersity of
the platinum was determined by H2 chemisorption [7].
The surface properties of the catalyst were investigated
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Table 1: The main properties and fatty acid composition of the applied waste lard.

Properties Value Standard methods

Kinematic viscosity, 40◦C, mm2/s 39.53 EN ISO 3104:1996

Density (40◦C), g/cm3 0.9385 EN ISO 3675: 2000

Sulphur content, mg/kg 6 EN ISO 20846:2004

Acid number, mg KOH/g 0.63 EN 14104:2004

Iodine number, g I2/100 g 78 EN 14111:2004

Carbon residue, % 0.11 EN ISO 10370:1997

Flash point, ◦C >250 EN ISO 2719:2003

Cold filter plugging point, ◦C 37 EN 116:1999

Fatty acid composition∗, %

C14 : 0 1.04

EN ISO 5509:2000;
EN 14103:2004

C16 : 0 20.47

C16 : 1 7.65

C18 : 0 12.83

C18 : 1 32.99

C18 : 2 17.32

C18 : 3 6.70

C20 : x 0.86

Other 0.14

Calculated oxygen content, % 11.2
∗

The first number represents the number of carbon atoms and the second means the number of double bonds in the molecule.

Hydrogenation
(NiMo/Al2O3)

Pre-treated
waste lard

Gas phase

hydrocarbons, H2S, NH3)

Water phase

Separation
(atmospheric and

vacuum distillation)

Paraffin rich
intermediate productOrganic

phase Isomerisation
(0.5% Pt/SAPO-11)

Light hydrocarbons

Vacuum residue
(triglycerides, diglycerides,

monoglycerides, esters,
carboxyl acids, etc.)

Bio gas oil

Light hydrocarbons

HydrogenHydrogen

(H2, CO, CO2, C3H8, C1–C4 C11)(C5– C11)(H2, C1–

Figure 1: The scheme of the laboratory scale production of the bio gas oil.

by ASAP 2000 (Micromeritics) equipment (pore diameter
in the range of 1.7–300 nm) and by mercury penetration
method with CARLO-ERBA equipment (pore diameter in
the range of 7.5–15000 nm). The surface area of the catalysts
was calculated by using BET-plots. The acidity of the catalysts
was determined with temperature programmed desorption
of ammonia (TPD-NH3).

We calculated the conversion of triglycerides by the
following equation:

Conversion = Xfeedstock − Xproducts

Xfeedstock
∗ 100, (1)

where Xfeedstock: triglyceride content of the feedstock and
Xproducts: triglyceride content of the products.

3. Results and Discussion

3.1. The Catalytic Hydrogenation of the Waste Lard. The
range of the applied process parameters—based on our pre-
experimental results—was the following: temperature 280–
380◦C, total pressure 20–80 bar, liquid hourly space velocity
(LHSV) = 0.75–3.0 h−1 and H2/waste lard volume ratio =
600 Nm3/m3.

3.1.1. Conversions and Product Yields. The conversion of
triglycerides increased significantly by increasing the severity
of the process parameters, namely by increasing the temper-
ature and the pressure furthermore by decreasing the LHSV
(Figures 2 and 3). At every investigated value of pressure, at
least 1.5 h−1 and lower LHSV and at least 320◦C or higher
temperature was necessary to reach at least 95% conversion
of the triglycerides at the 600 Nm3/m3 H2/lard volume ratio,



4 Journal of Biomedicine and Biotechnology

70

75

80

85

90

95

100

260 280 300 320 340 360 380 400

Temperature (◦C)

C
on

ve
rs

io
n

(%
)

Figure 2: Conversion of triglycerides as a function of the temper-
ature and the pressure; where: �-20 bar, �-40 bar, Δ-60 bar and
�-80 bar pressure (LHSV = 1.0 h−1, H2/waste lard volume ratio =
600 Nm3/m3).
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Figure 3: Conversion of triglycerides as a function of the temper-
ature and the LHSV; where: �-0.75 h−1, Δ-1.0 h−1, �-1.5 h−1, �-
2.0 h−1 and �-3.0 h−1 of LHSV (P = 80 bar, H2/waste lard volume
ratio = 600 Nm3/m3).

which was found to be favourable according to our pre-
experiments.

The yield of the intermediate normal paraffin-rich
product (INPRP) in the gas oil boiling range was significantly
influenced by the temperature, the pressure and the LHSV
(Figures 4 and 5). At every value of pressure and LHSV, up
to 320◦C, the yield of the intermediate product increased by
increasing the temperature in accordance with the increas-
ing rate of triglyceride conversion. But when the rate of
conversion exceeded 95%–98%, then the further increase of
temperature caused lower amount of plus paraffins than the
amount of hydrocarbon which was decomposed by cracking;
consequently, the yield started to decrease. So the yield of
INPRP changed according to a maximum curve as a function
of the temperature at LHSV of 0.75 and 1.0 h−1, because
in these cases the contact time of the hydrocarbons and
oxygenic compounds generated from the triglycerides was
too long; consequently, by increasing the temperature above
320◦C (LHSV = 0.75 h−1) and 360◦C (LHSV = 1.0 h−1), the
yield decreased because of the increasing rate of cracking.
The low yield of INPRP at LHSV of 1.5–3.0 h−1 was caused
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Figure 4: Yield of the INPRP as a function of the temperature
and the LHSV; where: �-0.75 h−1, Δ-1.0 h−1, �-1.5 h−1, �-2.0 h−1

and �-3.0 h−1 of LHSV (P = 80 bar, H2/waste lard volume ratio =
600 Nm3/m3).
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Figure 5: Yield of the INPRP as a function of the temperature
and the pressure; where: �-20 bar, Δ-40 bar, �-60 bar and �-
80 bar pressure (LHSV = 1.0 h−1, H2/waste lard volume ratio =
600 Nm3/m3).

unequivocally by the low conversion of the triglycerides, as
these molecules could not contact long enough with the
active sites of the catalyst. In the investigated parameter
range at constant temperature, the higher the pressure was
the higher yield of INPRP was reached in accordance with
the increasing rate of triglyceride conversion (in spite of the
fact that the higher the pressure was, the higher the rate of
hydrocracking reactions was, as well). (It should be high-
lighted that in case of the investigated waste lard having the
mentioned composition (Table 1), the maximum yield of the
gas oil boiling range intermediate product (mainly C11–C19

paraffins) could be 85.7% supposing only HDO reaction, and
80.8% supposing only decarboxylation/decarbonylation.) As
at the favourable conversion (>95%), the ratio of the
hydrocracking of the hydrocarbons was significant (>3%);
so at the most favourable yield of INPRP was 80.5%. This
approaches well the theoretical values. By increasing the
temperature and the INPRP increasing effect of the pressure
was lower and lower.

To sum it up, we concluded that favourable yields of
intermediate product were obtained at the following process
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Table 2: Composition of the gas product (T = 360◦C, P = 80 bar,
LHSV = 1.0 h−1, H2/feedstock ratio = 600 Nm3/m3).

Component
Value

Mass % Volume %

Hydrogen 23.94 85.86

Hydrogen-sulphide 0.45 0.09

Carbon-dioxide 28.39 4.66

Carbon-monoxide 7.18 1.85

Methane 1.30 0.59

Ethane 0.39 0.09

Propane 26.82 4.39

Iso-butane 0.11 0.01

Butane 0.17 0.02

Others 11.24 2.43

parameters: T = 320–360◦C, P = 40–80 bar, LHSV = 1.0–
1.5 h−1 H2/feedstock ratio = 600 Nm3/m3. Application of the
LHSV of 0.75 h−1 is not only unadvised by the univocal
decrease of the yield, but by the loss of plant capacity by 25%
and 50% regarding the same rector capacity.

The INPRP contained olefins in a low concentration
(iodine number between 1.0 and 10.0) at low temperature
(≤320◦C), low hydrogen pressure (≤40 bar) and high LHSV
(≥1.5 h−1), where the saturation of the olefinic double bonds
was insufficient, but at the favourable process parameters, it
was almost complete (iodine number < 1.0).

3.1.2. Oxygen Removing Reaction Paths and Their Ratio. Dur-
ing the conversion of triglycerides to the paraffin rich mix-
ture, the saturation of double bonds, heteroatom removing
(oxygen and other heteroatoms), isomerization and different
side-reactions took place [8–11]. The oxygen removal could
happen by different reactions. In case of the hydrodeoxygena-
tion (HDO) beside the normal paraffins having the same
carbon number than that of the carboxyl acids composing
the triglycerides only propane and water generate, while
during the decarboxylation and decarbonylation the carbon
number of the paraffins shortens by one and carbon-dioxide
and carbon-monoxide also generate, respectively, beside the
propane and water [12–15]. For example, Table 2 contains
the composition of the gas products at 360◦C, 80 bar, LHSV =
1.0 h−1 and H2/feedstock ratio = 600 Nm3/m3.

According to the composition of the INPRP, the ratio
of the HDO to decarboxylation/decarbonylation reactions
could be determined. But to determine the ratio of decar-
boxylation to decarbonylation the exact quantity of the CO,
CO2 and water has to be known, but that is not possible in
the applied catalytic system, because of other side reactions
(e.g., water-gas shift reaction, cracking of the hydrocarbons).
The main part (>99.5%) of the carbon number of the fatty
acids of the triglycerids of the used lard (feedstock) was an
even number—similar to most of the natural triglycerides—
wherein 98.0% was C16 and C18 carboxyl acids (Table 1), so
from the ratio of the generated C15 and C16 furthermore the
C17 and C18 paraffins, the ratio of the hydrodeoxygenation
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Figure 6: The concentration of the C15–C18 paraffins of the
intermediate product; where: �-C15, �-C16, Δ-C17 and �-C18

fraction (broken line: P = 20 bar, continuous line: P = 80 bar)
(LHSV = 1.0 h−1, H2/feedstock volume ratio = 600 Nm3/m3).

(HDO) and the decarboxylation/decarbonylation reactions
was determined. At 600 Nm3/m3 H2/waste lard ratio and
LHSV of 1.0 h−1 which were found to be favourable fur-
thermore in the whole investigated pressure range (see the
corner points in Figure 6), the degree of the HDO and the
other two reactions was almost the same (as C15 and C16

furthermore C17 and C18 paraffins were generated in similar
quantity) at around 300◦C. By increasing the temperature
(320–360◦C), the decarboxylation/decarbonylation reactions
became dominant (the concentration of the odd carbon
number paraffins was higher than that of the even carbon
number paraffins).

The ratio of the hydrodeoxygenation (HDO) and decar-
boxylation/decarbonylation is presented as a function of
the C18 and C17 paraffins (Figure 7). The ratio of the
C18/C17 paraffins decreased significantly by increasing the
temperature and a little by decreasing the pressure over the
applied catalyst in the investigated parameter range. This
means that the ratio of decarboxylation/decarbonylation
increased compared to the hydrodeoxygenation. Similar
tendencies were found in case of the change of the ratio of
the C15 and C16 paraffins.

To determine the stability of the used catalyst and to pro-
duce a sufficient quantity of intermediate normal paraffin-
rich product (INPRP) as the feedstock of the second stage of
the bio gas oil production (isomerization) a 400-hour-long
test was carried out at the favourable, expediently chosen
parameter combination (T = 360◦C, P = 60 bar; LHSV =
1.0 h−1, H2/waste lard volume ratio = 600 Nm3/m3). Accord-
ing to the results (Figure 8) the activity and the selectivity
of the catalyst—after the initial decrease of activity—were
unchanged during the experiment.

3.1.3. The Service Properties of the Intermediate Product.
The cetane number of the INPRP produced from waste
lard over sulphided NiMo/Al2O3 catalyst was outstanding
(101 unit) as it contained C15–C18 paraffins in the highest
degree (>95%) which have very high cetane number (100–
105). Regarding the cold flow properties, the favourable
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Figure 7: The ratio of C18/C17 paraffins as a function of the
temperature and the pressure; where: �-20 bar,�-40 bar, Δ-60 bar
and�-80 bar pressure (LHSV = 1.0 h−1, H2/waste lard volume ratio
= 600 Nm3/m3).

fatty acid composition of this waste lard has to be high-
lighted. While the earlier investigated vegetable oils [13–15]
contain mainly C18 or longer fatty acids (90%–95%), our
lard contained 28.12% C16 fatty acids. Consequently, our
products containing about 28% of C15 and C16 paraffins
(of which freezing points are +10◦C and +15◦C, resp.)
having more favourable CFPP (+19◦C) than that of the
product mixture (+23◦C) [16] containing mainly (>90%)
C17 and C18 paraffins (freezing point +22◦C and +28◦C)
produced over the same catalyst and at the same process
parameters. Furthermore, as the isomers of the shorter
carbon number paraffins have a lower freezing point than
that of the longer ones, so by the isomerization of C15

and C16 paraffins a more favourable product could be
obtained.

3.2. The Isomerization of the Normal Paraffin-Rich Inter-
mediate Product. The catalytic isomerisation of the crude
oil origin mixture having relatively high normal paraffin
content (the other is cyclo and aromatic hydrocarbons) for
improving the cold flow properties was carried out over
noble metal containing catalysts [17–21]. Such catalysts with
high isomerization activity are for example the different
noble metal containing zeolites (ZSM-5, ZSM-22, ZSM-23),
silica-alumina-phosphates (SAPO-11, SAPO-31, SAPO-41)
and different mesoporous structures (MCM-41, Al-MCM-
41) [17, 22]. But there are only a few articles dealing
with the isomerisation of paraffin mixes of alternative
source with different composition (e.g., containing oxygenic
components) [4, 5, 16, 22].

During the isomerization experiment over Pt/SAPO-
11, we used a mixture with high normal paraffin content
produced from waste lard (Table 3). The composition of this
feedstock and the products were investigated by GC-FID
method using standard hydrocarbons. The feedstock was
produced during the mentioned 400-hour-long experiment
at process parameters (T = 360◦C, P = 60 bar, LHSV =
1.0 h−1, H2/lard ratio 600 Nm3/m3) that were found to
be favourable for the hydro-deoxygenation of waste lard,

Table 3: Main properties of the high n-paraffin containing
feedstock.

Properties Value

Density at 40◦C, g/cm3 0.7689

Cold filter plugging point, ◦C 21

Cetane number 101

Sulphur content, mg/kg 3.2

Nitrogen content, mg/kg 2.1

Paraffin content, %

i-C15 0.13

n-C15 15.59

i-C16 0.10

n-C16 11.83

i-C17 0.37

n-C17 39.61

i-C18 0.28

n-C18 29.97

Total isoparaffin concentration % 0.92

Concentration of the oxygen
containing compounds, %

0.43

Aromatic and cycloparaffin content, % 0.3

because the n-paraffin yield was high and the amount of
the partially converted oxygen containing components
(carboxylic-acids, esters, etc.) was very low in the product
mixture. That was because the chosen Pt/SAPO-11 catalyst
was found to be highly selective [5, 18–21] with great
thermal stability [23]; however, it is highly sensitive for
hydrolysis [16, 24]. According to the abovementioned, the
investigation of the applicability of that is necessary in case
of the feedstock produced from waste lard different from the
already investigated ones.

3.2.1. Yields of the Products. During our isomerisation exper-
iment, we applied an H2/intermediate product volume ratio
found to be favourable during our previous experiments
[16, 22], and we only examined the effects of the change
of temperature, LHSV, and pressure which essentially affect
the isomerization reactions. Consequently, the range of the
applied process parameters was the following: temperature
320◦C–380◦C, total pressure 30–60 bar, liquid hourly space
velocity (LHSV) = 1.0–3.0 h−1 and H2/hydrocarbon volume
ratio = 400 Nm3/m3.

The yield of the product mixtures decreased with increas-
ing the temperature and with decreasing the pressure and
the LHSV (Figures 9 and 10). The reason of this effect was
that during the isomerization, the carbenium ions which
have lower stability than the saturated hydrocarbons forming
on the surface of the catalyst were cracked more easily at
higher temperatures and at lower partial pressure caused by
decreasing the hydrogen pressure, furthermore because of
the lower LHSV and the longer contact time of the molecules
on the surface of the catalyst. At the applied experimental
process parameters, the yield of the products—expect for one
case—exceeded 90%.
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Figure 8: The change of the yield of the INPRP and the C17/C18 ratio as a function of time; where: Δ-yield of intermediate product and
�-C17/C18 ratio (T = 360◦C, P = 60 bar, LHSV = 1.0 h−1, H2/waste lard volume ratio = 600 Nm3/m3).
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Figure 9: Product yields as a function of temperature and LHSV;
where: �-1.0 h−1, �-2.0 h−1 and Δ-3.0 h−1 of LHSV (P = 40 bar,
H2/hydrocarbon volume ratio = 400 Nm3/m3).
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Figure 10: Product yields as a function of temperature and
pressure; where �-320◦C, �-340◦C, �-360◦C and Δ-380◦C (LHSV
= 1.0 h−1, H2/ hydrocarbon volume ratio = 400 Nm3/m3).

3.2.2. The Composition of the Products. The isoparaffin con-
tent of the products significantly increased above 330◦C with
the increasing temperature, namely, the rate of isomerization
increased. The degree of the increase in the isoparaffin yield
at 360◦C–370◦C started to decrease, partly because of the
closer approaching to the thermodynamic equilibrium, and
partly because of the closer approach of the equilibrium
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Figure 11: The isoparaffin content of the products as a function of
temperature and LHSV; where: �-1.0 h−1, �-2.0 h−1 and�-3.0 h−1

of LHSV (P = 40 bar, H2/hydrocarbon volume ratio = 400 Nm3/m3).

concentrations and thermodynamic inhibition (the isomer-
ization reactions are exoterm reactions) furthermore partly
because of the intensifying cracking reactions. This tendency
rose with decreasing the LHSV (Figure 11) as the contact
time increased which called forth a higher rate of the cracking
reactions.

Out of the obtained isomers, up to 360◦C, the prod-
uct contained mainly (85%–90%) monobranched (mono-
methyl) isomers of which freezing point is substantially lower
(e.g., n-octadecane: +28◦C; 2-methyl-heptadecane: +5,5◦C,
5-methyl-tetradecane: −34,4◦C) than that of the n-paraffins
of the same carbon number and their cetane number is lower
by only 20–25 unit than that of equivalent n-paraffins [25].
These latter values are at least 15–35 units above the 51 unit
required by the European standard (EN 590:2009). However,
above this process temperature multibranched isomers were
also produced with increasing rate (15%–35%) of which cold
flow properties are more favourable, but their cetane number
is significantly lower [25]. So it is practical to determine a
favourable compromise between the cold flow properties and
the cetane number.

In the investigated range of process parameters, the de-
creasing pressure increased the rate of isomerization till
340◦C. This occurred because by decreasing the partial
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Figure 12: Total isoparaffin content of the products as a function
of pressure, and temperature; where: �-320◦C, �-340◦C, �-360◦C
andΔ-380◦C (LHSV = 1.0 h−1, H2/ hydrocarbon volume ratio = 400
Nm3/m3).

pressure of the hydrogen, the first step of isomerization,
namely, the dehydrogenation of hydrocarbons to olefins
took place more easily on the active sites of the platinum
catalyst. However, at 360◦C the isoparaffin content reached
a maximum as a function of the pressure, while at 380◦C the
decrease in the pressure caused a decrease in the isomer con-
tent (Figure 12). The reason of that was that the isoparaffin
content was lowered by the intensive hydrocracking reactions
at high temperatures, which rate was confined by the increase
of the partial pressure of the hydrogen, namely, the rate of the
hydrogenation of the labile carbenium ions generating on the
surface of the catalyst increased.

3.2.3. The Main Properties of the Products. The cold filter
plugging point (CFPP) is a very important property for
diesel gas oils, because the paraffin crystals settled out with
the decreasing temperature could cause plugging in the
fuel filter and this could cause unserviceability in the fuel
supply system. The CFPP values of the products decreased
by increasing the temperature and by decreasing the pressure
and the LHSV (Figure 13). The cause of this effect was mainly
the increase in the isoparaffin content of the product, because
their freezing-point is significantly lower than that of the n-
paraffins. Besides the abovementioned, the lower freezing-
point light hydrocarbons forming in the hydrocracking
reactions also helped to improve the CFPP values of the
products.

The increasing temperature (in the investigated range)
positively affected the CFPP values (unequivocally lowering
it). The reason of this was that besides the mono-branched
isomers, the concentration of the multi-branched isomers
also increased, because at higher temperatures not only the
reaction rate of the forming of the mono-branched isomers
increased, but in consecutive reactions there is a potential
of the forming of multi-branched isomers, as well. These
components have a positive effect on the cold flow properties;
however, their other important property, the cetane number,
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Figure 13: CFFP values of the products as a function of tempera-
ture, pressure and LHSV.

is by far more unfavourable. Therefore the cetane number of
these products decreased compared to the normal paraffin
mixture (101 unit), because of the increasingly produced
multi-branched isomers. However, the products obtained
at the favourable process parameters (T = 360–370◦C, P =
50 bar, LHSV = 1.0 h−1, H2/intermediate product volume
ratio = 400 Nm3/m3) determined by compromises (yield
of organic liquid phase, ratio of multi-branched i-paraffins,
location of the branches) had cetane number between 76–88,
which greatly exceeds the 51 specified in the valid standard,
while their CFPP values were between −5 and −15◦C.

4. Conclusions

Based on our experimental results it was concluded that
on the expediently chosen sulphided NiMo/Al2O3 catalyst
and at the favourable process parameters (T = 320–360◦C,
P = 40–80 bar, LHSV = 0.75–1.5 h−1, H2/waste lard volume
ratio = 600 Nm3/m3) the INPRP having gas oil boiling range
contained merely paraffins (>99.5%) which were mainly C15,
C16, C17 and C18 paraffins, namely on the applied catalyst
both the HDO and the decarboxylation/decarbonylation
reactions took place, as well. The yields of the intermediate
product were high (73.9%–79.7%), which approaches
well the theoretical values that could be reached in
case of the HDO and decarboxylation/decarbonylation
reactions; 80.8 and 85.7, resp.). At 300◦C, the two main
reaction pathways took place at a nearly equivalent
degree; by increasing the temperature (320–360◦C) the
decarboxylation/decarbonylation reactions came to the
front. The cold flow properties (e.g., cold filter plugging
point) of the intermediate products were unfavourable
with 19◦C, which was decreased to between −5 and −15 by
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the isomerisation over 0.5% Pt/SAPO-11 (T = 360–370◦C,
P = 50 bar, LHSV = 1.0 h−1, H2/intermediate product volume
ratio = 400 Nm3/m3). The obtained products are excellent
waste-origin blending components for diesel gas oils as their
cetane number is high (76–88), and because these products
are also aromatic-free, burn cleanly, and are environmentally
friendly.
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