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This manuscript contains supplemental material on the paper “Bayesian emulation and calibration of
a stochastic computer model of mitochondrial DNA deletionsin substantia nigra neurons”.

1 Comments on hazards in the biological model

The hazard rates corresponding to the five chemical reactions listed in equation (1) in the paper are

h1(Y , c1) = c1Y1, h2(Y , c2) = c2

(
Y1

Y1 + Y2

)
, h3(Y , c3) = c3Y1,

h4(Y , c4) = c4

(
Y2

Y1 + Y2

)
, h5(Y , c5) = c5Y2.

Each cell is initiated (at birth) with a population of 1000 normal mtDNA. The synthesis rates,c2 and
c4, are set such that the cell tries to maintain homeostasis in its mtDNA copy number by always trying
to keep the number of mtDNA at the initial level of 1000. The idea here is that if the total number of
mtDNA molecules in the cell at any time is equal to the initialamount, that is,Y1 + Y2 = 1000, then
each molecule type is synthesised at the same hazard rate as molecules are degraded. Any reduction in
total mtDNA copy number causes a disproportionate increasein the synthesis rate for all molecule types
thereby maintaining equilibrium. So we takec2 = 1000c3 andc4 = 1000c5. Additionally we make the
simplifying assumption that the degradation rates for the normal and mutated mtDNA are equal, that is
c5 = c3. Thus the reaction hazard rates become

h1(Y , c1) = c1Y1, h2(Y , c3) =
1000c3Y1

Y1 + Y2
, h3(Y , c3) = c3Y1,

h4(Y , c3) =
1000c3Y2

Y1 + Y2
, h5(Y , c3) = c3Y2,

as given in equation (2) in the paper.

2 Further details of the model for the deletion accumulation data

In this section we describe in more depth the dataset on deletion accumulation and how we model it.

The proportion of mtDNA deletions in each sample of 25 neurons is measured indirectly using one of
two real-time polymerase chain reaction (RT-PCR) experimental techniques. In very simple terms, a
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PCR experiment starts off with an initial unknown quantity of DNA, Y , and the experiment proceeds by
doubling the quantity of DNA in cycles. The output is a measurement of the number of cyclesCt until
a prespecified threshold levelT is exceeded, as measured in terms of fluorescence when subjected to a
laser. In theory the relationship between these quantitiesis T = Y × 2Ct and so the initial quantity of
DNA can be estimated fromY = T × 2−Ct .

The mtDNA molecule is circular and approximately 16kb in length. It has a major arc (approximately
11kb) and a minor arc (approximately 5kb). Deletions are only assumed to occur in the major arc, not
in the minor arc. Two genes are targeted in the PCR experiments: ND1 from the minor arc and ND4
which resides on the major arc. For a given sample, letYND1 andYND4 denote the number of copies
of mtDNA with the ND1 gene and ND4 gene present (respectively) and assume that deletions will only
affect ND4 and not ND1. Then there are a total ofYND1 copies of mtDNA in the sample and only
YND1 − YND4 copies of mtDNA with deletions (because the deleted copies of mtDNA in ND4 do not
show up). Therefore we can estimate the proportion of mtDNA with deletions by

p =
YND1 − YND4

YND1
= 1 − YND4

YND1
.

The first experimental technique is called the simplex method (this corresponds to technique 2 in our
notation). The DNA from the sample of 25 neurons is split evenly into two samples. On one sample
RT-PCR is run targeting the ND1 gene, and on the other sample RT-PCR is run targeting the ND4 gene.
The other experimental technique is called the multiplex method and this involves running RT-PCR on
both genes simultaneously from the combined sample of neurons.

Focussing on the simplex method for the purposes of exposition, the rationale behind the use of the
RT-PCR method for determining the proportion of deletions is as follows. First we assume that there
areYND1 andYND4 copies of ND1 and ND4 in the initial samples respectively andthat the threshold
fluorescence levelT is reached afterCND1 cycles for the ND1 probe and afterCND4 cycles for the ND4
probe. Hence

T = 2CND1YND1 and T = 2CND4YND4.

Therefore,

YND1 =
T

2CND1
and YND4 =

T

2CND4
,

and plugging these values into the expression for the proportion of deletions gives

p = 1 − YND4

YND1
= 1 − T/2CND4

T/2CND1
= 1 − 2−(CND4−CND1) = 1 − 2−∆Ct ,

where∆Ct = CND4 − CND1. Rearranging the above expression gives

∆Ct = − log2(1 − p),

and for a given samplei this corresponds to the quantityyi in the paper.

The measurement error model is derived from the following basic assumptions. The quantities that
are actually measured in the PCR experiments are the number of cycles till fluorescence is reached.
As noted in the paper, Larionovet al. (2005) suggest that a normal distribution adequately models
these measurements. Specifically, we assume that the observed numbers of cycles are biased and noisy
measurements of the true numbers of cycles, that is

Cobs
ND1 ∼ N(CND1 + bs, σ

2
s) and Cobs

ND4 ∼ N(CND4 + bs, σ
2
s).

HereCobs
ND1 andCobs

ND4 are the observed values ofCND1 andCND4, respectively. We assume a fixed bias
denotedbs and a fixed variance denotedσ2

s . The subscripts is used to denote the simplex method. We
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further assume thatCobs
ND1 andCobs

ND4 are independent since they are obtained from separate samples. It
follows that the observed value of∆Ct has a normal distribution,

∆Cobs
t = Cobs

ND4 − Cobs
ND1 ∼ N(CND4 + bs − CND1 − bs, 2σ

2
s ),

that is
∆Cobs

t ∼ N(∆Ct, 2σ
2
s).

For a particular samplei the above equation is the measurement error model given in the paper since
∆Cobs

t corresponds tozi, ∆Ct corresponds toyi, and2σ2
s corresponds toφ−1

2 . Therefore even when we
allow for systematic bias in the measurement process we end up with a measurement error model which
does not include a bias term explicitly.

Both experimental techniques are based on this so-called “∆Ct” method. The main difference between
the techniques is that in the multiplex method we start off with twice as many copies of ND1 and ND4
as in the simplex method (as the sample has not been halved). This means that the threshold should be
reached in one fewer cycle for each probe. The multiplex method should in theory reduce the sources
of uncertainty in the experimental procedure. However, it contains an element of “competition” between
the two probes as they compete for the limited resource whichis the laser. We model this element of
competition through the following bivariate normal structure

(
CM,obs

ND1

CM,obs
ND4

)
∼ N

((
CND1 − 1 + bm
CND4 − 1 + bm

)
,

(
σ2

m ρσ2
m

ρσ2
m σ2

m

))
.

The mean vector of the observations results from the fact that there is twice as much DNA in the mul-
tiplex sample as in the simplex sample and this corresponds to one fewer doubling cycle. We assume
a systematic bias ofbm, which may be different to that from the simplex procedure. We also assume a
fixed variance ofσ2

m and a correlation ofρ. It might be thought that competition would lead to a negative
correlation between the observations and henceρ < 0.

From the above bivariate normal model we have that

∆CM,obs
t = CM,obs

ND4 − CM,obs
ND1 ∼ N

(
CND4 − 1 + bm − CND1 + 1 − bm, 2(1 − ρ)σ2

m

)
,

that is,
∆CM,obs

t ∼ N
(
∆Ct, 2(1 − ρ)σ2

m

)
,

which has the same mean as, but a different variance from,∆Cobs
t . If we further assume that the indi-

vidual measurement error variances are the same in the two procedures, that isσ2
s = σ2

m, then the only
difference in the variances of the observed∆Ct measurements is caused by the correlation in the samples
ρ. In terms of the notation used in the paper, we haveφ−1

1 = 2(1 − ρ)σ2
m. Note that we do not make

the assumption thatσ2
s = σ2

m in the paper and so we have not explicitly estimated the correlation ρ by
ρ = 1 − φ2/φ1.

Thus allowing for different levels of bias in the two sets of measurements results in a measurement error
model which has the same mean in the two experimental techniques, but possibly different variances. The
model does account for technique-specific biases in the measurements but these biases cancel out in the
derivation of the measurement error model. Because the technique-specific biases in the measurements
cancel out in the derivation of the measurement error model,any differences between the means of the
two experimental techniques that may be suggested by the data from Figure 1 in the paper should be due
to random variation according to our model. We have therefore not included an additional technique-
specific bias term into the model.

The data on deletion accumulation are tabulated in Table 1. For example, there are 10 observations
for individual 1, three made using technique 1 (“multiplex”), the other seven made using technique 2
(“simplex”).
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3 Details of MCMC scheme for exact Bayesian calibration

In Section 3.2 of the paper, we state that it is possible to sample from the posterior density of the cali-
bration parametersθ, the measurement error parametersφ and the latent datay using a Markov chain
Monte Carlo scheme, despite the fact that the density of the latent data can not be computed directly. The
details are as follows.

The joint posterior density is given by

π(θ,φ,y|z,x) ∝ π(θ)π(φ)π(y|θ,x)π(z|y,φ),

whereφ = (φ1, φ2)
T. We sample fromπ(θ,φ,y|z,x) using a Metropolis-Hastings within Gibbs pro-

cedure. This entails sampling each unknown quantity or block of related quantities from their full con-
ditional distribution using a Metropolis-Hastings transition kernel when direct sampling is not possible.
We split the scheme into two blocks of full conditionals:φ| · · · andθ,y| · · · , where ‘· · · ’ denotes all
the other variables in the model. Because of our choice of gamma distribution for the precisions we can
sample directly from the full conditional distributionφ| · · · . The full conditional distributionθ,y| · · · is
not available in closed form and so a Metropolis-Hastings step is used. Specifically, at iterationk + 1,

1. sampleφ(k)
j |y,z ∼ Gamma(Cj,Dj), for j = 1, 2, where

Cj = aφj
+

1

2

n∑

i=1

I(oi = j), Dj = bφj
+

1

2

n∑

i=1

{
I(oi = j)(zi − yi)

2
}
,

andI(x) is the indicator function which equals 1 ifx is true and equals 0 otherwise.

2. (a) generate a candidate valueθ̃ from the distribution with transition kernelq(θ̃|θ);
(b) generate a candidate vector of latent dataỹ from the stochastic kinetic model using the candidate

parameter̃θ. This proposal has densityπ(ỹ|θ̃,x).

(c) Setθ(k+1) = θ̃, y(k+1) = ỹ with probabilitymin(1, A), otherwise retain the current values by
settingθ(k+1) = θ(k), y(k+1) = y(k). The acceptance ratio is given by

A =
π(θ̃)

π(θ)

π(ỹ|θ̃,x)

π(y|θ,x)

π(z|ỹ,φ)

π(z|y,φ)

q(θ|θ̃)
q(θ̃|θ)

π(y|θ,x)

π(ỹ|θ̃,x)
=
π(θ̃)

π(θ)

π(z|ỹ,φ)

π(z|y,φ)

q(θ|θ̃)
q(θ̃|θ)

.

Note that proposing the latent datay by using a sample from the computer model means that all terms
involving the density of the latent dataπ(y|θ,x) cancel out of the acceptance ratio. This cancellation
means that computation ofπ(y|θ,x) (which we assume to be prohibitive or impossible) is not required
as part of the MCMC scheme. So, in theory, we can always samplefrom the exact posterior distribution
provided that we can sample from the distribution of the latent data, even when we cannot compute the
density of the latent data. Note also that we can updatey from its full conditional distribution (that is,
not jointly with θ) by using independence proposals from the computer model. In fact, the conditional
independence in the latent data means that we can sample eachyi from its full conditional. However,
we cannot sample from the full conditional forθ because of the presence of the densityπ(y|θ,x) in the
acceptance ratio, and so a joint update of(θ,y) is essential.

4 Further details on experimental design

This section gives more details of the simulation design we adopted for fitting the emulator in Section 4.3
in the paper.
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ThenD-point simulation design we have used is in fact the union of three designs. The first component
design is a24-factorial design on the extreme points of the input space. We take the extreme points for
θ1 andθ2 to be the 0.0005-quantile and 0.9995-quantile of their normal prior distributions; the extreme
points forθ3 are0.5 and1, which are the limits of its uniform prior distribution; andthe extreme points of
x were taken to be 1 and 110. A major consideration with this design is that we would like the emulation
model to be a useful surrogate for the simulation model across the whole prior parameter space, as well
as being able to predict well for a realistic range of ages. The extreme points forθ1 andθ2 contain 99.9%
of the prior probability for each parameter marginally. It is unlikely that we will need predictions for
ages over 110 years, since so few people survive past that age.

The second component design is the Cartesian product of an 8-point Latin hypercube sample forθ, and
the 13 unique ages at which we have observations

x⋆ = (19, 20, 32, 42, 44, 51, 56, 72, 75, 77, 81, 89, 91)T .

Designs based on Latin hypercubes were popularised by McKayet al. (1979) and have become widely
used throughout the computer experiments literature. Theyhave good space-filling properties whilst
maintaining uniform coverage of the univariate inputs; seeSantneret al. (2003) for further details. Our
choice of a Cartesian product of thesex values and a Latin hypercube sample is motivated by Kennedy
and O’Hagan (2001) who comment that it is intuitively reasonable to include thex values at which we
have experimental data into the simulation design.

The third component design consists of a sample of 130 pointsfrom the prior distribution forθ. The
corresponding 130x-inputs are sampled uniformly from the integers{1, 2, . . . , 110}. This design aims to
give good coverage over the support of the prior distribution. The subsequent large number of inter-point
distances may be beneficial when estimating Gaussian process parameters, as pointed out by Rougier
(2001).

5 Integrated emulation and calibration

Given the model for the emulator and the simulation trainingdata, we can construct an integrated
Bayesian model for joint emulation and calibration. The joint posterior density function correspond-
ing to the integrated model is

π(θ,φ,ψη,ψη,η, ξ,ηy, ξy,ρ|z,x,D⋆,W )

∝ π(θ)π(φ)π(η|ψη,D
⋆)π(ξ|ψξ,D

⋆)π(ηy|η,ψη,θ,x
⋆,D⋆)

× π(ξy|ξ,ψξ,θ,x
⋆,D⋆)π(ρ|ηy, ξy,x)π(W |η,y)π(z|y,φ), (1)

in which the uniform joint densities of the GP parametersψη andψξ are subsumed into the proportion-
ality sign.

We use the notationηj = η(uj) andξj = ξ(uj) for j = 1, . . . , nD⋆ , and thereforeη = (η1, . . . , ηnD⋆ )T

andξ = (ξ1, . . . , ξnD⋆ )T. HerenD⋆ is the number of design points at which we have training data.
The density of the latent means and the latent log standard deviations is multivariate normal (from the
definition of a GP), with

π(η|ψη,D
⋆) =

1

(2π)nD⋆/2|Ση|1/2
exp

{
−1

2
(η − µη)T

Σ
−1
η (η − µη)

}

π(ξ|ψξ,D
⋆) =

1

(2π)nD⋆/2|Σξ|1/2
exp

{
−1

2
(ξ −µξ)

T
Σ

−1
ξ (ξ − µξ)

}
,

whereµη, is a vector of lengthnD⋆ with each element equal toψη,1 andΣη is annD⋆ × nD⋆ positive
definite covariance matrix with(i, j)th elementΣη(i, j) = cη(ui,uj); and similarly forξ replacingη.
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The vectors of ‘predictive’ means and log standard deviations corresponding to the unique ages at which
we have observations,x⋆, are denoted byηy = (ηy,1, . . . , ηy,nx⋆ )T andξy = (ξy,1, . . . , ξy,nx⋆ )T, re-
spectively, wherenx⋆ = 13 is the number of unique ages. The conditional densities for these predictive
means and log standard deviations are derived from standardmultivariate normal distribution theory and
the properties of the relevant Gaussian process prior. For example,

ηy|η,ψη,θ,x
⋆,D⋆ ∼ Nnx⋆ (µηy|η

,Σηy |η
),

that isnx⋆-dimensional multivariate normal with conditional mean vector

µηy|η
= µηy

+ Σηy ,ηΣ
−1
η (η − µη),

and conditional covariance matrix

Σηy|η
= Σηy

− Σηy,ηΣ
−1
η Σ

T
ηy,η.

Here,µηy
is a vector of lengthnx⋆ with each element equal toψη,1 andΣηy

is annx⋆ × nx⋆ positive
definite covariance matrix with(i, j)th element

Σηy
(i, j) = cη{(θT, x⋆

i )
T, (θT, x⋆

j )
T},

wherex⋆
i is theith element ofx⋆ andΣηy,η is annx⋆ × nD⋆ matrix with (i, j)th element

Σηy,η(i, j) = cη{(θT, x⋆
i )

T,uj}.

The structure of the density forξy is identical to that ofηy but with an obvious change of notation.

The density of the latent dataρ = (ρ1, . . . , ρn)T is simply the product ofn = 90 independent normal
densities with means and log standard deviations selected from the appropriate predictive means and log
standard deviations, namely

π(ρ|ηy, ξy,x) =

n∏

i=1

1√
2π exp (ξy,I(xi))

exp

{
−

(ρi − ηy,I(xi))
2

2 exp (2ξy,I(xi))

}
,

where the functionI(xi) = {j : xi = x∗j} is needed to map individual agesxi to the unique agesx⋆.

The density of the emulator training data is the product of independent normal densities,

π(W |η, ξ) =

nD⋆∏

j=1

nj∏

k=1

1√
2π exp (ξj)

exp

{
−(wjk − ηj)

2

2 exp (2ξj)

}
.

The densities of the experimental dataπ(z|y,φ), the calibration parametersπ(θ) and the measurement
error parametersπ(φ) follow from the definition of the Bayesian model in Section 3.1 of the paper.

A Metropolis-Hastings within Gibbs scheme can be used to sample values from the joint posterior dis-
tribution (1). Each component value or vector of values is sampled in turn conditional on the current
sampled values of the other components via an appropriate Metropolis-Hastings transition kernel. We
take the transition kernels to be the appropriate dimensionmultivariate normal density centered on the
current sampled value when a Gibbs update is not available. At each iteration of the scheme, the em-
ulation model is constructed by augmenting the design matrix D⋆ with the input corresponding to the
current value ofθ. This feature should lead to an increase in the accuracy of the emulator in regions of
the input space with high posterior support.

However, sampling from the posterior distribution is fairly challenging, and this is due in no small part
to the large number of often highly correlated unknown quantities. Calculations on large matrices are
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required throughout the algorithm and this leads to the algorithm being slow to run. Together with the
long run lengths that are required to sample from such a complex posterior distribution this effectively
prohibits the fitting of the full integrated model in this form.

Separating the emulation stage from the calibration stage breaks down the inference problem into two
more computationally feasible tasks, albeit at the expenseof a lack of shared information and ‘borrowing
of strength’ between the two tasks. In particular, since posterior information about likely values ofθ is no
longer included in the fitting of the emulation model, the emulator is likely to be a slightly less accurate
model for the simulator in regions of the input space with high posterior support. However, the drawback
of this potential small reduction in accuracy is more than compensated by the computational benefits of
teating the emulation and calibration tasks separately.

6 Emulator simulation

The role of the fitted emulation model is to act as a fast substitute for the simulation model in the cali-
bration scheme and for studying output in predictivein silico experiments. Both tasks require predictive
simulations from the fitted emulation model, as outlined below.

Suppose we require simulations atnv input configurationsuv
j , for j = 1, . . . , nv. LetDv denote the

prediction design matrix, withjth row equal touv
j . A sample ofK values from the posterior predictive

distribution of the emulator at these inputs can be obtainedas follows. Fork = 1, . . . ,K

1. sampleψ(k)
η ,ψ

(k)
ξ |η̂, ξ̂ from the joint posterior distribution (equation (5) in the paper);

2. sampleη(k)
v |η̂,ψ(k)

η ,Dv ∼ N
(
µ

(k)
ηv |bη

,Σ
(k)
ηv|bη

)
;

3. sampleξ(k)
v |ξ̂,ψ(k)

ξ ,Dv ∼ N
(
µ

(k)

ξv|
bξ
,Σ

(k)

ξv|
bξ

)
;

4. sampleρ(k)
v,j |η

(k)
v,j , ξ

(k)
v,j ∼ N

(
η

(k)
v,j , exp{2ξ(k)

v,j }
)

, j = 1, . . . , nv.

This procedure returnsK sampled values of the logit transformed proportion of deletions in 25 cells from
ρv,j |η̂, ξ̂,Dv, for j = 1, . . . , nv. In the above,ηv = (ηv,1, . . . , ηv,nv )T andξv = (ξv,1, . . . , ξv,nv)

T. In
step 2, standard multivariate normal distribution theory and the properties of the relevant GP give the
mean vector and covariance matrix as

µ
(k)
ηv|bη

= µ
(k)
ηv

+ Σ
(k)
ηv,bη

(
Σ

(k)
bη

+ exp(ψ
(k)
η,7)I

)−1
(η̂ − µ(k)

bη
),

Σ
(k)
ηv|bη

= Σ
(k)
ηv

− Σ
(k)
ηv,bη

(
Σ

(k)
η + exp(ψ

(k)
η,7)I

)−1 (
Σ

(k)
ηv,bη

)T
,

whereµ(k)
ηv

is annv–vector with each element equal toψ(k)
η,1 , Σ

(k)
ηv

is annv × nv positive definite co-

variance matrix with(i, j)th elementΣ(k)
ηv

(i, j) = cη(u
v
i ,u

v
j ), andΣ

(k)
ηv,bη is annv × nD⋆⋆ matrix with

(i, j)th elementΣ(k)
ηv,bη(i, j) = cη(u

v
i ,uj). Similar results hold for the mean vector and covariance

matrix in step 3.

7 External validation: neuron survival data

The data used for external validation are taken from Table 2(A) in Fearnley and Lees (1991) and comprise
the number of neurons surviving in samples from the caudal substantia nigra of 36 individuals without
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Figure 1: Neuron survival data. Observed number of neurons in the substantia nigra of 36 individuals of
varying ages.

Parkinson’s disease. Figure 1 shows a scatterplot of numberof neurons surviving against the age of these
individuals and indicates that the number of neurons probably decreases with age. Note that the data used
in this paper are a corrected version of that in Fearnley and Lees (1991): the total number of surviving
neurons for the 22-year-old individual is 792, not 692. These (corrected) data are tabulated in Table 2.

We now formulate the observational model for these data and link it with the biological model under
scrutiny.

7.1 Bayesian model

Suppose that individualis hasys
is neurons surviving in the region of their substantia nigra from which the

sample was taken (is = 1, . . . , 36). However, due to observational error, onlyzs
is neurons are recorded

as present. Assuming that each neuron is observed independently with probabilityφs, the observational
model is binomial, that is

zs
is ∼ Bin(ys

is , φs).

We represent our uncertainty about the observation probability parameterφs through a beta distribution

φs ∼ Beta(aφs
, bφs

)

whose parameters are chosen to reflect the belief that the measurement process is reasonably accurate
(aφs

= 90, bφs
= 10; E(φs) = 0.9).

We model the number of neurons in the substantia nigra of theisth individual,ys
is , using the stochastic

kinetic model of mtDNA deletion and cell death described in Section 2 of the paper. Recall that the
marginal distribution ofys

is
is analytically intractable and that, although it is relatively straightforward to

sample from this distribution, such simulation can be time-consuming. To obtain a single realisation of
the true number of neuronsys

is
for individual is using the calibration parameterθ, we must simulateNis

independent realisations from the computer model, one for each substantia nigra neuron that individual
i starts out with at birth. TheNis neurons are simulated until timexs

is
years. If at any time up toxs

is
years, the proportion of deletions in a neuron attains or exceeds the lethal thresholdθ3 then that neuron is
deemed not to have survived. The number of neurons out ofNis that survive till timexs

is is a realisation
of ys

is .
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In order to complete the model description, we need plausible values for theNis , the number of neurons
at birth in the region of the caudal substantia nigra used in the Fearnley and Lees study. Their study
assumes that each individual starts out with the same numberof neurons, so thatNis = N for all is.
They then estimateN to beN∗ = 795 by fitting a straight line to the data(xs,zs) using ordinary least
squares. In the absence of any other information regarding neuron numbers at birth, we model our beliefs
about its value by using a fairly diffuse Poisson distribution (with meanN∗ = 795).

7.2 Emulating the survival output

Obtaining values for theys
is from the simulation model is slow, typically taking tens of minutes. This is

due to having to trace the outcome of a large number of individual neurons, and here we have (roughly)
a 32-fold increase in the number of neurons compared to the earlier analysis. Therefore, we again turn
to the computational advantages of using an emulator.

The key output for the simulation model at inputu = (θT , x)T is the binary outcome describing whether
the neuron has survived until agex (whereS(u) = 1 denotes survival). Letps(u) denote the probability
of survival using inputu. As cells are simulated independently, it follows that the number of surviving
cells in a sample of sizeN is

ys(u) ∼ Bin(N, ps(u)).

This simple parametric model for the output from the simulation model can be used to construct an em-
ulator by assuming the survival probability is a smooth function of the inputsu. As in Section 4.2 of
the paper, we work on an (unconstrained) logit scale and use aGaussian process prior with parameters
ψρs to modelρs(·) = logit{ps(·)}. For reasons of brevity, we omit the details on fitting the emulator
but follow essentially the same procedure as described in Sections 5.1 to 5.3 of the paper. For instance,
we reduce the complexity of the model substantially by fixingthenD = 250 logit-transformed survival
probabilities,ρs, at their estimated values from the simulator output. The reduced and simplified emula-
tion model was fitted using MCMC in a manner analogous to that described in Section 5.2 of the paper.
The fitted model forρs(·), which we denote bŷρs(·), is based on Monte Carlo estimates of the posterior
means ofψρs and on the conditional mean of the Gaussian process, as was the case for the fitted models
for the simulation output on deletion accumulation. We notethat these simplifications in the emulation
model had little effect in terms of its predictive accuracy.

7.3 Model validation

The Bayesian model has the following hierarchical structure:

zs
is |ys

is , φs ∼ Bin(ys
is , φs), is = 1, . . . , 36

ys
is |N,θ, xs

is ∼ Bin(N,expit[ρ̂s{(θT, xs
is)

T}]), is = 1, . . . , 36

φs ∼ Beta(aφs
, bφs

),

N ∼ Poisson(N⋆),

whereρ̂s(·) is the fitted emulation model described in Section 7.2,aφs
= 90, bφs

= 10 andN⋆ = 795.

External validation (or out-of-sample prediction) is performed by simulating from the predictive distri-
bution ofzs

pred|z, xs
is , that is, from the posterior predictive distribution ofzs

is for individual is calculated
using the posterior distribution of the parametersθ from the dataset on deletion accumulation. Realisa-
tions are obtained by first sampling from the posterior distribution whose density is given by equation (6)
in the paper and then, for each individual, simulating from the Bayesian model above. Specifically, for
k = 1, . . . ,K:

9



• sampleθ(k)|z, a sample from the posterior distribution;

• sampleN (k) ∼ Poisson(N⋆);

• sampleφ(k)
s ∼ Beta(aφs

, bφs
);

• sampleys(k)
is

|N (k),θ(k), xs
is ∼ Bin(N (k),expit{ρ̂s[{(θ(k))T, xs

is}T]}), is = 1, . . . , 36;

• samplezs(k)
is

|ys(k)
is

, φ
(k)
s ∼ Bin(y

s(k)
is

, φ
(k)
s ), is = 1, . . . , 36.

Here, sampling from the posterior distribution is achievedby using the converged and thinned output
reported in Section 6.1 of the paper. Thus the predictive sample for each individual consists ofK =
5000 (essentially) uncorrelated values. Figure 5 in the paper displays summaries of these predictive
distributions.
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Table 1: Measurements of deletion accumulation data in 15 individuals. Listed for each samplei is
the experimental technique,oi, the individual on whom the measurement is taken,Ii, the age of the
individual,xi, and the RT-PCR measurement of deletion accumulation,zi.

i oi Ii xi zi i oi Ii xi zi i oi Ii xi zi

1 1 1 19 −0.14343 31 2 4 42 1.1 61 2 10 75 1.19
2 1 1 19 −0.1393 32 2 4 42 0.513 62 2 10 75 1.18
3 1 1 19 −0.01207 33 2 4 42 0.919 63 2 10 75 0.25
4 1 2 20 −0.13376 34 2 5 44 1.676 64 2 11 75 1.052
5 1 2 20 0.21 35 2 5 44 1.078 65 2 11 75 0.896
6 1 2 20 0.15786 36 2 5 44 0.928 66 2 11 75 1.211
7 1 3 32 −0.38716 37 2 5 44 1.645 67 2 11 75 0.95
8 1 3 32 −0.00574 38 2 6 51 1.021 68 2 11 75 1.54
9 1 3 32 0.27586 39 2 6 51 1.142 69 2 12 77 1.397
10 1 5 44 0.51987 40 2 6 51 1.403 70 2 12 77 1.856
11 1 5 44 0.68656 41 2 6 51 0.871 71 2 12 77 2.426
12 1 5 44 1.124 42 2 6 51 0.13 72 2 12 77 1.898
13 1 7 51 −0.23206 43 2 7 51 1.25 73 2 12 77 0.655
14 1 7 51 0.2217 44 2 7 51 −0.918 74 2 13 81 1.481
15 1 7 51 0.24086 45 2 7 51 0.512 75 2 13 81 1.21
16 2 1 19 0.625 46 2 7 51 1.02 76 2 13 81 0.79
17 2 1 19 0.105 47 2 8 56 0.558 77 2 14 89 2.269
18 2 1 19 1.421 48 2 8 56 0.897 78 2 14 89 1.993
19 2 1 19 1.177 49 2 8 56 0.539 79 2 14 89 0.693
20 2 1 19 0.88 50 2 9 72 1.573 80 2 14 89 2.716
21 2 1 19 1.03 51 2 9 72 1.133 81 2 14 89 1.42
22 2 1 19 0.49 52 2 9 72 1.184 82 2 14 89 2.06
23 2 2 20 0.413 53 2 9 72 0.985 83 2 14 89 2.37
24 2 2 20 0.611 54 2 9 72 2.38 84 2 15 91 1.719
25 2 2 20 0.564 55 2 9 72 1.69 85 2 15 91 2.055
26 2 3 32 0.806 56 2 9 72 1.49 86 2 15 91 1.995
27 2 3 32 1.061 57 2 10 75 1.712 87 2 15 91 2.564
28 2 3 32 0.989 58 2 10 75 1.243 88 2 15 91 2.128
29 2 3 32 1.138 59 2 10 75 1.035 89 2 15 91 2.24
30 2 4 42 0.965 60 2 10 75 1.044 90 2 15 91 1.36

Table 2: Neuron survival data. The rows are: individual, agein years, and observed number of neurons.

is 1 2 3 4 5 6 7 8 9 10 11 12
xs

is 21 22 29 31 44 47 53 54 55 56 58 58
zs
is 692 792 695 657 633 583 613 692 653 658 588 544
is 13 14 15 16 17 18 19 20 21 22 23 24
xs

is 60 61 61 65 65 69 70 70 71 75 75 77
zs
is 642 587 585 403 518 702 406 615 558 493 504 390
is 25 26 27 28 29 30 31 32 33 34 35 36
xs

is 78 79 80 81 81 84 85 86 87 89 91 91
zs
is 503 520 556 543 448 648 616 471 540 578 426 394
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