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Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the
fingers. In this paper, (2D)2 PCA is applied to extract features of finger veins, based on which a new recognition method is proposed
in conjunction with metric learning. It learns a KNN classifier for each individual, which is different from the traditional methods
where a fixed threshold is employed for all individuals. Besides, the SMOTE technology is adopted to solve the class-imbalance
problem. Our experiments show that the proposed method is effective by achieving a recognition rate of 99.17%.

1. Introduction

Finger vein recognition is a promising biometric recognition
technology which verifies identities through finger vein
patterns. Medical studies have shown that the finger vein
pattern is unique and stable. In detail, the finger veins of an
individual are different from the others’, and even the veins
captured from a single individual are quite different from one
finger to another. Furthermore, the finger veins are also
invariant for healthy adults.

Compared with fingerprints, finger veins are hard to be
forged or stolen as they are hidden inside the fingers. The
contactless captures of finger veins also ensure both con-
venience and cleanliness, and they are user-friendly. Fur-
thermore, Finger veins are less affected by physiology and
environment factors such as dry skin and dirt.

A typical finger vein recognition process is composed of
the following four steps. Firstly, the finger vein images are
obtained via the finger vein capturing devices. Secondly, the
finger vein images are preprocessed. Thirdly, the features are
extracted. Finally, the finger vein images are matched based
on the extracted features.

The preprocessing procedure includes image enhance-
ment, normalization, and segmentation. For image enhance-
ment, Yang and Yan incorporated directional decomposition
and Frangi filtering to enhance the image quality [1].

Yu et al. proposed an enhancement algorithm based on
multi-threshold combination [2]. Yang and Yang introduced
multi-channel Gabor filter to enhance the images and
obtained better performance [3]. Finger vein segmentation
is also a very important step, and there are some typical
methods including line tracking [4], mean curvatures [5],
and region growth-based feature [6]. A detailed description
of these approaches is beyond the scope of this paper.
However, a summary of these approaches with the typical
references is provided in Table 1.

PCA is a popular linear dimensionality reduction and
feature extraction technology. It has extensive applications
in image processing. Wu and Liu extracted the PCA features
and then trained a neural network for matching, which
results in a high recognition rate [7]. Since PCA transforms
the 2-dimensional image matrix to a 1-dimensional vector,
the covariance matrix is always large in size and it is time
intensive to obtain the projection matrix which is composed
of the covariance matrix’s eigenvectors. Yang et al. proposed
2DPCA to reduce the size of the covariance matrix and save
time for computing projection matrices [8]. In order to
represent the characteristics of the 2-dimensional images
more accurately, Zhang and Zhou introduced (2D)2 PCA
which can reflect the information of the image in row and
column directions, respectively, use less time to compute the
projection matrix, and get better experimental results on
face recognition [9].
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Table 1: Methods for personal authentication using finger vein recognition.

References Method Database fingers × samples per each Performance

[4] Linetracking 339× 2 images EER: 0.145%

[5] Mean curvature 125× 9 images EER: 0.25%

[13] Wide line detector 10, 140× 5 images EER: 0.87%

[14] Statistical vein energy 100× 10 images CCR: 98.7%

[15] Moment invariants 50× 4 images EER: 8.93%

[16] Sliding window matching 76× 6 images EER: 0.54%

[10] Manifold learning 164× 70 images EER: 0.8%

[7] PCA + BP network 10× 10 images CCR: 99%

[11] PCA + LDA + SVM 10× 10 images CCR: 98%

Recently, more and more researchers apply machine
learning methods to finger vein recognition. Liu et al. intro-
duced manifold learning to finger vein recognition [10]. Wu
and Liu used PCA and LDA to extract features and train
a SVM model for recognition [11]. Measuring the distance
of the two samples is the premise of machine learning. For
example, KNN requires a distance metric to find the neigh-
bors of the target instance and then conducts classification
or regression based on the distance metric. Typical distance
metrics, such as Euclidean distance, make significant con-
tribution in some application domains. In some conditions,
these metrics cannot satisfy the assumption that the distances
between instances from the same class are small while those
from different classes are large. It limits the utilities of most
machine learning methods.

There are two challenges for finger vein recognition: (1)
how to efficiently extract distinguishing features and (2) how
to design a strong classifier with high recognition rate and
fast recognition speed to make the system more practical in
real-world applications.

To overcome these two challenges, in this paper we
apply (2D)2 PCA to extract the features from finger vein
images. In order to address the shortcoming of traditional
distance-metric-based classifiers, we build a classifier for each
individual based on metric learning. With regard to training
samples of each classifier, the number of positive samples is
inadequate as compared to the negative samples. Thus, we
use SMOTE technology to oversample the positive samples
to balance the two classes before training the classifier. The
experimental results show that the proposed method has
good performance on finger vein recognition.

The rest of this paper is organized as follows. The tech-
nical background is briefly introduced in Section 2. The pro-
posed method is described in Section 3. Experimental results
are provided in Section 4. Finally, this paper is concluded
in Section 5.

2. Technical Background

2.1. (2D)2 PCA. PCA is a typical linear dimensionality
reduction and feature extraction method. Due to the trans-
formation from the 2-dimensional image matrix into a
1-dimensional column vector, PCA often makes the size
of the corresponding covariance matrix too large, and

computing the eigenvectors and eigenvalues becomes time-
consuming. In order to solve this problem, Yang et al.
proposed 2DPCA to extract the features [8]. 2DPCA directly
uses the image matrix to compute PCA features without
transforming the 2-dimensional image matrix into a 1-
dimensional column vector. Therefore, it reduces the size of
corresponding covariance matrix and obtains the feature
projection matrix with less time. However, 2DPCA works
only for the row direction of images. To address the problem,
Zhang and Zhou proposed (2D)2 PCA which captures the
image information from not only the row direction but also
the column direction [9]. The experimental results show that
(2D)2 PCA outperforms 2DPCA and PCA in terms of both
recognition rate and running time. The process of (2D)2 PCA
is described as follows.

Considering M finger vein images, which are denoted
by A1, . . . , AM , we compute the mean image matrix as A =
(1/M)

∑
j A j and the image covariance matrix G as

G = 1
M

M∑

j=1

(
A j − A

)T(
A j − A

)
. (1)

For a random image matrix A, the key of obtaining the
new features is to get the projection matrix X ∈ Rn×d, n � d.
Then the new features are calculated as Y = AX. The total
scatter of the projected samples is used to determine a good
projection matrix X, where the total scatter of the projected
samples can be characterized by the trace of the covariance
matrix of the projected feature vectors. From this point of
view, we adopt the following criterion:

J(X) = trace
{
E
[

(Y− E(Y))(Y− E(Y))T
]}

= trace
{
E
[

(AX − E(AX))(AX − E(AX))T
]}

= trace
{

XTE
[

(A− E(A))T(A− E(A))
]

X
}
.

(2)

So,

J(X) = trace
{

XTGX
}
. (3)

It has been proven that J(X) gets the maximum when
the projection matrix X is composed by the d orthonormal
eigenvectors coupled to the d largest eigenvalues. In so
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Figure 1: An example of LMNN.

saying, X obtains the optional value, and d can be controlled
by setting a threshold as follows:

∑d
i=1 λi∑n
j=1 λj

� θ, (4)

where θ is a user-specific threshold and λ1, λ2, . . . , λn is the
top-n largest eigenvalues of G.

Because X only reflects the information in the row
direction, Zhang and Zhou proposed alternative 2DPCA
which reflects the information in the column direction
and combines 2DPCA with alternative 2DPCA to obtain a
new method called (2D)2 PCA [9]. Here is the process of
alternative 2DPCA.

Let the image matrix A j = [(A(1)
j )

T
, . . . , (A(n)

j )
T

]
T

, and

the mean image matrix A = [(A
(1)

)
T

, . . . , (A
(n)

)
T

]
T

,

where A(i)
j and A

(i)
, denote the ith row vector of A(i)

j and A
(i)

respectively. The image covariance matrix can be rewritten as

G1 = 1
M

M∑

j=1

m∑

k=1

(
A(k)

j − A
(k)
)T(

A(k)
j − A

(k)
)
. (5)

Similarly, to achieve the projected matrix X in 2DPCA,
we can obtain the projection matrix Z ∈ Rm×q from (2)
and (5). We can also compute q in the same manner as we
compute d in 2DPCA.

Using the projected matrix X, Z in 2DPCA and alterna-
tive 2DPCA, respectively, we can obtain the new feature

C = ZTAX. (6)

We can see from (6) that the new feature C reflects more
information of the image than the features obtained by
2DPCA and alternative 2DPCA. Furthermore, the dimension
of C is smaller, and thus (2D)2 PCA costs less time than
2DPCA and alternative 2DPCA for image processing.

2.2. Metric Learning. Most machine learning methods use
distance metrics to measure the dissimilarity of instances.
Metric learning is able to learn an appropriate distance
metric. The main task of the metric learning is to find a
better distance metric, based on which the distances between
the samples from same class become small while those from
different classes become large. This helps to improve the
performance of the machine learning methods.

To overcome the shortage of the KNN classifier using
Euclidean distance, Weinberge et al. proposed a metric learn-
ing method called LMNN (Large Margin Nearest Neighbor)
[12] which learns a distance metric to improve the perfor-
mance of KNN classifiers. The metric is obtained by learning
a linear transformation matrix L. With this distance metric,
the distance between the same-class instances becomes
smaller, and they are separated from the other instances by
a large margin. The details are as follows.

Let Xi ∈ Rd (i = 1, . . . ,n) denote the feature vector of
training instances and let yi be the corresponding label. The
essence of LMNN is to obtain a new distance D(xi, xj) =
‖L(xi − xj)‖2 = (xi − xj)

TLTL(xi− xj) after learning a linear
transformation L matrix. With this distance metric, the
distance between the instance and its k nearest neighbors
will be minimized and the distance between the instances in
different classes will be larger. Figure 1 shows an example of
LMNN.

In Figure 1, green circles denote instances from the first
class, yellow squares denote instances from the second class,
and red squares denote instances from the third class.
Consider the instance denoted by the white circle, which is
treated as a test instance from the first class, in our following
analysis. Based on Euclidean distance, we find 4 nearest
neighbors, and this test instance is misclassified into the
second class. However, using the LMNN-learned metric; this
instance is separated from the second and the third instances.
The distance between this instance and its neighbor is small.
Now it is correctly classified into the first class.
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Figure 2: The proposed framework for finger vein recognition.

2.3. SMOTE. The performance of machine learning algo-
rithms is typically evaluated by prediction accuracy. How-
ever, this is not applicable when the data is imbalanced.
Existing solutions to the class imbalance problem can be
divided into two categories. One is to assign distinct costs
to training examples. The other is to resample the original
dataset, either by oversampling the minority class and/or
undersampling the majority class.

Chawla et al. proposed an oversampling approach called
SMOTE where the minority class is oversampled by creating
“synthetic” examples [17]. The minority class is oversampled
by taking each minority class sample and introducing
synthetic examples along the line segments joining any/all
of the k minority class nearest neighbors. Depending upon
the amount of oversampling required, neighbors from the k
nearest neighbors are randomly chosen.

3. The Proposed Method

The proposed method includes training process and recogni-
tion process. As shown in Figure 2, a classifier is built for each
individual, and the samples from a certain individual are
treated as positive and others are negative. In the verification
mode, we input a test sample to corresponding classifier to
verify whether the sample comes from this individual based
on the classification result. In the identification mode, we

input a test sample to every classifier and identify which
individual this sample belongs to.

In the training process, it is necessary to preprocess the
infrared images of the finger veins. Preprocessing includes
grayscale, ROI selection, and normalization (e.g., size nor-
malization and gray normalization). After the preprocessing,
we apply (2D)2 PCA to extract the features of the training
samples. Then we label the samples as positive and negative
class accordingly and oversample the positive samples with
SMOTE. We learn a new distance metric, that is, the
transformation matrix L, with LMNN. Finally, we build the
individual KNN classifier based on this new distance metric.

The preprocessing and feature extraction in the recogni-
tion process are similar to that in the training process. After
that, we input the features of the samples to train classifier to
verify the individual based on the classification result.

3.1. Preprocessing. The preprocessing includes image gray-
scale, ROI selection, size normalization, and gray normaliza-
tion.

3.1.1. Image Grayscale. The original image (an example is
shown in Figure 3(a)) is a 24-bit color image with a size of
320× 240. In order to reduce the computational complexity,
we transform the original image to an 8-bit image based on
the gray-scale equation Y = R ∗ 0.299 + G ∗ 0.588 + B ∗
0.114, where R, G, and B denote the value of red, green, and
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Figure 3: Examples of preprocessing.

blue. These three color components are coded by 8 bits. Y is
the value of pixel after gray-scale transformation.

3.1.2. ROI Selection. As the background of finger vein region
might include noise, we employ an edge-detection method
to segment the finger vein region from the gray-scale image.

A Sobel operator with a 3 × 3 mask
[−1 0 1
−2 0 2
−1 0 1

]

is used for

detecting the edges of fingers. The width of the finger region
can be obtained based on the maximum and minimum
abscissa values of the finger profile, and the height of the
finger region is similarly detected. A rectangle region can
be captured based on the width and height. This rectangle
region is called ROI (as shown in Figure 3(b)).

3.1.3. Size Normalization. The size of the selected ROI is
different from image to image due to personal factors such
as different finger size and changing location. Therefore it is
necessary to normalize the ROI region to the same size before
the feature extraction process by (2D)2 PCA. We use bilinear
interpolation for size normalization in this paper, and the
size of the normalized ROI is set to be 96 ∗ 64 (as shown
in Figure 3(c)).

3.1.4. Gray Normalization. In order to extract efficient fea-
tures, gray normalization is used to obtain a uniform gray
distribution (as shown in Figure 3(d)). Formally, we have

p
(
i, j
) = p′

(
i, j
)−G1

G2 −G1
, (7)

where p′(i, j) is the pixel value of the original image,G1 is the
min pixel value of original image, G2 is the max pixel value
of original image, and p(i, j) is the pixel value of image after
gray normalization.

3.2. Training Process. After the preprocessing, we extract the
features for each image by (2D)2 PCA and assign labels for
them. A classifier is trained for every individual, where the
samples belonging to this individual are treated as positive
and others are negative. We oversample the positive samples

Figure 4: The finger vein capture device.

by SMOTE to obtain an augmented training set which
achieves class balance in general. LMNN is then used on the
augmented training set to obtain a transformation matrix L.
With this new distance metric, a KNN classifier is built for
classification.

3.3. Recognition Process. In the verification mode, we input
the feature vector of a test sample to a classifier which rep-
resents a certain individual, and then we verify whether the
sample belongs to this individual based on the classification
result. In the identification mode, we employ all classifiers to
classify the test sample. If only a classifier C classifies it as
positive class, this sample belongs to the individual which
corresponds to the classifier C. If there are many classifiers
classifying the sample as positive class, then we use the
training accuracy rate for decision making: the sample
belongs to the individual that corresponds to the classifier
with the best training accuracy.

4. Experimental Result and Analysis

4.1. Database. The experiments were conducted using our
finger vein database which is collected from 80 individuals’
(including 64 males and 16 females, Asian race) index fingers
of right hand, where each index finger contributes 18 finger
vein images. Each individual participated in two sessions,
separated by two weeks (14 days). The age of the participants
was between 19 and 60 years, and their occupations included
university students, professors, and workers at our school.
The capture device was manufactured by the Joint Lab
for Intelligent Computing and Intelligent System of Wuhan
University, China, which is illustrated in Figure 4.

The original spatial resolution of the data is 320 × 240.
After ROI extraction and size normalization, the size of the
region used for feature extraction is reduced to 96 × 64.
Samples collected from the same finger belong to the same
class. Therefore, there are 80 classes, where each class
contains 18 samples in our database. Some typical finger
vein images are shown in Figure 5.

4.2. Experimental Settings. All the experiments are imple-
mented with MATLAB and conducted on a machine with
2.4 G CPU and 4 G memory.

We design three experiments to verify the efficiency of
the proposed method. In Experiment 1, we extract fea-
tures by (2D)2 PCA and then compare the classification
performance of the metric-learning-based method and the
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Figure 5: Sample finger vein images.

classic Euclidean-distance-based method. In Experiment 2,
we compare the classification performance of KNN classifier
combined with LMNN using different number of training
samples. In Experiment 3, we employ the SMOTE technology
to further boost the performance.

Experiment 1. In this experiment, we first generate four data
sets as follows. We select 480, 720, 960, and 1200 images (i.e.,
6, 9, 12, and 15 images for each individual) for training, and
the rest of 960, 720, 480, and 240 images (i.e., 12, 9, 6, and
3 images for each individual) are left for testing, respectively.
The Euclidean-distance-based recognition method works in
the following way. We treat the training samples from each
individual as the positive class and construct a center point
for each class, where the ith feature of the center point is
calculated by averaging the corresponding feature values of
the training samples. As there are 80 individuals, we then
obtain 80 center point Ci (i = 1, 2, . . . , 80). For any testing
sample C, we estimate the Euclidean distances from sample C

to each center point, D(C, Ci) = ‖C− Ci‖2
(i = 1, 2, . . . , 80).

If (C, C j) = minD(C, Ci)(i = 1, 2, . . . , 80), then C goes to the
jth class.

The metric-learning-based method works similarly as the
Euclidean-distance-based method except for the usage of

the learned distance metric D(C, Ci) = ‖L(C− Ci)‖2
(i =

1, 2, . . . , 80). The recognition rates of these two methods are
compared in Table 2.

It is clearly seen that the recognition rate of the metric-
learning-based method is higher than the Euclidean-dis-
tance-based method. With distance metric transformation,
two samples from different classes with small Euclidean dis-
tance are dragged farther. On the other hand, two samples
from the same class with large Euclidean distance are pulled
closer. Furthermore, the samples from different classes are
separated by a large margin. Next we are going to provide an
intuitive explanation based on the example shown in Figures
6 and 7.

These two figures show the data distribution of the data
set with 480 training samples and 960 testing samples. We
obtain 25 features for each sample using (2D)2 PCA and
select 2 features with the largest contribution to Euclidean
distance metric. These two features constitute the vertical
and horizontal coordinates of Figure 6. Similarly, these two
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Table 2: The recognition rates of the compared methods.

Euclidean-distance-based method Metric-learning-based method

480 training, 960 testing 78.96% 86.46%

720 training, 720 testing 82.08% 91.25%

960 training, 480 testing 86.25% 92.29%

1200 training, 240 testing 84.58% 93.75%
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Figure 6: Samples distribution with Euclidean distance metric.

features are transformed to a new metric space using LMNN,
as shown in Figure 7. The samples of the first individual
(including 6 training images and 12 testing images) are
treated as positive, and the rest of them are considered as
negative. In Figures 6 and 7, we use red plus to denote
positive training samples, green plus for positive testing
samples, blue star for negative training samples, and yellow
star for negative testing samples. It is shown from Figure 6
that it is difficult to distinguish the first class from the
others because the distances between samples in the first
class and the other classes are indiscriminating. This inherent
drawback of the Euclidean distance significantly reduces the
recognition performance. However, by using LMNN, the
samples in the first class are gathered together, as shown in
Figure 7. In detail, the positive samples are located mainly in
the area of abscissa value between 0 and 10. On the contrary,
most negative samples are scattered out. This makes it easier
to discriminate samples in the first class from samples in the
other classes.

Experiment 2. In this experiment, we select 6, 9, 12, and
15 images from each individual as training samples to
build a KNN classifier. The underlying distance metric for
each individual is learned by LMNN. Here the number of
neighbors, that is, k, is empirically set to be 3 in KNN. We
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Figure 7: Samples distribution with new distance metric using
LMNN.
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Figure 8: The recognition rates with different numbers of training
images.

obtain different recognition rates with different numbers of
training samples, and the experimental results are shown in
Figure 8.

Overall, the recognition rate increases with the number
of training images increases. When the number of the
training images goes to 15, the recognition rate reaches
96.67%. It is also worth noting that, as compared to Table 2,
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Table 3: The recognition rate by SMOTE.

Without SMOTE 96.67%

SMOTE-5 96.67%

SMOTE-10 96.67%

SMOTE-20 98.75%

SMOTE-30 98.33%

SMOTE-40 99.17%

SMOTE-50 99.17%

the KNN-based method outperforms the above-mentioned
metric-learning-based method and the Euclidean-distance-
based method, by considering the same number of training
images.

Experiment 3. This experiment verifies that SMOTE can
improve the classification performance. We select 1200
images (15 images for each individual) for training and 240
images (3 images for each individual) for testing. We use
SMOTE to oversample the positive samples to be 5, 10,
20, 30, 40, and 50 times as large as the original set. The
recognition result is shown in Table 3.

We observe that the recognition rate does not improve by
only increasing a small number of synthetic positive samples,
as shown in SMOTE-5 and SMOTE-10. After that, the
recognition rate increases by about 3%, and finally it achieves
99.17% with SMOTE-40 or SMOTE-50. With a sufficiently
large set of synthetic positive samples, the recognition per-
formance would not improve any more.

5. Conclusion

This paper proposes a new finger vein recognition method
based on (2D)2 PCA and metric learning. Firstly, we extract
features by (2D)2 PCA and then train a binary classifier
for each individual based on metric learning. Furthermore,
we address the class imbalance problem by using SMOTE
oversampling before the classifier is trained. The experi-
mental results show that the proposed method achieves a
recognition rate of 99.17%. The contributions of this paper
are as follows. (1) We apply (2D)2 PCA to extract features of
finger vein image, where (2D)2 PCA reflects the information
in both the row direction and the column direction, and it
is more efficient for feature extraction as compared to PCA
and 2DPCA. (2) We build the KNN classifier based on metric
learning using LMNN which changes the sample distribution
in the new metric space. LMNN makes the distance between
the samples from the same class smaller and the distance
between the samples from different classes larger. Further-
more, we also employ a maximum margin framework to
improve the recognition performance. This is incorporated
with individually trained classifiers which reflect the char-
acteristics of the corresponding individuals. (3) We note
the class-imbalance problem; that is, when building the
classifier for an individual, the number of the samples from
the other individuals is considerably large. We tackle it
by oversampling the positive samples with SMOTE, and

the experimental results validate the effectiveness. Promis-
ing future work includes the exploration of features with
better discrimination as well as the processing finger vein
images of low quality.
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