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A signal peptide is a short peptide chain that directs the transport of a protein and has become the crucial vehicle in finding new
drugs or reprogramming cells for gene therapy. As the avalanche of new protein sequences generated in the postgenomic era,
the challenge of identifying new signal sequences has become even more urgent and critical in biomedical engineering. In this
paper, we propose a novel predictor called Signal-BNF to predict the N-terminal signal peptide as well as its cleavage site based
on Bayesian reasoning network. Signal-BNF is formed by fusing the results of different Bayesian classifiers which used different
feature datasets as its input through weighted voting system. Experiment results show that Signal-BNF is superior to the popular
online predictors such as Signal-3L and PrediSi. Signal-BNF is featured by high prediction accuracy that may serve as a useful tool
for further investigating many unclear details regarding the molecular mechanism of the zip code protein-sorting system in cells.

1. Introduction

Signal peptides which are usually N-terminal extensions with
3–60 amino acids long direct proteins to their corresponding
cellular and extracellular localizations. We treated its func-
tion as an “address tag” or “zip code.” If the signal sequence
in a nascent protein was changed, the protein could end up
in a wrong cellular location causing various weird diseases.

The advent of signal peptides predictor has a significant
impact on developing novel strategies for drug discovery,
as well as for revealing the molecular mechanisms of some
genetic diseases (refer a review [1]). Faced with the avalanche
of new protein sequences emerging in the postgenomic era,
to timely use them for basic research and drug discovery
[2, 3], it is highly desirable to develop the fast and accurate
algorithms to identify the signal sequences and predict their
cleavage sites. Actually, many efforts have been made in this
regard [4–17]. Based on different kinds of characteristics,
several machine learning approaches have been proposed for
this task, such as neural networks [8–11], hidden Markov
models [12], and support vector machines [13–15]. Recently,

Shen and Chou developed two algorithms based on evidence
theory to predict the signal sequences and achieve favorable
results [4, 5].

In this paper, we propose a novel predictor based on
Bayesian learning algorithm to predict the N-terminal
signal peptides and their cleavage sites. Bayesian learning
algorithm has been previously applied in a number of other
bioinformatics problems [18–23], such as protein-protein
interactions. But their approaches are not designed to deal
with the N-terminal signal peptide sequences and the amino
acid preference at the cleavage sites [24]. Fundamentally
differed from theirs, the Bayesian network is a method of
statistical inference in which some kind of evidence or
observations are used to calculate the probability if a
hypothesis may be true, which is particularly suited for this
task. Its advantage lies in that there are significant statistical
preferences of different amino acids along the signal peptides
mentioned in the previous studies [4, 5].

The integration system which was built by multiple base
classifiers has a stronger generalization ability than a single
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Table 1: Number of the secretory and nonsecretory proteins in each
of the six different organism datasets.

Organism
Number of

secretory proteins
Number of

non-secretory proteins
Total

Human 894 1129 2203

Plant 338 559 897

Animal 1435 1762 3197

Eukaryotic 635 785 1420

Gram-positive 269 356 625

Gram-negative 613 721 1334

good classifier. So we use integration system to improve the
prediction accuracy. First, base classifier is built by using
different feature datasets as Bayesian network input. Then,
the ultimate result is fused by the results of different Bayesian
classifiers through weighted voting system.

The experimental results show that Signal-BNF is supe-
rior to two other popular signal peptide predictors of Signal-
3L [4] and PrediSi [25]. So, the approach we proposed is
quite promising.

2. Materials and Methods

The datasets constructed in [4] were adopted in this paper,
which contain the secretary proteins and the nonsecretary
proteins from six different species. It was human, plant,
animal, eukaryotic, Gram-positive, and Gram-negative (refer
Table 1).

Signal peptide sequences are usually N-terminal exten-
sions although they can also be located within a protein or at
its C-terminal end. It will be cleaved off by a signal peptidase
when the protein goes through a membrane. The cleavage
site is the position between the last residue of the signal
peptide sequence and the first residue of the mature protein.
It is symbolized by (−1, +1) (Figure 1). The signal peptide
sequences of different secretory proteins are quite different in
sequence components and orders. And they all have different
sequence length. Figure 2 shows the length distribution of the
signal peptides in the six species secretory proteins.

Since different proteins differ in the length of the signal
peptide, we introduced the concept of scaled window to solve
the difficulty in predicting the signal peptide for a general
algorithm. The scaled window approach has been adopted
for this study before [6].

The scaled window which is symbolized as [−ξ1, +ξ2]
is marked consecutively with −ξ1, . . . ,−2,−1, +1, +2, +ξ2 to
define the corresponding position of amino acids of a protein
sequence within the window. In this way, a segment can
be used as a “benchmark window” to search the secretion-
cleavable site along a protein sequence and can deduce its
signal peptide accordingly. Only the one with the residue at
the scale −1 being the very last residue of the signal sequence
and the residue at the scale +1 being the first residue of
the mature sequence are regarded as the secretion-cleavable
segment (refer Figure 3(a)), while all the other segments are

Table 2: Sampling proportion of S− in each of the six different
organism datasets.

Organism |S+| |S−| |S+| : |S−| Sampling
proportion of S−

Human 894 172047 1 : 192 1/20

Plant 338 76447 1 : 226 1/23

Animal 1435 268720 1 : 187 1/19

Eukaryotic 635 117089 1 : 184 1/19

Gram-positive 269 52940 1 : 196 1/20

Gram-negative 613 113314 1 : 184 1/19

regarded as nonsecretion cleavable (refer Figures 3(b) and
3(c)).

For a [−ξ1, +ξ2] protein segment sequence P can be gene-
rally expressed as

P = R−ξ1R−ξ1+1 · · ·R−1R+1 · · ·Rξ2−1Rξ2 , (1)

where R−ξ1 represents the amino acid residue at the position
−ξ1, R−1 represents the amino acid residue at the position
−1, R+ξ2 represents the amino acid residue at the position
+ξ2, and so forth.

The whole prediction task is composed of two steps: (1)
identifying whether a protein is secretory or not and (2)
determining the signal peptide cleavage site for a secretory
protein. In this study, we choose ξ1 = 13, ξ2 = 2 as
the size of scaled window for predicting the cleavage site,
which is demonstrated optimal in previous studies [6].
By sliding such a “window” along each of these protein
sequences, we obtained 6 corresponding training datasets
for the 6 species. It is important to point out that, for
a secretory protein sequence of length L1, we can obtain
L1 − (ξ1 + ξ2) + 1 different sequence segments. But in these
segments only one secretion-cleavable segment, the others
are nonsecretion cleavable segments. While a nonsecretory
protein sequence of length L2 can obtain L2 − (ξ1 + ξ2) +
1 different sequence segments which are all nonsecretion
cleavable segments. The one secretion-cleavable segment
called positive sample and the other nonsecretion cleavable
segments called negative sample. All the secretion-cleavable
segments, namely, positive samples, denoted by S+ and all the
nonsecretion cleavable segments, namely, negative samples,
denoted by S−. Apparently, the scaled window approach
causes the samples extreme imbalance. Hence, we take a
random sampling process in the negative subset, which can
relatively reduce the imbalance phenomena. The sampling
proportion of S− refers to Table 2.

As we known, most data classification techniques require
the numeric discrete feature vectors as input. It means
that the amino acid symbol should be replaced by the
decimal integer, such as the local physicochemical properties.
Due to that we need different feature datasets as different
classifiers’ input, we gain the different datasets through
different coding schemes. In this paper, three different coding
schemes (subsystems [26]) are adopted.

The first subsystem considers that each position in the
scaled window has 21 possible values (20 amino acids and
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Figure 1: A schematic drawing shows the signal sequence of a protein and how it is cleaved by the signal peptidase. An amino acid in the
signal part is depicted as a white circle with a black number to indicate its sequential position, while in the mature protein depicted as a black
circle with a white number. The signal sequence contains Ls residues and the mature protein Lm residues. The cleavage site is at the position
(−1, +1), that is, between the last residue of the signal peptide sequence and the first residue of the mature protein.
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Figure 2: A histogram to show the distribution of signal peptides with their length in the 4,184 secretory proteins constructed in this study.
Of the 4,184 proteins, 894 humans, 338 plants, 1,435 animals, 635 eukaryotic, 269 Gram-positives, and 613 gram-negatives.
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Figure 3: Illustration to show the sequence segments highlighted by sliding the scaled window [−ξ1, +ξ2] along a protein sequence. During
the sliding process, the scales on the window are aligned with different amino acids so as to define different peptide segments. When the scale
−1 is aligned with the tail residue of the signal sequence and scale +1 aligned with the head residue of the mature protein as shown in (a),
the peptide segment is seen within the window regarded as secretion cleavable. Peptide segments seen within the window for all the other
cases, such as those shown in ((b) and (c)), are regarded as nonsecretion cleavable.



4 Journal of Biomedicine and Biotechnology

Table 3: Amino acid’s integers encode ranging from 1 to 21 indi-
cators of the first subsystem.

Amino acid title Abbreviation title Alphabet Decimal code

Alanine Ala A 1

Cystine Cys C 2

Aspartic acid Asp D 3

Glutamic acid Glu E 4

Phenylalanine Phe F 5

Glycine Gly G 6

Histidine His H 7

Isoleucine Ile I 8

Lysine Lys K 9

Leucine Leu L 10

Methionine Met M 11

Asparagine Asn N 12

Proline Pro P 13

Glutarnine Gln Q 14

Arginine Arg R 15

Serine Ser S 16

Threonine Thr T 17

Valine Val V 18

Tryptophan Trp W 19

Tyrosine Tyr Y 20

Null Null Null 21

a null input). Hence, it uses an integer ranging from 1 to
21 indicators (refer Table 3), which is taken as the input of
Signal-BNF, to present each amino acid.

The second subsystem deems that each amino acid is
associated with 10-bit binary (i.e., value 0 or 1) indicators to
represent its multiview properties. Each row in Table 4 shows
that an amino acid can have multiple properties. And “y”
means the amino acid has the property. If there is “y,” the
value is 1, otherwise 0. Then, the binary is converted to a
decimal integer to represent each amino acid.

The last subsystem represents the relative hydrophobic
value of amino acids with 3-bit binary indicators. In Table 5,
each amino acid has been encoded into decimal integer.

Therefore, we received three different feature datasets
according to the above subsystems.

2.1. Bayesian Networks. The term “Bayesian networks” was
coined by Judea Pearl [18] in 1985, its theory, algorithms and
applications can be found in [19–24]. A Bayesian network
[27, 28], which is a kind of learning machine, encodes the
joint probability distribution of a set of variables {x1, . . . , xv}
as a directed acyclic graph and a set of conditional probability
tables (CPTs). The probability of an arbitrary event X =
(x1, . . . , xv) can be computed as

P(X) =
v∏

i=1

P(xi | πi) (2)

Table 4: Properties of amino acid residues of the second subsystem:
1: hydrophobic, 2: positive, 3: negative, 4: polar, 5: charged, 6: small,
7: tiny, 8: aliphatic, 9: aromatic, and 10: proline.

Amino acid
alphabet

1 2 3 4 5 6 7 8 9 10 Decimal
code

A y y y 536

C y y 528

D y y y y 240

E y y y 224

F y y 514

G y y y 536

H y y y y y 866

I y y 516

K y y y y 864

L y y 516

M y 512

N y y 80

P y y 17

Q y 64

R y y y 352

S y y y 88

T y y y 592

V y y y 532

W y y y 578

Y y y y 578

Table 5: Relative hydrophobic value of amino acids of the third
subsystem.

Amino acid
alphabet

Polar Neutral Hydrophobic Decimal
code

A y 2

C y 1

D y 4

E y 4

F y 1

G y 2

H y 2

I y 1

K y 4

L y 1

M y 1

N y 4

P y 2

Q y 4

R y 4

S y 2

T y 2

V y 1

W y 1

Y y 2
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Here πi is the set of parents of xi. Given a training set D =
{X1, . . . ,Xd, . . . Xn}, where Xd = (xd,1, . . . , xd,v), the goal of
learning is to find the Bayesian network that best represents
the joint distribution P(xd,1, . . . , xd,v). In other words, when
the Bayesian network is unknown we need to learn it by
estimating the network structure and the parameters of the
joint probability distribution from the training data and
prior information.

We assume no missing data, then attention the problem
on learning network structure. At present, there are mainly
two kinds of Bayesian network learning methods [27]:
conditional-independence-test-based method and search-
based method. The conditional independence test is very
sensitive of the error. And condition independence test times
relative to the number of variables to increase exponentially
in some cases. Search-based algorithm can search for the
accurate and complete network structure, but the structure
space is very large. Search the best Bayesian network
structure from all possible network structure space is a NP-
hard problem, so the commonly used method is heuristic
algorithm. The widely used and the most representative
heuristic algorithm is K2 algorithm which is a famous score-
based algorithm.

Learning model structures from data is important for the
construction of Signal-BNF. We have empirically compared
the behavior of some Bayesian network classifiers base on
Bayes Net in Weka [29] and base on Bayes Net Toolbox
(BNT) in Matlab [30] over six datasets. In this paper, we
use the K2 structure learning algorithm which performs rela-
tively better than others. It maximizes the scoring measure of
marginal likelihood. K2 is a greedy search algorithm which
applies a known ordering of the nodes and the maximum
limit on the number of parents for any node to constrain the
search over network structure.

Followed by the network structure learning, the param-
eter learning is another important step, and we use the
Bayesian estimation method for determining the related
parameters. By doing this, we can get a Bayesian network that
can be used to make inferences.

2.2. Classify the Secretory-Cleavable Peptides from Non-Secre-
tory Cleavable Peptides by Base Classifier. Suppose a training
set S of N samples (S1, S2, . . . , SN ) that can be separated
into two subsets: S+ consists of the secretion-cleavable
peptides only and S− the nonsecretion cleavable peptides
only. We used Signal-BNF to distinguish secretion-cleavable
peptides from nonsecretion cleavable. Through the Signal-
BNF classifier the CPTs can be obtained, as formulated by

ρ
(
Si, Sθ

)
(i = 1, 2, . . . ,N ; θ ∈ {+,−}), (3)

where ρ(Si, Sθ) mean the probability of the sample Si belongs
to the class Sθ . The criterion of predicting the secretion
cleavability for a given peptide sequence can be formulated
as follows:

γ(Si) =
{

1, ρ(Si, S+) > ρ(Si, S−)

0, otherwise.
(4)

The sample is secretion-cleavable peptide if γ(Si) = 1,
otherwise is nonsecretion cleavable. If the sample is identified
as secretion cleavable, it will be continued to predict the
cleavage site.

2.3. Classify the Secretory-Cleavable Peptides from Non-
Secretory Cleavable Peptides and Identify the Signal Peptide
Cleavage Site of Secretory Proteins by Fusion Classifier System.
The cleavage site is the position between the last residue of
the signal peptide sequence and the first residue of the
mature protein. Signal peptide can be automatically deter-
mined, while cleavage site is identified. We use Bayesian
classifier to predict cleavage. But the result of Bayesian
classifier may contain false result. To compensate for this
error as much as possible, we consider to composite the
base classifiers together. By the above three coding schemes,
different feature datasets and Bayesian network constitute
base classifiers. Then, the base classifiers fuse as Signal-BNF
to predict the cleavage site.

The composite approach for classifying proteins has
been used in previous study [31]. From the literature [32],
we know that multiple classifier systems can be divided
into three structures: cascade, parallel, and hierarchical
(refer Figure 4). In cascade system, the result of base
classifier directly depends on the success classification of
the previous base classifier. The overall system error of this
type classification system is the accumulation of each base
classifier error. In other words, the error which previous
classifier produced is unrecoverable. The parallel system,
which each base classifier independently produces results,
integrates the results of base classifier by decision logic. As
long as the decision logic cleverly designed, you can get more
satisfactory results. Hierarchical system is the combination of
cascade system and parallel system. So we use the integrated
classification model as shown in Figure 5 in the fusion stage.

Furthermore, we use voting as the decision-making
method in integration of multiple classifier outputs. Gen-
erally, voting includes the weighted voting and the majority
voting which has three decision methods: unanimity, simple
majority and plurality. In this paper, we use weight voting
which can obtain better accuracy to decide which candidate
wins.

In fusion stage, discrimination of secretion-cleavable
peptide from non-secretory cleavable can be formulated by

δ(Si) =
3∑

u=1

wuγu(Si) (i = 1, 2, . . . ,N). (5)

Here, u ∈ {1, 2, 3} represent different classifiers. wu is the
weight of each base classifier. If γ2(Si) equals to γ3(Si), the
weight is w1 = 0, w2 = 1, w3 = 0, otherwise w1 = 1, w2 = 0,
w3 = 0. If σ(Si, Sθ) = 1, the sample is secretion-cleavable
peptide, otherwise is nonsecretion cleavable peptide.

Then, we can continue to predict the cleavage site. As
the protein has been cut into many segments, we have the
starting position of each secretion-cleavable peptide in a
protein, as formulated below:

{κi}, (i = 1, 2, . . . ,N+), (6)
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Figure 4: Structures of multiple classifier systems. (a) Cascading, (b) parallel, and (c) hierarchy.
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where N+ represents the number of the set S+, namely, the
number of secretary proteins. The cleavage site position of a
secretary protein is formulated as

{
χi | χi = κi + 12

}
, (i = 1, 2, . . . ,N+) (7)

3. Results and Discussion

The methods frequently used for cross-validating the accu-
racy of classifier in statistical prediction cover the single
independent dataset test, sub-sampling test, and jackknife
test. In this study, the 5-fold cross-validation test was
performed on Signal-BNF.

Table 6 compares the accuracy of some Bayesian network
classifiers in weka. Table 7 compares the accuracy of some
Bayesian network classifiers in Matlab. From them we can
conclude that K2 structure learning algorithm is performed
relatively better than others.

Table 8 lists the prediction accuracy for secretory proteins
from nonsecretory proteins by three subsystems and fusion

Table 6: The accuracy of some Bayesian network classifiers in weka
by first subsystem.

Organism
K2
(%)

HC
(%)

Simulated
annealing (%)

Tabu
search (%)

Human 95.91 95.91 95.91 95.91

Plant 95.77 95.58 95.58 95.58

Animal 96.34 96.34 96.34 96.34

Eukaryotic 94.87 94.87 94.87 94.87

Gram-positive 95.37 95.16 95.16 95.16

Gram-negative 97.26 97.26 97.26 97.26

system. Table 9 compares our approach’s prediction accuracy
for secretory proteins from nonsecretory proteins to other
approaches. Table 10 lists the prediction accuracy for the
cleavage sites by three subsystems and fusion system. Table 11
compares our approach’s prediction accuracy for the cleavage
sites to other approaches.
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Table 7: The accuracy of some Bayesian network classifiers in
Matlab by first subsystem.

Organism TAN (%) K2 (%) GS (%)

Human 94.20 96.78 96.88

Plant 94.01 96.85 96.72

Animal 95.75 97.12 97.16

Eukaryotic 94.19 95.92 95.98

Gram-positive 93.30 96.29 96.29

Gram-negative 96.30 97.99 97.99

Table 8: The prediction accuracy for secretory proteins from
nonsecretory proteins by three subsystems and fusion system.

Organism
First

subsystem
(%)

Second
subsystem

(%)

Third
subsystem

(%)

Fusion
(%)

Human 97.17 96.77 96.34 97.73

Plant 96.68 96.54 95.85 97.46

Animal 97.89 97.48 96.20 98.18

Eukaryotic 95.97 95.91 95.04 96.80

Gram-positive 95.53 90.49 92.70 96.23

Gram-negative 97.79 97.17 96.28 98.11

Table 9: Compare our approach’s prediction accuracy for secretory
proteins from nonsecretory proteins to other approaches.

Organism
PrediSi

(%)
Signal-3L

(%)
Signal-BNF

(%)

Human 91.1 92.3 97.73

Plant 93.6 95.8 97.46

Animal 93.2 95.7 98.18

Eukaryotic 92.1 94.0 96.80

Gram-positive 94.6 98.1 96.23

Gram-negative 91.2 94.4 98.11

From Table 8, we can clearly conclude that the fusion
system can complement the shortage of each base classifier
to improve prediction accuracy. Similar results can also be
observed from Table 10.

The comparison performances of the other two popular
predictors of Signal-3L [4] and PrediSi [25] are listed in
Tables 9 and 11. From Table 9, where the success rates of
Signal-BNF is 1.63–6.91% higher than PrediSi [25] and 1.66–
5.43% higher than Signal-3L except Gram-positive dataset.
Signal-BNF achieves the best prediction accuracy when
discriminating the cleavage sites which can be observed in
Table 11. The success rates of Signal-BNF is 11.67–22.9%
higher than PrediSi [25] and 3.84–17.5% higher than Signal-
3L. These results indicate that the Signal-BNF can get a better
prediction accuracy of the signal peptide sequences and their
cleavage sites

Efficiently prediction of N-terminal signal peptides and
their cleavage sites is important to both basically research
and drug discovery. In this paper, we have proposed a novel

Table 10: The prediction accuracy for the cleavage sites by three
subsystems and fusion system.

Organism
First

subsystem
(%)

Second
subsystem

(%)

Third
subsystem

(%)

Fusion
(%)

Human 89.44 89.21 86.52 90.90

Plant 84.78 85.37 83.28 87.16

Animal 91.85 90.87 85.85 92.47

Eukaryotic 84.25 84.57 81.26 86.14

Gram-positive 80.75 71.70 73.58 82.64

Gram-negative 90.82 89.84 87.87 91.97

Table 11: Compare our approach’s prediction accuracy for the
cleavage sites to other approaches.

Organism PrediSi (%) Signal-3L (%) Signal-BNF (%)

Human 68.0 73.4 90.90

Plant 70.1 82.8 87.16

Animal 71.9 77.7 92.47

Eukaryotic 65.7 76.2 86.14

Gram-positive 60.2 78.8 82.64

Gram-negative 80.3 88.1 91.97

Bayesian learning network approach named Signal-BNF to
reach this goal. The experimental results also reveal that
Signal-BNF can achieve the better prediction accuracy than
other popular predictors. So we say that Bayesian networks
can be a powerful computational tool for predicting signal
peptide cleavage sites. The experiment also shows that fusing
multiple predictors can provide effective complementarities
among them for predicting N-terminal signal peptides since
different algorithms have their own merits and shortcom-
ings.
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