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Developing control theory of gene regulatory networks is one of the significant topics in the field of systems biology, and it is
expected to apply the obtained results to gene therapy technologies in the future. In this paper, a control method using a Boolean
network (BN) is studied. A BN is widely used as a model of gene regulatory networks, and gene expression is expressed by a binary
value (0 or 1). In the control problem,we assume that the concentration level of a part of genes is arbitrarily determined as the control
input. However, there are cases that no gene satisfying this assumption exists, and it is important to consider structural control via
external stimuli. Furthermore, these controls are realized by multiple drugs, and it is also important to consider multiple effects
such as duration of effect and side effects. In this paper, we propose a BNmodel with two types of the control inputs and an optimal
control method with duration of drug effectiveness. First, a BN model and duration of drug effectiveness are discussed. Next, the
optimal control problem is formulated and is reduced to an integer linear programming problem. Finally, numerical simulations
are shown.

1. Introduction

In the field of systems biology, there have been a lot of
studies on modeling, analysis, and control of gene regulatory
networks. Especially, control of gene regulatory networks cor-
responds to therapeutic interventions, which are realized by
radiation, chemotherapy, and so on. In order to develop gene
therapy technologies (see, e.g., [1]) in the future, developing
control theory of gene regulatory networks is important.
Furthermore, in recent years, the important result on control
of gene regulatory networks has been obtained in [2]. That
is, feedback control of synthetic biological circuits has been
implemented, and the experimental result in which cellular
behavior is regulated by control has been obtained.This result
suggests that control methods of gene regulatory networks
can be realized.Motivated by the above background, we study
control methods of gene regulatory networks.

Gene regulatory networks are in general expressed by
ordinary/partial differential equations with high nonlinearity
and high dimensionality. In order to deal with such a system,
it is important to consider a simple model, and various
models such as Bayesian networks, Boolean networks (BNs)

[3], hybrid systems (piecewise affine models), and Petri nets
have been developed so far (see, e.g., [4] for further details).
In control problems, BNs and hybrid systems are frequently
used [5–8]. In the hybrid systems-based approach, the class
of gene regulatory networks are limited to low-dimensional
systems, because the computation time to solve the control
problem is too long. In a BN, dynamics such as interactions
between genes are expressed by the Boolean functions [3];
that is, gene expression is expressed by a binary value (0
or 1). There is a criticism that a Boolean network is too
simple as a model of gene regulatory networks (see, e.g.,
[9]), but this model can be relatively applied to large-scale
systems. In addition, since the behavior of gene regulatory
networks is stochastic by the effects of noise, it is appropriate
that a Boolean function is randomly decided at each time
among the candidates of the Boolean functions. From this
viewpoint, a probabilistic Boolean network (PBN) has been
proposed in [10]. Furthermore, a context-sensitive PBN (CS-
PBN) in which the deciding time is randomly selected has
been proposed as a general form of PBNs [11, 12].

Furthermore, in the control theory of gene regulatory
networks, the control input is given by the concentration level
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of a part of genes; that is, we assume that the concentration
level of a part of genes can be arbitrarily determined. How-
ever, in the case where this assumption is not satisfied, it is
important to consider structural control via external stimuli
[13, 14]. These controls are realized by multiple drugs, and it
is also important to consider multiple effects such as duration
of effect and side effects [15]. To our knowledge, a unified
method considering these properties has not been proposed
so far.

Thus, in this paper, we propose a BNmodelwith two types
of the control inputs and an optimal control method with
duration of drug effectiveness. The first control input is the
control input satisfying the assumption that the binary value
is arbitrarily determined. The second control input is called
a structural control input herein, and the dynamics, that is,
the Boolean functions, are selected among the candidates of
the dynamics. However, it is difficult to uniquely select one
Boolean function. Hence, we suppose that one Boolean func-
tion is selected probabilistically, and the probability distribu-
tion is switched by using the structural control input. A struc-
tural control method has been discussed in [13, 14], but the
notion of the structural control input defined in this paper is
different from that in those existing methods. Since the pro-
posed BN model has a switch of the probability distribution,
it may be regarded as a generalized version of PBNs.

In optimal control of PBNs and CS-PBNs, many results
have been obtained so far (see, e.g., [11, 12, 16–21]). In many
existing results, state transition diagrams with 2

𝑛 nodes (i.e.,
2
𝑛

×2
𝑛 transition probability matrices) must be computed for

a PBN with 𝑛 states. As a result, in order to compute state
transition diagrams, several issues such asmemory consump-
tionmust be considered in implementation, and it is desirable
to directly use a given Boolean function. The authors have
proposed in [22] a control method in which state transition
diagrams are not computed. Inmany existing results, we con-
sider finding a control input such that the expected value of
the cost function is minimized. In [22], we consider finding a
control input such that the lower bound of the cost function
is minimized under a certain constraint condition. Owing to
this difference, state transition diagrams are not computed
in the method in [22], and the optimal control problem is
reduced to an integer linear programming (ILP) problem.
Also in [16], ILP-based methods were proposed for other
optimal control problems, and in those methods, solving
multiple ILP problems is required.

In this paper, based on our previously proposed method
[22], the optimal control problemwith duration of drug effec-
tiveness is reduced to an ILP problem. Since a given Boolean
function is directly used, duration of drug effectiveness can
be easily described as a linear inequality constraint. The
proposed method provides us with a basic in control theory
of gene regulatory networks. The conference paper [23] is a
preliminary version of this paper. In this paper, we provide
improved formulations and explanations, a discussion on
duration of drug effectiveness, and a numerical simulation
using the large-scale BN.

This paper is organized as follows. In Section 2.1, the
Boolean networks with two kinds of the control inputs are

proposed. In Section 2.2, duration of drug effectiveness is
introduced. In Section 2.3, the optimal control problem is
formulated. In Section 2.4, its solution method is proposed.
In Section 3, two numerical examples are presented. In
Section 4, we conclude this paper.

Notation. Let R denote the set of real numbers. Let {0, 1}
𝑛

denote the set of 𝑛-dimensional vectors, which consists of
elements 0 and 1. Let 𝐼

𝑛
and 0

𝑚×𝑛
denote the 𝑛 × 𝑛 identity

matrix and the𝑚×𝑛 zero matrix, respectively. For simplicity,
we sometimes use the symbol 0 instead of 0

𝑚×𝑛
and and the

symbol 𝐼 instead of 𝐼
𝑛
. For a matrix 𝑀, ln𝑀 denotes the

matrix such that the (𝑖, 𝑗)th element is given as the natural
logarithm of the (𝑖, 𝑗)th element in 𝑀. For a matrix 𝑀, 𝑀𝑇
denotes the transpose of 𝑀.

2. Materials and Methods

2.1. The Boolean Networks with Control Inputs. A Boolean
network (BN) with 𝑛 states is given by

𝑥 (𝑘 + 1) = 𝑓
𝑎
(𝑥 (𝑘)) , (1)

where 𝑥 ∈ {0, 1}
𝑛 is the state (e.g., the concentration of

genes) and 𝑘 = 0, 1, 2, . . . is the discrete time. The function
𝑓
𝑎

: {0, 1}
𝑛

→ {0, 1}
𝑛 is a given Boolean function with

logical operators such as AND (∧), OR (∨), and NOT (¬).
If the BN (1) is deterministic, then the next state 𝑥(𝑘 + 1) is
uniquely determined for a given 𝑥(𝑘). See also Example 1 for
an example.

Next, the control inputs are added to a BN (1). For the BN
(1) with 𝑛 state, consider two types of the control inputs. First,
in a similar way to that of the conventional control method,
the control input is added to the BN (1) as follows:

𝑥 (𝑘 + 1) = 𝑓 (𝑥 (𝑘) , 𝑢 (𝑘)) , (2)

where 𝑢 ∈ {0, 1}
𝑚 is the control input; that is, the value of

𝑢 (e.g., the concentration of genes) can be arbitrarily given,
and 𝑓 : {0, 1}

𝑛

× {0, 1}
𝑚

→ {0, 1}
𝑛 is a given Boolean

function. The 𝑖th element of the state 𝑥 and the 𝑖th element
of the control input 𝑢 are denoted by 𝑥

𝑖
and 𝑢

𝑖
, respectively.

In the BN (2), 𝑥(𝑘 + 1) is uniquely determined for the given
𝑥(𝑘) and 𝑢(𝑘).

Then, consider the structural control input. Suppose that
the candidates of 𝑓 are given by 𝑓

𝑖
, 𝑖 = 1, 2, . . . , 𝑙. It

will be difficult to select one Boolean function uniquely. In
this paper, we assume that one discrete probability distribu-
tion is selected among 𝑚

𝑠
discrete probability distributions.

Probabilistic distributions are derived from experimental
results, but details are one of the future works. Then, a
method for inferring a probabilistic Boolean network will be
useful (see, e.g., [24]). Let 𝑟

𝑖,𝑗
denote the probability that the

Boolean function 𝑓
𝑗
is selected in the 𝑖th discrete probability

distribution. Then,

𝑙

∑

𝑗=1

𝑟
𝑖,𝑗

= 1, 𝑖 = 1, 2, . . . , 𝑚
𝑠
, (3)
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Figure 1: A simplified model of an apoptosis network: activation
(solid) and inhibition (broken).

hold. In addition, 𝑚
𝑠
-dimensional binary variables 𝑢

𝑠

∈

{0, 1}
𝑚
𝑠 are assigned to 𝑚

𝑠
discrete probability distributions,

and let 𝑢𝑠
𝑖
denote the 𝑖th element of 𝑢𝑠. The structural control

input 𝑢
𝑠 corresponds to 𝑚

𝑠
kinds of external stimuli. Then,

the equality constraint
𝑚
𝑠

∑

𝑖=1

𝑢
𝑠

𝑖
(𝑘) = 1 (4)

is imposed. Here, we show a simple example.

Example 1. As a simple example, consider the simplified
model of an apoptosis network in Figure 1 [25]. Then, the
Boolean network model expressing this apoptosis network is
given by

𝑥
1
(𝑘 + 1) = ¬𝑥

2
(𝑘) ∧ 𝑢 (𝑘) ,

𝑥
2
(𝑘 + 1) = ¬𝑥

1
(𝑘) ∧ 𝑥

3
(𝑘) ,

𝑥
3
(𝑘 + 1) = 𝑥

2
(𝑘) ∨ 𝑢 (𝑘) ,

(5)

where the concentration level (high or low) of the inhibitor of
apoptosis proteins (IAPs) is denoted by 𝑥

1
, the concentration

level of the active caspase 3 (C3a) is denoted by 𝑥
2
, and

the concentration level of the active caspase 8 (C8a) is
denoted by 𝑥

3
. The concentration level of the tumor necrosis

factor (TNF, a stimulus) is denoted by 𝑢 and is regarded as
the control input. Since the caspase C3a is responsible for
cleaving or breaking many other proteins, a high level of the
C3a concentration, that is, 𝑥

2
= 1, implies cell near-death,

otherwise, cell survival. As seen in (5), if the concentration
of IAP is high (𝑥

1
= 1) or the concentration of the caspase

C8a is low (𝑥
3
= 0), then the concentration of C3a becomes

low; that is, 𝑥
2
= 0. On the other hand, 𝑥

1
and 𝑥

3
at the next

time depend on the value of 𝑥
2
as well as 𝑢. In this way, some

dynamical interactions exist. See [25, 26] for further details.
Suppose that 𝑙 = 2 and 𝑚

𝑠
= 2. Then, as an example

of the candidates of the Boolean functions, we consider the
following:

𝑓
1
= [

[

¬𝑥
2
(𝑘) ∧ 𝑢 (𝑘)

¬𝑥
1
(𝑘) ∧ 𝑥

3
(𝑘)

𝑥
2
(𝑘) ∨ 𝑢 (𝑘)

]

]

, 𝑟
1,1

= 0.8, 𝑟
2,1

= 0.1,

𝑓
2
= [

[

𝑥
1
(𝑘)

𝑥
2
(𝑘)

𝑥
3
(𝑘)

]

]

, 𝑟
1,2

= 0.2, 𝑟
2,2

= 0.9.

(6)

We suppose that the Boolean function 𝑓
1
expresses the

situation that the dynamics of an apoptosis network are
selected with high probability and that the Boolean function
𝑓
2
expresses the situation that the state is not changed with

high probability. By using 𝑢
𝑠

1
and 𝑢

𝑠

2
, one of the two discrete

probability distributions {𝑟
1,1

, 𝑟
1,2

} and {𝑟
2,1

, 𝑟
2,2

} is selected at
each time.

A BN with two types of the control inputs includes the
probabilistic behavior, and we assume that the probability
distribution can be controlled. From these facts, a BN studied
in this paper can be regarded as a generalized form of a
probabilistic Boolean network (PBN). To explain the relation
between the proposed BN model and a PBN, we show a
simple example.

Example 2. As a simple example, consider the PBN with
three states and one control input. Suppose that the Boolean
functions are given as follows:

𝑥
1
(𝑘 + 1) = {

𝑥
3
(𝑘) ∨ 𝑢 (𝑘) , with the probability 0.8,

¬𝑥
3
(𝑘) , with the probability 0.2,

𝑥
2
(𝑘 + 1) = 𝑥

1
(𝑘) ∧ ¬𝑥

3
(𝑘) ,with the probability 1.0,

𝑥
3
(𝑘 + 1) = {

𝑥
1
(𝑘) ∧ ¬𝑥

2
(𝑘) , with the probability 0.7,

𝑥
2
(𝑘) ∨ 𝑢 (𝑘) , with the probability 0.3.

(7)

This PBN corresponds to the cases of 𝑙 = 4 and 𝑚
𝑠
= 1. The

candidates of the Boolean functions 𝑓
𝑖
, 𝑖 = 1, 2, 3, 4, and the

probabilities 𝑟
1,𝑗
, 𝑗 = 1, 2, 3, 4, are obtained as follows:

𝑓
1
= [

[

𝑥
3
(𝑘) ∨ 𝑢 (𝑘)

𝑥
1
(𝑘) ∧ ¬𝑥

3
(𝑘)

𝑥
1
(𝑘) ∧ ¬𝑥

2
(𝑘)

]

]

, 𝑟
1,1

= 0.56,

𝑓
2
= [

[

𝑥
3
(𝑘) ∨ 𝑢 (𝑘)

𝑥
1
(𝑘) ∧ ¬𝑥

3
(𝑘)

𝑥
2
(𝑘) ∨ 𝑢 (𝑘)

]

]

, 𝑟
1,2

= 0.24,

𝑓
3
= [

[

¬𝑥
3
(𝑘)

𝑥
1
(𝑘) ∧ ¬𝑥

3
(𝑘)

𝑥
1
(𝑘) ∧ ¬𝑥

2
(𝑘)

]

]

, 𝑟
1,3

= 0.14,

𝑓
4
= [

[

¬𝑥
3
(𝑘)

𝑥
1
(𝑘) ∧ ¬𝑥

3
(𝑘)

𝑥
2
(𝑘) ∨ 𝑢 (𝑘)

]

]

, 𝑟
1,4

= 0.06.

(8)

Next, consider the state orbit of this PBN. In PBNs, one
Boolean function is probabilistically selected at each time.
Then, for 𝑥(0) = [0 0 0]

𝑇 and 𝑢(0) = 0, we obtain the
following:

Prob (𝑥 (1) = [0 0 0]
𝑇

| 𝑥 (0) = [0 0 0]
𝑇

) = 0.8,

Prob (𝑥 (1) = [1 0 0]
𝑇

| 𝑥 (0) = [0 0 0]
𝑇

) = 0.2.

(9)

In this example, the cardinality of the finite state set {0, 1}3 is
given by 2

3

= 8, and we obtain the state transition diagram of
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Figure 2: The state transition diagram with 𝑢(𝑘) = 0.

Figure 2 by computing the transition from each value of the
state. In Figure 2, the number assigned to each node denotes
𝑥
1
, 𝑥
2
, and 𝑥

3
(each element of the state), and the number

assigned to each arc denotes the transition probability from
some state to another state. For simplicity of illustration, the
state transitions from𝑥(𝑘) = [0 0 0]

𝑇, [0 0 1]
𝑇, [0 1 0]

𝑇,
[1 1 0]

𝑇 are illustrated in Figure 2. In the existing solution
methods for optimal control of PBNs, the optimal control
input is computed using dynamic programming with state
transition diagrams.

As shown in this example, computing state transition dia-
grams with 2

𝑛 nodes (𝑛 is the number of the state) is required
in the existing solution methods for optimal control of PBNs
with 𝑛 states, and this computation is hard for large-scale
systems (see also Section 3.2). Thus, it is important to con-
sider a new solution method. In this paper, for BNs with two
types of the control inputs, a solution method using integer
programming is proposed based on our previously proposed
work in [22]. In the proposed method, computation of state
transition diagrams such as that in Figure 2 is not needed.

Remark 3. By adding the candidates of the Boolean func-
tions, BNs with two types of the control inputs can be
transformed into BNs with only the structural control input.
That is, the control input 𝑢 can be eliminated from (2) by
fixing the value of𝑢 in (2).Then, the number of the candidates
of Boolean functions is 2𝑚𝑙, and 2

𝑚 combinations for 𝑢 must
be computed in advance. To avoid this computation, we
consider two types of the control inputs.

2.2. Duration of Drug Effectiveness. The control input 𝑢 and
the structural control input 𝑢𝑠 are realized by using multiple
drugs. Then, we must consider the multiple effects such as
duration of effect and the side effects. In this paper, we
focus on the duration of drug effectiveness. In, for example,
chemotherapy, therapeutic intervention is generally applied
to the target cell in a cyclic manner [15]. Each therapeutic
window is started by delivering the drug. The drug delivered

is effective on the target cell for some period of time. This
is followed by a recovery phase. However, when the drug is
not delivered, the drug may be delivered in the timing that
is faster than the next time in a cyclic [15]. Therefore, it is
necessary to model several situations on duration of drug
effectiveness. To model the duration of effect, three parame-
ters 𝐿

𝑢
𝑖

,𝑊
1

𝑢
𝑖

, and𝑊
0

𝑢
𝑖

are defined for each input 𝑢
𝑖
(or 𝑢𝑠
𝑖
).The

parameters 𝐿
𝑢
𝑖

and 𝑊
1

𝑢
𝑖

have been already defined in [15].
The parameter 𝐿

𝑢
𝑖

is the length of the drug effectiveness
period. That is, if 𝑢

𝑖
(𝑘) = 1, then 𝑢

𝑖
(𝑘 + 1) = 𝑢

𝑖
(𝑘 + 2) = ⋅ ⋅ ⋅ =

𝑢
𝑖
(𝑘+𝐿

𝑢
𝑖

) = 1 holds. Next,𝑊1
𝑢
𝑖

(> 𝐿
𝑢
𝑖

) is explained. If 𝑢
𝑖
(𝑘) =

1, then 𝑢
𝑖
(𝑘+1), 𝑢

𝑖
(𝑘+2), . . . , 𝑢

𝑖
(𝑘 + 𝑊

1

𝑢
𝑖

−1) is uniquely deter-
mined depending on𝐿

𝑢
𝑖

, and𝑢
𝑖
(𝑘+𝑊

1

𝑢
𝑖

) is a decision variable.
Then, 𝑊1

𝑢
𝑖

− 𝐿
𝑢
𝑖

− 1 corresponds to the length of a recovery
phase. Finally, 𝑊0

𝑢
𝑖

is explained. If 𝑢
𝑖
(𝑘) = 0, then 𝑢

𝑖
(𝑘 + 1) =

𝑢
𝑖
(𝑘 + 2) = ⋅ ⋅ ⋅ = 𝑢

𝑖
(𝑘 + 𝑊

0

𝑢
𝑖

− 1) = 0 holds, and 𝑢
𝑖
(𝑘 + 𝑊

0

𝑢
𝑖

)

is a decision variable. By using 𝐿
𝑢
𝑖

,𝑊
1

𝑢
𝑖

,𝑊
0

𝑢
𝑖

, we can consider
several situations, and we show two typical examples.

Example 4. First, suppose that, for the control input 𝑢 ∈

{0, 1}
1, 𝐿
𝑢
, 𝑊1
𝑢
, and 𝑊

0

𝑢
are given as 𝐿

𝑢
= 1, 𝑊1

𝑢
= 3, and

𝑊
0

𝑢
= 2, respectively. Consider the case of 𝑢(𝑘) = 1. Then,

𝑢(𝑘 + 1) and 𝑢(𝑘 + 2) are uniquely determined as 𝑢(𝑘 + 1) = 1

and 𝑢(𝑘 + 2) = 0, respectively, and 𝑢(𝑘 + 3) is a decision
variable. Then, 𝑢(𝑘 + 2) = 0 is the recovery phase, and
𝑊
1

𝑢
− 𝐿
𝑢
− 1 = 1 is its length. In the case of 𝑢(𝑘) = 0, the

relation 𝑢(𝑘+1) = 0 holds, and 𝑢(𝑘+2) is a decision variable.
Another example is shown. Suppose that, for the control

input𝑢 ∈ {0, 1}
1,𝐿
𝑢
,𝑊1
𝑢
, and𝑊

0

𝑢
are given as𝐿

𝑢
= 0,𝑊1

𝑢
= 3,

and 𝑊
0

𝑢
= 3, respectively. In both, the case of 𝑢(𝑘) = 1 and

the case of 𝑢(𝑘) = 0, 𝑢(𝑘+1) = 𝑢(𝑘+2) = 0 holds, and 𝑢(𝑘+3)

is a decision variable. In this case, 𝑢(𝑘 + 1) = 𝑢(𝑘 + 2) = 0 is
the recovery phase, and 𝑊

1

𝑢
− 𝐿
𝑢
− 1 = 2 is its length.

By using the three parameters 𝐿
𝑢
𝑖

,𝑊
1

𝑢
𝑖

, and 𝑊
0

𝑢
𝑖

, several
situations on the duration of effect can be modeled (see also
[15]). In addition, since these parameters can be given for each
𝑢
𝑖
(or 𝑢
𝑠

𝑖
), effectiveness of multiple drugs can be evaluated.

Thus, in this paper, we consider not only two types of the
control inputs but also duration of drug effectiveness.

2.3. Optimal Control Problem. First, the following two nota-
tions are defined. Let 𝜋

𝑖
(𝑘) denote the probability that some

Boolean function 𝑓
𝑖
is selected at time 𝑘. In addition, the

probability that some time sequence of theBoolean functions
𝑓
𝑖(𝑘
1
)
, 𝑓
𝑖(𝑘
1
+1)

, . . . , 𝑓
𝑖(𝑘
2
)
is selected at time interval [𝑘

1
, 𝑘
2
] is

denoted by

𝜋 (𝑘
1
, 𝑘
2
) :=

𝑘
2

∏

𝑘=𝑘
1

𝜋
𝑖(𝑘)

(𝑘) . (10)

For simplicity of notation, 𝑖(𝑘
1
), 𝑖(𝑘
1
+1), . . . , 𝑖(𝑘

2
) are omitted

in 𝜋(𝑘
1
, 𝑘
2
).

Next, for the Boolean networks with 𝑛 states and two
types of the control inputs, consider the following optimal
control problem.
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Problem 1. Suppose that, for the Boolean network with 𝑛

states and two types of the control inputs, the initial state
𝑥(0) = 𝑥

0
, 𝜌 satisfying 0 ≤ 𝜌 ≤ 1, the control time 𝑁, the

parameters on duration of drug effectiveness 𝐿
𝑢
𝑖
(𝑢
𝑠

𝑖
)
,𝑊
1

𝑢
𝑖
(𝑢
𝑠

𝑖
)
,

and 𝑊
0

𝑢
𝑖
(𝑢
𝑠

𝑖
)
are given. Then, for all combinations of the

Boolean functions satisfying the constraint

𝜋 (0,𝑁 − 1) ≥ 𝜌, (11)

find two control input sequences 𝑢(0), 𝑢(1), . . . , 𝑢(𝑁−1) and
𝑢
𝑠

(0), 𝑢
𝑠

(1), . . . , 𝑢
𝑠

(𝑁 − 1) minimizing the lower bound of
the cost function

𝐽 =

𝑁−1

∑

𝑘=0

{𝑄𝑥 (𝑘) + 𝑅𝑢 (𝑘) + 𝑅
𝑠
𝑢
𝑠

(𝑘)} + 𝑄
𝑓
𝑥 (𝑁) (12)

subject to the constraint on duration of drug effectiveness,
where 𝑄,𝑄

𝑓
∈ R1×𝑛, 𝑅 ∈ R1×𝑚, and 𝑅 ∈ R1×𝑚𝑠 are weight-

ing vectors whose elements are nonnegative real numbers.

For simplicity of discussion, a linear functionwith respect
to 𝑥, 𝑢, and 𝑢

𝑠 is considered as a cost function. We consider
that a linear cost function is appropriate from the following
two reasons.

(i) For a binary variable 𝛿 ∈ {0, 1}, the relation 𝛿
2

= 𝛿

holds.That is, in the cost function, the quadratic term
such as 𝑥2

𝑖
(𝑘) is not necessary.

(ii) In control of gene regulatory networks, the expression
of a certain gene is frequently focused (see, e.g., [18]).
For example, in the gene regulatory network related to
melanoma, it important to inhibit the concentration
level of the gene WNT5A [27]. In this case, it is
enough to consider the cost function (12).

Furthermore, in many existing methods on optimal control
of PBNs, the expected value of a nonnegative function is
frequently used as a cost function (see, e.g., [11, 12, 17–
21]). However, the expected value of the state must be
computed from all combinations of the Boolean functions,
and this computation is hard for large-scale systems. To
avoid this computation, in this paper, we evaluate the control
performance by using the lower bound. If the constraint (11)
is not included in Problem 1, then the behaviors are regarded
as uncertain (nondeterministic) behaviors, and the best
performance is derived in Problem 1. Since the combinations
of the Boolean functions selected with low probability are
included, performance evaluation is not appropriate. In order
to exclude such combinations, we impose the constraint
(11). Similar problem formulations have been considered
in optimal control of stochastic hybrid systems (see, e.g.,
[28–30]). Thus, since the performance index in this paper
is different from that in existing methods, it is difficult to
directly compare the performance of the proposed method
with those of existingmethods. On the other hand, in [22], we
discussed this topic from the qualitative viewpoint. In [22],
the upper bound is also computed by using the control input
such that the lower bound is minimized. If the lower bound
and the upper bound are not improved by control, then

the expected value will not be improved.Then, it is important
to suitably set 𝜌 in the constraint (11). See [22] for further
details.

We show an example for setting weighting vectors from
the biological viewpoint.

Example 5. Consider the Boolean network expressing an
apoptosis network in Example 1 again. For this system, we
consider finding a control strategy such that a stimulus 𝑢 is
not applied as much as possible, and cell survival is achieved;
𝑢 = 0 implies that a stimulus is not applied to the system, and
𝑥
1
= 1 and 𝑥

2
= 0 express cell survival [25]. Then, as one of

the appropriate cost functions, we can consider the following
cost function:

𝐽 =

𝑁−1

∑

𝑖=0

{10
𝑥1 (𝑖) − 1

 + 10
𝑥2 (𝑖) − 0

 + 𝑢 (𝑖)}

+ 100
𝑥1 (𝑁) − 1

 + 100
𝑥2 (𝑁) − 0

 .

(13)

By the coordinate transformation of 𝑥
1
into 1 − 𝑥

1
, this cost

function can be rewritten as the form of (12).

2.4. Solution Method. We propose a solution method for
Problem 1. First, two lemmas are introduced as preparations.
Next, Problem 1 is reduced to an integer linear programming
(ILP) problem.

As preparations, two lemmas are introduced. To reduce
Problem 1 to an ILP problem, it is necessary to transform a
Boolean function into a polynomial on the real number field.
First, the following lemma [31] is used.

Lemma6. Consider the two binary variables 𝛿
1
, and 𝛿

2
.Then,

the following relations hold:

(i) ¬𝛿
1
is equivalent to 1 − 𝛿

1
,

(ii) 𝛿
1
∨ 𝛿
2
is equivalent to 𝛿

1
+ 𝛿
2
− 𝛿
1
𝛿
2
,

(iii) 𝛿
1
∧ 𝛿
2
is equivalent to 𝛿

1
𝛿
2
.

For example, 𝛿
1
∨ ¬𝛿
2
is equivalently transformed into 𝛿

1
+

(1−𝛿
2
)−𝛿
1
(1−𝛿
2
) = 1−𝛿

2
+𝛿
1
𝛿
2
. Furthermore, the product

of binary variables such as 𝛿
1
𝛿
2
can be linearized by using the

following lemma [32].

Lemma 7. Suppose that the binary variables 𝛿
𝑗

∈ {0, 1} and
𝑗 ∈ J are given, whereJ is some index set. Then, 𝑧 = ∏

𝑗∈J𝛿
𝑗

is equivalent to the following linear inequalities:

∑

𝑗∈J

𝛿
𝑗
− 𝑧 ≤ |J| − 1, −∑

𝑗∈J

𝛿
𝑗
+ |J| 𝑧 ≤ 0, (14)

where |J| is the cardinality ofJ.

From Lemmas 6 and 7, we see that any Boolean function
can be equivalently transformed into a pair of some linear
function and some linear inequality. See [31, 32] for further
details. For example, 𝛿

1
∨¬𝛿
2
is equivalent to a pair of 1−𝛿

2
+𝑧

and 𝑧 = 𝛿
1
𝛿
2
. By using Lemma 7, 𝑧 = 𝛿

1
𝛿
2
can be expressed

as a set of linear inequalities.
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Now, we consider reducing Problem 1 to an ILP problem.
By using Lemma 6, the candidates of the Boolean func-

tions 𝑓
𝑖
(𝑥(𝑘), 𝑢(𝑘)), 𝑖 = 1, 2, . . . , 𝑙, are transformed into a

polynomial on the real number field. Let𝑓
𝑖
(𝑥(𝑘), 𝑢(𝑘))denote

the polynomial obtained.Then, consider the following system
using 𝑓

𝑖
(𝑥(𝑘), 𝑢(𝑘)):

𝑥 (𝑘 + 1) =

𝑙

∑

𝑖=1

{𝛿
𝑖
(𝑘) 𝑓
𝑖
(𝑥 (𝑘) , 𝑢 (𝑘))} , (15)

where 𝛿
1
(𝑘), 𝛿
2
(𝑘), . . . , 𝛿

𝑙
(𝑘) are binary variables satisfying

𝑙

∑

𝑖=1

𝛿
𝑖
(𝑘) = 1. (16)

The binary vector 𝛿(𝑘) := [𝛿
1
(𝑘) 𝛿

2
(𝑘) ⋅ ⋅ ⋅ 𝛿

𝑙
(𝑘)]
𝑇 is used to

select the polynomial 𝑓
𝑖
and to express (11) as a linear form.

Here, we define the following vector:

𝑆
𝑖
:= [𝑟
𝑖,1

𝑟
𝑖,2

⋅ ⋅ ⋅ 𝑟
𝑖,𝑙
] . (17)

Then, by using the natural logarithm, 𝜋(0,𝑁 − 1) in (11) is
expressed as

ln𝜋 (0,𝑁 − 1) =

𝑁−1

∑

𝑘=0

(

𝑚
𝑠

∑

𝑖=1

ln 𝑆
𝑖
𝑢
𝑠

𝑖
(𝑘)) 𝛿 (𝑘) . (18)

In this expression, one probability distribution is selected
by using 𝑢

𝑠

𝑖
(𝑘), and the probability that a certain Boolean

function is selected is determined by 𝛿(𝑘). Then, Problem 1
is equivalent to the following problem.

Problem A.

find 𝑢 (𝑘) , 𝑢
𝑠

(𝑘) , 𝛿 (𝑘) , 𝑘 = 0, 1, . . . , 𝑁 − 1,

min Cost function (12) ,

subject to System (15) , 𝑥 (0) = 𝑥
0
,

Inequality constraint:

𝑁−1

∑

𝑘=0

(

𝑚
𝑠

∑

𝑖=1

ln 𝑆i𝛿
𝑠

i (𝑘)) 𝛿 (𝑘) ≥ ln 𝜌,

Equality constraint (4) , (16) ,

Constraint on duration of drug effectiveness.
(19)

By using Lemma 7, the system (15) and (∑
𝑚
𝑠

𝑖=1
ln 𝑆
𝑖
𝛿
𝑠

𝑖
(𝑘))𝛿(𝑘)

can be equivalently expressed in the following linear form:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵
𝑢
𝑢 (𝑘) + 𝐵

𝑠
𝑢
𝑠

(𝑘) + 𝐵
𝑏
𝑧
𝑏
(𝑘) , (20)

(

𝑚
𝑠

∑

𝑖=1

ln 𝑆
𝑖
𝛿
𝑠

𝑖
(𝑘)) 𝛿 (𝑘) =

𝑚
𝑠

∑

𝑖=1

ln 𝑆
𝑖
𝑧
𝑠

𝑖
(𝑘) , (21)

𝐸𝑥 (𝑘) + 𝐹
𝑢
𝑢 (𝑘) + 𝐹

𝑠
𝑢
𝑠

(𝑘) + 𝐹
𝑧
𝑧 (𝑘) ≤ 𝐺, (22)

where 𝑧
𝑠

𝑖
(𝑘) := 𝛿

𝑠

𝑖
(𝑘)𝛿(𝑘), and (22) is the linear inequality

obtained by applying Lemma 7 to (15). The vector 𝑧
𝑏
(𝑘) ∈

{0, 1}
𝑏 is an auxiliary binary variable obtained by using

Lemma 7, and the dimension of 𝑧
𝑏
(𝑘), that is, 𝑏, is determined

depending on the form of the given Boolean functions. In
addition, 𝑧(𝑘) is defined as

𝑧 (𝑘) := [(𝑧
𝑏
(𝑘))
𝑇

(𝑧
𝑠

1
(𝑘))
𝑇

(𝑧
𝑠

2
(𝑘))
𝑇

⋅ ⋅ ⋅ (𝑧
𝑠

𝑚
𝑠

(𝑘))
𝑇

]

𝑇

∈ {0, 1}
𝑏+𝑚
𝑠
𝑙

.

(23)

Here in after, for simplicity of notation, 𝐵
𝑏
𝑧
𝑏
(𝑘) is rewritten

as 𝐵
𝑧
𝑧(𝑘), 𝐵

𝑧
:= [𝐵

𝑏
0], and ∑

𝑚
𝑠

𝑖=1
ln 𝑆
𝑖
𝑧
𝑠

𝑖
(𝑘) is rewritten as

𝐶𝑧(𝑘), 𝐶 := [0 ln 𝑆
1
ln 𝑆
2

⋅ ⋅ ⋅ ln 𝑆
𝑚
𝑠

].
Now, we consider transforming Problem A by using (20),

(21), and (22). By using

𝑥 (𝑘) = 𝐴
𝑘

𝑥
0
+

𝑘

∑

𝑖=1

𝐴
𝑖−1

(𝐵
𝑢
𝑢 (𝑘 − 𝑖) + 𝐵

𝑠
𝑢
𝑠

(𝑘 − 𝑖) + 𝐵
𝑧
𝑧 (𝑘))

(24)

obtained from the state equation in (20), we can obtain

𝑥 = 𝐴𝑥
0
+ 𝐵
𝑢
𝑢 + 𝐵
𝑠
𝑢
𝑠
+ 𝐵
𝑧
𝑧, (25)

where

𝑥 := [(𝑥 (0))
𝑇

(𝑥 (1))
𝑇

⋅ ⋅ ⋅ (𝑥 (𝑁))
𝑇

]
𝑇

,

𝑢 := [(𝑢 (0))
𝑇

(𝑢 (1))
𝑇

⋅ ⋅ ⋅ (𝑢 (𝑁 − 1))
𝑇

]
𝑇

,

𝑢
𝑠
:= [(𝑢

𝑠

(0))
𝑇

(𝑢
𝑠

(1))
𝑇

⋅ ⋅ ⋅ (𝑢
𝑠

(𝑁 − 1))
𝑇

]
𝑇

,

𝑧 := [(𝑧 (0))
𝑇

(𝑧 (1))
𝑇

⋅ ⋅ ⋅ (𝑧 (𝑁 − 1))
𝑇

]
𝑇

,

𝐴 =

[
[
[
[
[
[

[

𝐼

𝐴

𝐴
2

...
𝐴
𝑁

]
]
]
]
]
]

]

, 𝐵 =

[
[
[
[
[
[
[

[

0 0 ⋅ ⋅ ⋅ 0

𝐼 0 ⋅ ⋅ ⋅ 0

𝐴 d d
...

... d d 0

𝐴
𝑁−1

⋅ ⋅ ⋅ 𝐴 𝐼

]
]
]
]
]
]
]

]

,

𝐵
𝑢
= 𝐵[

[

𝐵
𝑢

0

d
0 𝐵

𝑢

]

]

, 𝐵
𝑠
= 𝐵[

[

𝐵
𝑠

0

d
0 𝐵

𝑠

]

]

,

𝐵
𝑧
= 𝐵[

[

𝐵
𝑧

0

d
0 𝐵

𝑧

]

]

.

(26)

Next, the inequality constraint ∑
𝑁−1

𝑘=0
(∑
𝑚
𝑠

𝑖=1
ln 𝑆
𝑖
𝛿
𝑠

𝑖
(𝑘))𝛿(𝑘) ≥

ln 𝜌 in Problem A is equivalent to

−𝐶𝑧 ≤ − ln 𝜌, (27)

where 𝐶 = [𝐶 𝐶 ⋅ ⋅ ⋅ 𝐶]. Furthermore, from (22), we can
obtain

𝐸𝑥 + 𝐹
𝑢
𝑢 + 𝐹
𝑠
𝑢
𝑠
+ 𝐹
𝑧
𝑧 ≤ 𝐺, (28)
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where

𝐸 =
[
[

[

𝐸 0 0

d
...

0 𝐸 0

]
]

]

,

𝐹
𝑢
= [

[

𝐹
𝑢

0

d
0 𝐹

𝑢

]

]

, 𝐹
𝑠
= [

[

𝐹
𝑠

0

d
0 𝐹

𝑠

]

]

,

𝐹
𝑧
= [

[

𝐹
𝑧

0

d
0 𝐹

𝑧

]

]

, 𝐺 =

[
[
[
[

[

𝐺

𝐺

...
𝐺

]
]
]
]

]

.

(29)

Next, consider the constraint on duration of drug effective-
ness. This constraint can be expressed as a Boolean function.
Then, by using Lemmas 6 and 7, it can be transformed into
the following form:

𝑢 = 𝑉
1V + 𝑉

2

, 𝑊
1V ≤ 𝑊

2

, (30)

𝑢
𝑠
= 𝑉
1

𝑠
V
𝑠
+ 𝑉
2

𝑠
, 𝑊

1

𝑠
V
𝑠
≤ 𝑊
2

𝑠
, (31)

where V and V
𝑠
are binary decision variables with certain

dimensions. Deriving a general form of coefficient matrices
will be difficult, but for the given 𝐿

𝑢
𝑖

, 𝑊1
𝑢
𝑖

, and 𝑊
0

𝑢
𝑖

, deriving
coefficient matrices is easy.

We show two examples.

Example 8. Consider Example 4 again. First, consider the
case of 𝐿

𝑢
= 1, 𝑊

1

𝑢
= 3, and 𝑊

0

𝑢
= 2. Then, noting

explanations in Example 4, we can obtain

𝑢 (0) = V
0
,

𝑢 (1) = V
0
,

𝑢 (2) = (1 − V
0
) V
2
,

𝑢 (3) = (1 − V
0
) V
2
+ V
0
V
3
,

𝑢 (4) = V
0
V
3
+ (1 − V

2
) V
4
,

𝑢 (5) = (1 − V
2
) V
4
+ V
2
V
5
,

...

(32)

and in this case, these are equivalent to

𝑢 (0) = V
0
,

𝑢 (1) = V
0
,

𝑢 (2) = V
2
, V
2
≤ 1 − V

0
,

𝑢 (3) = V
2
+ V
3
, V
2
≤ 1 − V

0
, V
3
≤ V
0
,

𝑢 (4) = V
3
+ V
4
, V
3
≤ V
0
, V
4
≤ 1 − V

2
, 0 ≤ V

3
+ V
4
≤ 1,

𝑢 (5) = V
4
+ V
5
, V
4
≤ 1 − V

2
, V
2
≤ V
5
, 0 ≤ V

4
+ V
5
≤ 1,

...
(33)

We explain 𝑢(2) = V
2
, and V

2
≤ 1−V

0
as an example. If V

0
= 1,

then V
2

≤ 0 holds. Since V
2
is binary, we can obtain V

2
= 0;

that is, 𝑢(2) = 0. If V
0

= 0, then V
2

≤ 1 holds, and we can
obtain 𝑢(2) = V

2
. That is, 𝑢(2) can take on either 0 or 1. From

the previous discussion, we see that a pair of 𝑢(2) = V
2
and

V
2

≤ 1 − V
0
is equivalent to 𝑢(2) = (1 − V

0
)V
2
. Thus, we can

obtain the forms of (30) and (31). In the case of 𝑁 = 5 (𝑁 is
the control time in Problem 1), (30) can be obtained as

[
[
[
[
[

[

𝑢 (0)

𝑢 (1)

𝑢 (2)

𝑢 (3)

𝑢 (4)

]
]
]
]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑢

=

[
[
[
[
[

[

1 0 0 0

1 0 0 0

0 1 0 0

0 1 1 0

0 0 1 1

]
]
]
]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑉
1

[
[
[

[

V
0

V
2

V
3

V
4

]
]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟

V

,

[
[
[
[
[

[

1 1 0 0

−1 0 1 0

0 1 0 1

0 0 −1 −1

0 0 1 1

]
]
]
]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑊
1

[
[
[

[

V
0

V
2

V
3

V
4

]
]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟

V

≤

[
[
[
[
[

[

1

0

1

0

1

]
]
]
]
]

]⏟⏟⏟⏟⏟⏟⏟

𝑊
2

,

(34)

where 𝑉
2

= 0. We remark that, in a general case, the product
such as 𝑧 = V

0
V
2
must be transformed into linear inequalities

by using Lemma 7.
Next, consider the case of 𝐿

𝑢
= 0, 𝑊1

𝑢
= 3, and 𝑊

0

𝑢
= 3.

Then, we can obtain the following:

𝑢 (0) = V
0
,

𝑢 (1) = 0,

𝑢 (2) = 0,

𝑢 (3) = V
3
,

𝑢 (4) = 0,

𝑢 (5) = 0,

...

(35)
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and this case is one of the simplest cases. In the case of𝑁 = 5

(𝑁 is the control time in Problem 1), (30) can be obtained as

[
[
[
[
[

[

𝑢 (0)

𝑢 (1)

𝑢 (2)

𝑢 (3)

𝑢 (4)

]
]
]
]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑢

=

[
[
[
[
[

[

1 0

0 0

0 0

0 1

0 0

]
]
]
]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑉
1

[
V
0

V
3

]

⏟⏟⏟⏟⏟⏟⏟

V

, (36)

where 𝑉
2

= 0, 𝑊1 = 0, and 𝑊
2

= 0.

Finally, the cost function (12) is rewritten as

𝐽 = 𝑄𝑥 + 𝑅𝑢 + 𝑅
𝑠
𝑢
𝑠
, (37)

where 𝑄 = [𝑄 ⋅ ⋅ ⋅ 𝑄 𝑄
𝑓
], 𝑅 = [𝑅 ⋅ ⋅ ⋅ 𝑅], and 𝑅

𝑠
=

[𝑅
𝑠

⋅ ⋅ ⋅ 𝑅
𝑠
]. By substituting (25), (30), and (31) into (28) and

(37), Problem A is equivalent to the following ILP problem.

Problem B.

find V, V
𝑠
, 𝑧,

min (𝑅 + 𝑄𝐵
𝑢
)𝑉
1V + (𝑅

𝑠
+ 𝑄𝐵
𝑠
)𝑉
1

𝑠
V
𝑠
+ 𝑄𝐵
𝑧
𝑧

+ 𝑄𝐴𝑥
0
,

subject to − 𝐶𝑧 ≤ − ln 𝜌

(𝐹
𝑢
+𝐸𝐵
𝑢
)𝑉
1V+(𝐹

𝑠
+𝐸𝐵
𝑠
)𝑉
1

𝑠
V
𝑠
+(𝐹
𝑧
+ 𝐸𝐵
𝑧
) 𝑧

≤ 𝐺 − 𝐹
𝑢
𝑉
1

− 𝐹
𝑠
𝑉
1

𝑠
− 𝐸 (𝐴𝑥

0
+ 𝐵
𝑢
𝑉
2

+ 𝐵
𝑠
𝑉
2

𝑠
) ,

𝑊
1V ≤ 𝑊

2

,

𝑊
1

𝑠
V
𝑠
≤ 𝑊
2

𝑠
.

(38)

Problem B can be solved by a suitable solver such as IBM
ILOG CPLEX [33].

3. Results and Discussion

In this section, we show numerical simulations. First, we
consider theWNT5A network [14]. Next, in order to evaluate
the proposedmethod from the viewpoint of the computation
time, we consider an artificial example.

3.1. WNT5A Network. The gene regulatory network with
the gene WNT5A is related to melanoma, and it has been

extensively studied (see, e.g., [27]). The BNmodel 𝑥(𝑘 + 1) =

𝑓
𝑎
(𝑥(𝑘)) of the WNT5A network is given by the following:

𝑥
1
(𝑘 + 1) = ¬𝑥

6
(𝑘) ,

𝑥
2
(𝑘 + 1) = (¬𝑥

2
(𝑘) ∧ 𝑥

4
(𝑘) ∧ 𝑥

6
(𝑘))

∨ {¬𝑥
2
(𝑘) ∧ (𝑥

4
(𝑘) ∨ 𝑥

6
(𝑘))} ,

𝑥
3
(𝑘 + 1) = ¬𝑥

7
(𝑘) ,

𝑥
4
(𝑘 + 1) = 𝑥

4
(𝑘) ,

𝑥
5
(𝑘 + 1) = 𝑥

2
(𝑘) ∨ ¬𝑥

7
(𝑘) ,

𝑥
6
(𝑘 + 1) = 𝑥

3
(𝑘) ∨ 𝑥

4
(𝑘) ,

𝑥
7
(𝑘 + 1) = ¬𝑥

2
(𝑘) ∨ 𝑥

7
(𝑘) ,

(39)

where the concentration level (high or low) of the gene
WNT5A is denoted by 𝑥

1
, the concentration level of the

gene pirin by 𝑥
2
, the concentration level of the gene S100P

is denoted by 𝑥
3
, the concentration level of the gene RET1 is

denoted by 𝑥
4
, the concentration level of the gene MART1 is

denoted by 𝑥
5
, the concentration level of the gene HADHB is

denoted by 𝑥
6
, and the concentration level of the gene STC2

is denoted by 𝑥
7
. See [14] for further details. In a WNT5A

network, it is important to inhibit the concentration level of
the gene WNT5A [27].

The optimal control problem is formulated. For sim-
plicity, we consider only the structural control input. Then,
suppose that the number of the structural control inputs is
two. If 𝑢𝑠

1
(𝑘) = 1, then the system is given as:

𝑥 (𝑘 + 1) = {
𝑓
𝑎
(𝑥 (𝑘)) with the probability 0.8,

𝑥 (𝑘) with the probability 0.2.
(40)

If 𝑢𝑠
2
(𝑘) = 1, then the system is given as:

𝑥 (𝑘 + 1) = {
𝑓
𝑎
(𝑥 (𝑘)) with the probability 0.1,

𝑥 (𝑘) with the probability 0.9.
(41)

The case of 𝑢
𝑠

1
(𝑘) = 1 corresponds to the situation such

that the dynamics of the WNT5A network, that is, 𝑥(𝑘 +

1) = 𝑓
𝑎
(𝑥(𝑘)), are selected with high probability. The case

of 𝑢𝑠
2
(𝑘) = 1 corresponds to the situation such that the state

is not changed; that is, 𝑥(𝑘 + 1) = 𝑥(𝑘) is selected with high
probability. From the previous setting, 𝑟

1,1
= 0.8, 𝑟

1,2
= 0.2,

𝑟
2,1

= 0.1, and 𝑟
2,2

= 0.9. For this WNT5A network with
structural control inputs, consider solving Problem 1. 𝑄,𝑄

𝑓
,

and 𝑅
𝑠
in Problem 1 are given as 𝑄 = [1 0 0 0 0 0 0],

𝑄
𝑓

= [10 0 0 0 0 0 0], and 𝑅
𝑠
= [0 0], respectively. The

initial state is given as 𝑥
0
= [1 0 1 0 1 0 0]

𝑇. In addition,
the control time 𝑁 in Problem 1 is given by 𝑁 = 5. Finally,
the constraint on duration of drug effectiveness is imposed
for only 𝑢

𝑠

2
(𝑘). The parameters 𝐿

𝑢
𝑠

2

,𝑊1
𝑢
𝑠

2

, and𝑊
0

𝑢
𝑠

2

are given as
𝐿
𝑢
𝑠

2

= 1, 𝑊1
𝑢
𝑠

2

= 3, and 𝑊
0

𝑢
𝑠

2

= 2, respectively. Thus, we can
obtain the ILP problem (Problem B), where the dimension of
binary variables is 130 and the number of inequalities is 264.
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We show the computational result. Let 𝐽
∗ denote the

optimal value of the lower bound of a given cost function in
Problem 1. Let 𝐽∗ denote the upper bound of the cost function
derived by using the optimal control input. First, consider the
case of 𝜌 = 10

−5. Then, we can obtain 𝐽
∗

= 2 and 𝐽
∗

= 15,
and 𝑢

𝑠

(𝑘) is obtained as

𝑢
𝑠

(0) = ⋅ ⋅ ⋅ = 𝑢
𝑠

(4) = [
1

0
] . (42)

Noting that 𝑟
2,1

= 0.1 and 𝜌 = 10
−5

(= 0.1
5

), all combinations
of the Boolean functions are considered, and the value of 𝜌 is
not appropriate. In particular, 𝐽∗ = 15 implies that 𝑥

1
(𝑘) = 1,

𝑘 = 0, 1, . . . , 5, and is the trivial upper bound.
Next, consider the case of 𝜌 = 0.2. Then, we can obtain

𝐽
∗

= 𝐽
∗

= 4, and 𝑢
s
(𝑘) is obtained as

𝑢
𝑠

(0) = 𝑢
𝑠

(1) = [
0

1
] , 𝑢

𝑠

(2) = 𝑢
𝑠

(3) = 𝑢
𝑠

(4) = [
1

0
] .

(43)

From the obtained inputs, we see that the system is controlled
by switching two discrete probability distributions, and the
obtained inputs satisfy the constraint on duration of drug
effectiveness. Noting that the trivial value of 𝐽∗ is 15, we see
that in this case the effectiveness of control synthesis is clear.

Finally, we discuss the computation time for solving
Problem 1.The computation time of the ILP problemwas less
than 20 [msec], where we used IBM ILOG CPLEX 11.0 as an
ILP solver on the computer with Windows Vista 32-bit, the
Intel Core 2 Duo CPU 3.0GHz, and the 4GB memory. Since
the WNT5A network considered here is small size, Problem
1 can be solved fast.

3.2. Artificial Example. In order to evaluate the computation
time for solving Problem 1, we consider one artificial example
of a BN with 15 states and 3 control inputs. We stress that
the existing method [11, 12, 17–19, 21] cannot be applied
to such a BN. This is because it is necessary to compute
the state transition diagram such as that in Figure 2, that
is, the transition probability matrix with 2

𝑛

× 2
𝑛. In naive

implementation usingMATLAB [34], matrices with 2
15

×2
15

cannot be created due to memory consumption, where we
used the computer described previously.

The optimal control problem is formulated. In this exam-
ple, we consider 3 control inputs and 2 structural control
inputs. If 𝑢𝑠

1
(𝑘) = 1, then the system is given as follows:

𝑥 (𝑘 + 1) = {
𝑓
1
(𝑥 (𝑘) , 𝑢 (𝑘)) with the probability 0.8,

𝑓
2
(𝑥 (𝑘) , 𝑢 (𝑘)) with the probability 0.2.

(44)

If 𝑢𝑠
2
(𝑘) = 1, then the system is given as follows:

𝑥 (𝑘 + 1) = {
𝑓
1
(𝑥 (𝑘) , 𝑢 (𝑘)) with the probability 0.2,

𝑓
2
(𝑥 (𝑘) , 𝑢 (𝑘)) with the probability 0.8.

(45)

The Boolean function 𝑓
1
is given by the following:

𝑥
1
(𝑘 + 1) = 𝑥

1
(𝑘) ∧ ¬𝑥

6
(𝑘) ∨ 𝑢

3
(𝑘) ,

𝑥
2
(𝑘 + 1) = ¬𝑥

4
(𝑘) ∧ 𝑢

1
(𝑘) ∨ 𝑢

3
(𝑘) ,

𝑥
3
(𝑘 + 1) = 𝑥

5
(𝑘) ∧ 𝑢

1
(𝑘) ∨ ¬𝑥

10
(𝑘) ∧ 𝑥

12
(𝑘) ∧ 𝑢

3
(𝑘) ,

𝑥
4
(𝑘 + 1) = 𝑥

2
(𝑘) ∧ 𝑥

5
(𝑘) ∧ ¬𝑢

1
(𝑘) ∨ ¬𝑥

14
(𝑘) ,

𝑥
5
(𝑘 + 1) = ¬𝑢

1
(𝑘) ∧ 𝑥

6
(𝑘) ∧ 𝑥

7
(𝑘) ∨ 𝑥

12
(𝑘) ∧ 𝑥

14
(𝑘) ,

𝑥
6
(𝑘 + 1) = 𝑥

1
(𝑘) ∧ 𝑥

6
(𝑘) ∧ 𝑥

10
(𝑘) ∨ ¬𝑥

15
(𝑘) ,

𝑥
7
(𝑘 + 1) = 𝑥

6
(𝑘) ∧ 𝑥

7
(𝑘) ∧ 𝑥

8
(𝑘) ∨ 𝑢

2
(𝑘) ∧ ¬𝑢

3
(𝑘) ,

𝑥
8
(𝑘 + 1) = 𝑥

5
(𝑘) ∧ ¬𝑢

1
(𝑘) ∨ 𝑥

10
(𝑘) ∧ 𝑢

2
(𝑘) ∧ 𝑥

13
(𝑘) ,

𝑥
9
(𝑘 + 1) = 𝑥

3
(𝑘) ∧ 𝑢

1
(𝑘) ∨ ¬𝑥

8
(𝑘) ∧ 𝑥

11
(𝑘) ,

𝑥
10

(𝑘 + 1) = 𝑥
6
(𝑘) ,

𝑥
11

(𝑘 + 1) = 𝑥
6
(𝑘) ∧ 𝑥

10
(𝑘) ∨ ¬𝑢

2
(𝑘) ∧ 𝑢

3
(𝑘) ,

𝑥
12

(𝑘 + 1) = 𝑥
12

(𝑘) ∧ ¬𝑥
15

(𝑘) ,

𝑥
13

(𝑘 + 1) = ¬𝑢
3
(𝑘) ,

𝑥
14

(𝑘 + 1) = ¬𝑥
14

(𝑘) ∧ 𝑢
3
(𝑘) ,

𝑥
15

(𝑘 + 1) = 𝑥
14

(𝑘) ∧ 𝑥
15

(𝑘) .

(46)

The Boolean function 𝑓
2
is given by the following:

𝑥
1
(𝑘 + 1) = 𝑥

2
(𝑘) ∧ 𝑥

4
(𝑘) ∧ ¬𝑥

8
(𝑘) ,

𝑥
2
(𝑘 + 1) = ¬𝑥

2
(𝑘) ∧ 𝑥

3
(𝑘) ∨ 𝑢

3
(𝑘) ,

𝑥
3
(𝑘 + 1) = 𝑥

1
(𝑘) ∨ ¬𝑥

2
(𝑘) ∧ 𝑥

3
(𝑘) ∧ 𝑥

4
(𝑘) ,

𝑥
4
(𝑘 + 1) = ¬𝑥

1
(𝑘) ∧ 𝑥

2
(𝑘) ∧ 𝑢

1
(𝑘) ∨ 𝑥

14
(𝑘) ,

𝑥
5
(𝑘 + 1) = ¬𝑢

2
(𝑘) ∧ 𝑥

13
(𝑘) ∧ 𝑥

14
(𝑘) ∧ 𝑥

15
(𝑘) ,

𝑥
6
(𝑘 + 1) = ¬𝑥

2
(𝑘) ∨ 𝑥

5
(𝑘) ∧ 𝑢

1
(𝑘) ∧ ¬𝑢

3
(𝑘) ,

𝑥
7
(𝑘 + 1) = 𝑢

1
(𝑘) ∧ 𝑥

13
(𝑘) ,

𝑥
8
(𝑘 + 1) = 𝑥

5
(𝑘) ∧ 𝑥

13
(𝑘) ,

𝑥
9
(𝑘 + 1) = ¬𝑥

6
(𝑘) ,

𝑥
10

(𝑘 + 1) = 𝑥
2
(𝑘) ∧ 𝑢

2
(𝑘) ∧ ¬𝑥

12
(𝑘) ∧ 𝑢

3
(𝑘) ,

𝑥
11

(𝑘 + 1) = ¬𝑥
5
(𝑘) ∧ 𝑢

1
(𝑘) ∨ ¬𝑥

15
(𝑘) ∧ 𝑢

3
(𝑘) ,

𝑥
12

(𝑘 + 1) = 𝑥
7
(𝑘) ∧ 𝑥

3
(𝑘) ,

𝑥
13

(𝑘 + 1) = 𝑥
7
(𝑘) ∧ 𝑢

2
(𝑘) ∧ 𝑢

3
(𝑘) ,

𝑥
14

(𝑘 + 1) = 𝑥
12

(𝑘) ∨ 𝑥
14

(𝑘) ∧ 𝑢
3
(𝑘) ,

𝑥
15

(𝑘 + 1) = 𝑥
8
(𝑘) .

(47)

From the previous setting, 𝑟
1,1

= 0.8, 𝑟
1,2

= 0.2, 𝑟
2,1

= 0.2,
𝑟
2,2

= 0.8 hold. In Problem 1,𝑄,𝑄
𝑓
, 𝑅, and𝑅

𝑠
are given as𝑄 =

[1 ⋅ ⋅ ⋅ 1], 𝑄
𝑓

= [10 ⋅ ⋅ ⋅ 10], 𝑅 = [1 0 1], and 𝑅
𝑠
= [0 0],
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respectively.The initial state and the parameter 𝜌 are given as
𝑥
0
= [1 ⋅ ⋅ ⋅ 1]

𝑇 and 𝜌 = 10
−4, respectively.The constraint on

duration of drug effectiveness is imposed for 𝑢
1
(𝑘) and 𝑢

𝑠

2
(𝑘).

For 𝑢
1
, the parameters 𝐿

𝑢
1

,𝑊1
𝑢
1

, and𝑊
0

𝑢
1

are given as 𝐿
𝑢
1

= 0,
𝑊
1

𝑢
1

= 3, and 𝑊
0

𝑢
1

= 3, respectively. For 𝑢
𝑠

2
, the parameters

𝐿
𝑢
𝑠

2

,𝑊1
𝑢
𝑠

2

, and𝑊
0

𝑢
𝑠

2

are given as 𝐿
𝑢
𝑠

2

= 1,𝑊1
𝑢
𝑠

2

= 3, and𝑊
0

𝑢
𝑠

2

= 2,
respectively.

Next, we discuss the computation time. Consider the two
cases of 𝑁 = 10 and 𝑁 = 20. Then, in the ILP problem
(Problem B) obtained, the dimension of binary variables is
1420 for 𝑁 = 10 and 2840 for 𝑁 = 20, and the number of
inequalities is 3381 for 𝑁 = 10 and 6731 for 𝑁 = 20. In the
case of𝑁 = 10, the computation time of the ILP problemwas
96 [sec], wherewe used the computer described previously. In
the case of𝑁 = 20, the computation time of the ILP problem
was 238 [sec]. We remark that BNs with such a size are large
scale in control problems of gene regulatory networks. Thus,
we conclude that Problem 1 can be solved within the practical
computation time.

4. Conclusions

In this paper, we have proposed a Boolean network (BN)
model with two types of the control inputs and an optimal
control method. By using this model, several situations in
control of gene regulatory networks can be modeled. To
modelmore realistic situations, duration of drug effectiveness
has also been introduced. Since duration is given for each
control input, effectiveness of multiple drugs can be evalu-
ated. Furthermore, for this BN model, the optimal control
problem has been formulated, and this problem is reduced
to an integer linear programming problem. Finally, numerical
simulations have been shown.Theproposedmethodprovides
us with a basic in the control theory of gene regulatory
networks.

Recently, to simplify state transition diagrams such as that
in Figure 2, a stochastic Boolean network has been proposed
in [35]. The authors proposed in [36] a similar method using
polynomial optimization. In addition, to simplify a given
Boolean network, the Karnaughmap realization of a Boolean
network has been proposed in [37].These methods are useful
for reducing the computational burden. It is one of the future
works to consider the control problem with duration of drug
effectiveness based on these methods.
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