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Voice biometrics has a long history in biosecurity applications such as verification and identification based on characteristics of the
human voice. The other application called voice classification which has its important role in grouping unlabelled voice samples,
however, has not been widely studied in research. Lately voice classification is found useful in phone monitoring, classifying
speakers’ gender, ethnicity and emotion states, and so forth. In this paper, a collection of computational algorithms are proposed
to support voice classification; the algorithms are a combination of hierarchical clustering, dynamic time wrap transform, discrete
wavelet transform, and decision tree. The proposed algorithms are relatively more transparent and interpretable than the existing
ones, though many techniques such as Artificial Neural Networks, Support Vector Machine, and Hidden Markov Model (which
inherently function like a black box) have been applied for voice verification and voice identification. Two datasets, one that is
generated synthetically and the other one empirically collected from past voice recognition experiment, are used to verify and

demonstrate the effectiveness of our proposed voice classification algorithm.

1. Introduction

Every human voice is unique [1] as it was found to be quan-
titatively composed of components called phonemes that
have a pitch, cadence, and inflection. Hence human voice
has been used as one of the popular biometrics in biosecurity
applications; it can be used to authenticate a person’s identity
(identification) and control access (authentication and verifi-
cation) to a protected resource. Unlike other biological traits,
like fingerprints and iris scans, voiceprints are relatively
vulnerable to replay attack. Much of the research works have
been devoted to finding improved solutions in the hope
of strengthening voiceprints for meeting high demands of
security applications. Some popular techniques include mul-
timodal authentication that fused audio, visual, and other
forms of biometrics into one [2]. Since then, voice biometrics
has been largely geared towards the security directions of
biometric identification and biometric verification. Voice
biometrics is used either alone or in combination with other
biometrics. In voice verification (VV), a voiceprint of a

speaker who claims to be who he is, is presented to the bio-
metrics system for a one-to-one checking of the reference
voiceprint which is stored in a database. Once he is succes-
sfully verified with a match, subsequent access rights would
be granted to him. The other type of checking called voice
identification (VI) relies on a one-to-many checking for
identifying a previously unknown voiceprint. The unlabelled
voiceprint under question is searching through the whole
database with the aim of finding a match of an already known
sample.

We can see that both VV and VI require a priori condi-
tion that a set of voiceprints must have already been known
for the matching of new samples to proceed. This is akin
to database query or supervised learning where preknown
samples must be initially used to train up a decision model,
so testing and matching of new sample can follow. A generic
example is illustrated in Figure 1. What if in a scenario
where a handful of unknown voiceprints are collected, but
we wish to obtain some information about them? Such sce-
narios may include but not limited to security surveillance
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FiGure 1: Workings of voice verification and voice identification systems.
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FIGURE 2: Example that shows a voice-biometric system is compromised, and a voiceprint is counterfeited.

problems [3] where a list of voice traces are captured from a
monitored area, how many unique speakers there are, their
ages, and genders, and from their speech accents which eth-
nic backgrounds these people belong to; customer-service
applications where callers will be automatically classified
from their tones to categories of their needs and emotions.
It was only until recently, voice classification (VC) that
attempts to determine if a speaker should be classified to
a particular characteristic group rather than to a particular
individual has gained popularity. VC can help complement
the security of VV and VI systems too. In Figure 2 an example
of a voice biometric system is being compromised; through
hacking, the content of a voiceprint B is modified to that
of another voiceprint (let us say A) that has a higher access
authority. That can be done by replay attack or injecting vocal
features of A into B. Because the database of the voiceprints
just like an encrypted list of passwords in a file system is
accessed individually, each voiceprint is protected indepen-
dently; allowing the existence of two same voiceprints goes
undetected. So an imposter with B’ can cheat gaining a
restricted access right by matching B’ to A in a VI system. VC
could be used to prevent this fraud by checking how many
unique items there are in different groups. If extra voiceprints
suddenly emerge or have gone missing from a group, the
integrities of the voiceprints must have changed.

For developing a VC system, several approaches have
been studied, such as Artificial Neural Networks (ANN),
Support Vector Machines (SVMs), Hidden Markov Models
(HMMs) and Gaussian Mixture Models (GMMs). They
have been used heavily for training up a model with pre-

defined voice samples for voice recognition. Table 1 shows
a summary of the techniques by which majority of research
works used. These techniques generally function like a black
box; for instance, the weights for mapping the relations of
the inputs to the outputs are in plain numeric, the kernel
parameters are used for low-level computation, and so forth.
They require a full set of known samples to be available
before they can be tuned up for actual use. In this paper we
propose a fundamentally new approach by using unsuper-
vised learning—clustering, where priori labeled samples are
not needed—the characteristic groupings will be dedicated
by the samples themselves. Voiceprints who share similar
features will be placed into distinctive groups that represent
some labels about the speakers. Subsequently a decision tree
(classifier) can be built after studying and confirming the
characteristic groups. The classifier will then be used for clas-
sifying new samples into the groups. The advantage of deci-
sion tree is that easily comprehensible rules in terms of IF-
THEN-ELSE conditions can be generated when the decision
tree is constructed. That gives an edge over the aforemen-
tioned black-box types of classification algorithms. Using the
features of a human voice as a voice classifier for classifying
speakers has not been researched a great extent although it
has a large implication in voice biometrics applications. To
the best of the author’s knowledge, nobody has applied such
techniques of VC before. This is the research focus of this
paper; a collection of algorithms are introduced for support-
ing grouping unlabeled voiceprints and then subsequently
classifying new incoming voiceprints. They can be used for
checking the integrity of the groups of voiceprints for solving
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TasLE 1: Classification algorithms where majority of research works
on voice classification used.

ANN HMM GMM SVM

Kanak et al. [8]
Nefian et al. [9]
Fox et al. [10, 11]
Bengio [12, 13]
Chaudhari et al. [14] v

Aleksic and
katsaggelos [15]

Wark et al. [16-18] v
Jourlin et al. [19] v
Hazen et al. [20] v

Sanderson and
Paliwal [21]

Ben-Yacoub et al. [22] v

Chibelushi et al. [23] v

Luettin et al. [24] v v

Moreno and Ho [25] v

SNENENEN

AN

the security problem that is illustrated in Figure 2. The
contribution of this paper is an alternative computation plat-
form for realizing voice classification; the algorithms are rel-
atively simpler than the existing ones and fellow researchers
that can easily adopt them for implementing VC systems.

2. Our Proposed Model

The model that we proposed aims at providing a generic
voice classification framework under which a collection of
algorithms such as hierarchical time series clustering, dy-
namic time wrap transform, discrete wavelet transform and
decision tree would have to work together. The prominent
advantage is its generic property that can be applied across a
variety of applications that capitalize on voice classification.
While the inputs are previously unknown voices, the voices
would be automatically grouped together according to their
own characteristics. Each group or cluster being formed as
an output represents one pronounced characteristic which
is shared in common by all the voice samples inside (total
= n). Our model assumes that the collected voices in
waveforms would be recorded in the format of time series.
Each time series is a vector of numeric data points that
can be represented by a set of m attribute values, such as a
time series s = [x1,X2,...,%n]. In a collected dataset whose
speakers’ identities are not known, a sufficient amount of
voice samples are gathered from each speaker and these
samples can then be clustered by using hierarchical time
series clustering algorithm. Clustering is done based on the
characteristics of the voice samples themselves. At this point
no classification area was sought specifically, for instance
gender or ethnic background, as it was preferred to allow the
results to decide the characteristics that lead to a particular
clustering group.

As shown in Figure 3, an example scenario by the pro-
posed model is a surveillance eavesdropper that collects from
a secret meeting a total of n voice traces. The voice traces
may be spoken by more than one speaker, one trace per
speaker at a time, and each voice trace can be encoded by m
coefficient attributes regardless of how long the conversation
is. The voices are assumed to be undistorted and not inter-
mixed. The voices that are in the form of time series can
be submitted for hierarchical clustering for self-grouping.
Hierarchical clustering instead of others is applied because it
gives a layered structure of groupings which we do not know
in advance in different resolutions. After the clustering, not
only we know how the speakers whose voices are distinctively
grouped, the number of unique voices (hence the number of
speakers) can also be identified. In essence, it may be possible
to infer from the groupings that how many speakers there are
in the meeting, what characteristics they have in each group.
However, it requires further verification and probably extra
information to infer detailed assertions such as gender, age,
and the emotions of the speech.

With the groupings available, the voice analysts can
assign meaningful labels on the groups. A voice classifier
can be developed after the unlabeled voice traces labeled
with the classes derived from the characteristics of the
groups. So that in our model, unsupervised learning by
clustering comes first, and then supervised learning for
building the decision tree follows. The voice traces in the
form of labeled time series can be used as training data to
build a classifier. However, in our experiment, we opt to
transform the voice traces from time domain to frequency
domain, as our experiment results show that the accuracy
performance of the classifier can be significantly improved.
When the classifier is ready, future new voice samples can
be automatically classified into the characteristic groups.
If necessary, the process of hierarchical clustering can be
applied on the new samples again in case new characteristics
from the voice samples may be discovered.

3. Design of the Hierarchical Time Series
Clustering Algorithm

The goal of time series clustering is to identify the speaker
category to which a voice belongs given the multivariate
time series points of each voice trace. In our experiments
the synthetic control wave dataset and empirical datasets
from UCI data archive were used [4]. The wave has 60
coefficients and the live Japanese vowel data each wave is
characterized by 12 coefficients. The time series data are
grouped together based on similarity—similar waves cling
together to form a cluster, and dissimilar waves tend to
stay far apart in separate clusters. Iteratively the time series
clustering algorithm relocate the data points one step at
a time to ensure that the data points inside the same
cluster have the minimum intradissimilarity and data points
across different clusters have the maximum inter-similarity.
The similarity is defined as the multidimensional distance
between two data points whose multiple attributes are
measured as how close they are in values. Two variables exist
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FIGURE 5: Visualization of time series plots that represent the voiceprints by three different speakers who uttered the same Japanese vowels.

for time series clustering algorithm, one is for choosing the
similarity function for measuring the distance between each
pair of data points, and the other is the overall operation that
converge from an initial assignment of data points to clusters
to a converged or optimal assignment of data points to clus-
ters.

Many similarity measures are available such as Man-
hattan, Euclidean and Minkowski just to name a few. In
our experiments, a range of popular similarity functions
are compared in performance in order to observe which
one performs the best. Table 2 shows a list of performance
results in the percentage of correctly clustered groups by
using various similarity functions. Because the nature of the
data points that we are working with is time series, we choose
to use Dynamic Time Warping function (DTW) as a distance
measure that finds optimal alignment between two sequences
of time series data points. DTW a pairwise comparison of
the feature (or attribute) vectors in each time series. It finds
an optimal match between two sequences that allows for
stretched or compressed sections of the sequences. In other
words it allows some flexibility for matching two sequences
that may vary slightly in speed or time. The sequences are
“warped” nonlinearly in the time dimension to determine a
measure of their similarity independent of certain nonlinear
variations in the time dimension. It is popular in the
application of signal processing where two signal patterns
are to be matched in similarity. Particularly suitable DTW is
for matching sequences that may have missing information
or various lengths, on condition that the sequences are long
enough for matching. In theory, DTW is most suitable for
voice wave patterns because exact matching for such patterns

often may not occur, and voice wave patterns may vary
slightly in time domain. A comparison will be given in our
experiment to verify this hypothesis. The pseudo code of the
DTW algorithm is given in Algorithm 1.

For clustering time series, likewise many variants of
algorithm are applicable. They range from simple ones like
K-means and K-medoids, to sophisticated algorithms like
DBSCAN, density-based clustering for clustering structures.
In our case, hierarchical clustering is desirable because it
allows the time series which are voice waves to be grouped in
different levels automatically that helps a user to explore the
structure of the groupings from coarse to refined. This is par-
ticularly useful when the grouping structure is not known in
advance. Like most of the clustering algorithms which oper-
ate by unsupervised learning, hierarchical clustering does
not require the number of clusters to be predefined at the
beginning; it allows the data to decide the suitable number
of groups by themselves. In our experiment, agglomerative
mode which is also known as the “bottom up” approach is
used. Initially each observation starts in its own cluster, and
pairs of clusters are merged as one moves up the hierarchy.
For deciding which clusters should be merged, a similarity
function is used between sets of observations. A variety of
similarity functions are used here for experiments, they are
Canberra, DTW, Euclidean, Manhattan, and Minkowski
from power 1 to 10. The clustering algorithm constructs the
hierarchy from the individual time series by progressively
merging clusters up. The basic process of hierarchical clus-
tering comprises of the following steps, given n time
series, and a two dimensional n X n similarity matrix
S.
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DTW(v,, v2) {
//where the vectors v,=(aj,...,a,), v,=(b;,...,by,) are the time series with n and m
time points
Let a two dimensional data matrix S be the store of similarity measures
such that S[0,...,n, O0,...,m], and i, j, are loop index, cost is an integer.
// initialize the data matrix
S[0, 0]:= 0
FOR i := 1 to m DO LOOP
S[0, i]:= o
END
FOR i := 1 to n DO LOOP
S[i, 0]:= o
END
// Using pairwise method, incrementally fill in the similarity matrix
with the differences of the two time series
FOR i := 1 to n DO LOOP
FOR j := 1 to m DO LOOP
// function to measure the distance between the two points
cost := d(vi[i], va2[j])
S[i, j] := cost + MIN(S[i-1, j], // increment
S[i, j-—-1], // decrement
S[i-1, j—1]) // match
END
END
Return S[n, m]
}
ArcoriTHM 1: Pseudo code of dynamic time wrap algorithm.
TABLE 2: Percentage of correctly clustered groups in various similarity functions.
Canberra DTW Euclidean Manhattan Minkowski Minkow. 2 Minkow. 3
86.67 91.67 63.33 63.33 63.33 63.33 66.67
Minkow. 4 Minkow. 5 Minkow. 6 Minkow. 7 Minkow. 8 Minkow. 9 Minkow. 10
78.33 83.33 86.67 76.67 66.67 66.67 66.67

Step 1. Each time series is assigned to a cluster of its own,
with a total of # clusters for n time series. Initialize S with
similarity measures between the clusters which are the same
as the similarity measure between the time series that they
contain.

Step 2. The most similar pair of clusters are merged into a
single cluster. Retain the current level of clusters and move
up a level in the hierarchy.

Step 3. Calculate the new similarity measures in S between
the new clusters and each of the old clusters.

Step 4. Finally repeat Step 2 and Step 3 until all the time
series are clustered into a single cluster of size n. When this
happens, the highest level of the hierarchy is attained.

4. Experiments

4.1. Datasets. Two experiments are conducted for testing the
performance of the algorithm over a synthetic control dataset
[5] and a live dataset [6]. The synthetic control dataset

contains 600 examples of time series wave forms synthetically
generated by the process in Alcock and Manolopoulos
(1999) [7]. There are six different classes of control charts
that represent generally different shapes of time series waves.
Each wave is characterized by 60 coefficients in the form
of temporal data points, each different group (or class) has
100 samples and total there are 600 samples in the dataset.
Each class has an essentially unique bunch of waveforms that
are different from those of the other classes; hence, we can
assume the six classes represent six different types of speakers
who have different voiceprints from one another. For exam-
ple, it could be speakers who come from six different geo-
graphical locations therefore different ascents, speakers who
speak in six different emotions/languages, or speakers of six
distinctively different age groups. We generalize the names
of these characteristic groups as speech types.

The other empirical dataset contains 640 time series of
12 linear prediction cepstrum coefficients (LPCs) taken from
nine male speakers. The data was initially collected by a
Japanese research team for examining a newly developed
classifier for multidimensional curves (multidimensional
time series). The volunteered speakers uttered two Japanese
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FIGURE 6: (a) Six characteristic groups at the dendrogram by using DTW similarity function. (b) The corresponding row numbers of the

dataset at the dendrogram by using DTW similarity function.

vowels /ae /successively. For each utterance, a 12-degree
linear prediction analysis was applied to obtain a discrete-
time series with 12 LPC cepstrum coefficients. This means
that one utterance by a speaker forms a time series whose
length is in the range 7-29, and each point of a time series
is of 12 features (12 coefficients). Analysis parameters are as
follows: sampling rate = 10 kHz, frame length = 25.6 ms, and
shift length = 6.4 ms. So for the dataset, a set of consecutive
blocks represents a unique speaker. There are 30 blocks for
each speaker. Blocks 1-30 represent speaker 1, blocks 31-60
represent speaker 2, and so on up to speaker 9. A sample of
the time series taken from one of the voice trace is shown in
Figure 4.

Just as shown in our model in Figure 3, the raw voice
series are formatted and processed into records that have
exactly 12 coefficients (attributes). Hierarchical time series
clustering is applied over the processed data, so that each
data point that the clustering algorithm works with has
identical attributes and scales for similarities measures. By
plotting the processed data with x-axis as the first column

of a consecutive block against the rest of the series with
values within the range at the y-axis, we generate some
visualization of the time series points with distinguishable
shapes. Figure 5 shows three groups of voice series that are
taken from the dataset blocks from three different speakers.
Just by visual inspection, we could observe their differences
in appearance. The four voice utterances on the top row sit at
about three quarters on the x-axis, the cap of the data clusters
is dominated by small square dots (that just represent one
of the coefficient values of the block of the sample), then
followed by other shapes of dots and diamond shaped dots
at the bottom. Though each of the four clusters on the top
row is not exactly identical to each other, they roughly have
a similar structure. In the middle row, the voice visualization
by another speaker has the data near the middle of x-axis,
and the outlined structure has the cross-shaped markers on
the cap. And the visualization on the bottom row has an
obviously different formation than the other two. That shows
the voices of the three speakers are essentially different as by
their voice characteristics, and the differences can be visually



Journal of Biomedicine and Biotechnology

140 -

120

100 -

80 1

Height

60 1

40

20 -

140 ~

o\

<+
+ ¥ Y44 VO Vo

DistMatrix2
hclust (*, “average”)

(a)

Cluster dendrogram

120 A

100 4

80 -

Height

60

40 A

20 -

DistMatrix2
hclust (*, “average”)

(b)

FIGURE 7: (a) Six characteristic groups at the dendrogram by using Euclidean similarity function. (b) The corresponding row numbers of
the dataset at the dendrogram by using Euclidean similarity function.

spotted. However, computationally, the differences in voice
characteristics would have to be revealed by clustering
algorithm.

4.2. Results and Comparison. The hierarchical clustering
algorithm that we applied in the experiment is implemented
in R which is a free software environment for statistical
computing and graphics (http://www.r-project.org/). The
synthetic data are first sampled with a ratio of 10% for
producing the first iteration of data points and clusters.
DTW that serves as the similarity function is embedded
in the clustering algorithm for processing the time series
data till convergence. The experiment is repeated with other
similarity functions for comparison. A snapshot of the
resulting dendrogram by using DTW similarity function is
shown in Figure 6(a). It can be seen that the dendrogram by
DTW can effectively partition the time series into six distinct
groups that represent six speech types. The groupings, by
the DTW dendrogram as shown in Figure 6(b), can be used
to map over to the actual row number of the dataset that
has a total of 600 rows. In other words, the time series

that are indexed by the row numbers can be allocated to
the six groups by the dendrogram as a result of time series
clustering. In another counter example, similarity function
by Euclidean distance is applied in the experiment; we can
easily see that the groupings at the dendrogram as shown
in Figure 7(a) are not in perfect order at all. We can safely
remark that DTW is superior to Euclidean in the clustering.

From a bird-eye view, Figure 8 shows clearly on the effi-
cacy of the two similarity functions in hierarchical time series
clustering. DTW has generally less chaotic grouping than
Euclidean similarity function. Without showing the dendro-
gram for each of the other varieties of similarity functions, a
comparison table below shows the performance of grouping
of each technique. The performance is estimated by counting
the number of mislocated groups in the dendrogram by that
particular similarity function. DTW performs consistently
well, while Minkowski shows an optima when the power was
increasing from 1 to 10. This observation confirms that DTW
is suitable for time series clustering as time series do vary in
time domain more or less to certain extent.

The subsequent experiment is to build a decision tree
after the grouping has been formed by hierarchical time
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respectively.

series clustering. There are two choices of decision trees to
be recommended. RIPPER function is suggested to be run
for generated comprehensible rules that are in the form of
IF-THEN-ELSE. The rules specify a sequence of conditions
meeting which in order lead to a predefined class label. When
anew voiceprint is received, pass it over the rules by checking
its coefficient values that can determine which class label
the voiceprint fits in. The other decision tree algorithm is
the classical C5.0 or J48 with pruning mode on, in WEKA
which is an open source of machine learning algorithms for
solving data mining problems implemented in Java and open
sourced under the GPL (http://archive.ics.uci.edu/ml). The
time series data, however, are converted to their correspond-
ing frequency domain by Discrete Wavelet Transformation

(DWT). DWT applies the the Haar wavelet transform which
was invented by Kristian Sandberg from University of Col-
orado at Boulder, USA in year 2000. DWT in principle works
better than time series points in classification because DWT
can find where the energies are concentrated in the frequency
domain, and remarkable coefficients called Haar attributes
are well describing the characteristics of the time series.
A comparison of the original coefficients in time domain
and transformed coefficient in frequency domain can be
seen that wavelets after the transformation have sharper
and narrower statistical distribution than the time series
points, in Figure 9. DWT is implemented in the plug-in filter
in WEKA called “weka.filters.unsupervised.attribute.Wave-

»

let.
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FIGURE 9: (a) Attributes of the a voice time series; (b) transformed attributes called Haar coefficient of the wavelet representation of the time
series.

(b)

F1GURE 10: Snapshots of a decision tree as a result of building a classifier by (a) using the original time series, and (b) using the transformed
wavelets.
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TasLE 3: Classification accuracy by the two datasets.

Synthetic data ~ Empirical data
Z;g:; Wavelets 3;2: Wavelets

% correctly classified instances 91.67  95.00  55.20  64.13
Root relative sq. error 43.86  34.14 72.82  47.80
Coverage of cases 92.33  95.67 8154 62.28
Precision 0.958 0.99  0.5770 0.6445
Recall 0.910 0.95 0.5481 0.6185
F-score 0.933  0.969 0.5481 0.6308

The performance of the decision tree which is a voice
classifier is defined as a composite of accuracy measures.
They generally come in the following indices in data mining
as (1) the percentage of correctly classified instances, (2) the
root relative squared error, (3) coverage of cases, (4) overall
Precision; in a classification task, the precision for a class
is the number of true positives (i.e., the number of items
correctly labeled as belonging to the positive class) divided
by the total number of elements labeled as belonging to
the positive class (i.e., the sum of true positives and false
positives, which are items incorrectly labeled as belonging to
the class), (5) overall Recall which is defined as the number
of true positives divided by the total number of elements
that actually belong to the positive class (i.e., the sum of true
positives and false negatives, which are items which were not
labeled as belonging to the positive class but should have
been), and (6) F-score, which is a measure of a test’s accuracy
by considering both the precision and the recall of the test to
compute the score.

The performance comparison table is given in Table 3.
It compares mainly the classification accuracy by using a
J48 decision tree in WEKA of the time series version and
the Wavelet version of the two testing datasets. It can be
noticed that in general Wavelets have improvement over the
time series in terms of classification accuracy. The results of
the empirical data are generally lower in accuracy than the
synthetic control data probably due to its complex and less
uniform in the time series structures, plus the normalization
effect for limiting the time series into fixed length from its
original variable length. However, wavelet transformation
still shows its advantage in applying to the empirical data.
A sample of the decision tree generated from the experiment
is shown in Figure 10. By using the decision tree as classifier,
new voiceprint can fit into a specific class by traversing the
decision tree.

5. Conclusion

Using voice as a biometrics has its advantage because
it is a noninvasive nature process in human interaction,
and human voice has been proven to contain biological
traits that can uniquely identify an individual. In the past
many studies have focused on applying voice biometrics
into security-related applications such as user verification
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and biometric identification. In contrast voice classification
has not been researched extensively. Voice classification is
recently becoming popular as it serves as the underlying
technique for monitoring different types of speakers and
providing supreme customer service by estimating the
natures of phone/Web calls; these applications potentially
have high values in security surveillance and commercial
uses. In this paper, a set of relatively simple and transparent
techniques are described for enabling voice classification.
Fellow researchers are encouraged to test out the collection of
algorithms as recommended in this paper for experimenting
voice datasets pertaining to voice classification applications.
In particular, we showed via experiments that hierarchical
time series clustering algorithm with various similarity
functions can yield different levels of accuracy. It is shown
possible that time series can be grouped into different
clusters, just as if some unknown voices are grouped together
by their common characteristics. Wavelets after transforming
of time series samples into frequency domain demonstrate an
improved accuracy performance in decision tree. The future
works include fine-tuning the mentioned algorithms in the
paper for even better performance. The algorithms should
be programmed into a single software program in order to
support as a core classification engine for voice biometric
application systems.
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