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Over the past decades, the identification of several new cytokines, including interleukin (IL)-17 and IL-23, and of new T helper
cell subsets, including Th17 cells, has changed the vision of immunological processes. The IL-17/Th17 pathway plays a critical role
during the development of inflammation and autoimmunity, and targeting this pathway has become an attractive strategy for a
number of diseases. This review aims to describe the effects of IL-17 in the joint and its roles in the development of autoimmune
and inflammatory arthritis. Furthermore, biotherapies targeting directly or indirectly IL-17 in inflammatory rheumatisms will be
developed.

1. Introduction

Cytokines play a key role in the coordination of the innate
and adaptive immune responses to protect an organism
against internal and external pathogenic assault. Over the
past decades, the identification of several new cytokines,
including interleukin (IL)-17 (also known as IL-17A) and IL-
23, has changed the vision of immunological processes.

In response to antigen stimulation, naive CD4+ T cells
differentiate into different T cell subsets with specialized
effector functions, mainly on the basis of their cytokine
expression profile. T helper type 1 (Th1) cells develop in
response to IL-12 and produce high amounts of interferon
(IFN)-𝛾, required to control infection with intracellular
pathogens such as viruses. This cell subset is also important
during inflammation and autoimmunity. IL-4 is the major
inducer of Th2 cells that produce IL-4, IL-5, and IL-13,
which are crucial for the clearance of parasitic worms and
during development of allergic inflammation. The Th1/Th2
dichotomy paradigm has been revisited with the recent
identification of additional effector CD4+ T cell subsets
producing IL-17 (Th17), IL-22 (Th22), or IL-9 (Th9) [1–6].The

importance ofTh17 cells during development of autoimmune
and inflammatory diseases is now well documented. These
cells play also a critical role during defense against extracellu-
lar pathogens. Besides Th17 cells, 𝛾𝛿 T cells, innate lymphoid
cells, natural killer cells, andCD8+ T cells represent other and
important sources of IL-17.

This review aims to overview the role of IL-17 during host
defense and autoimmunity, with a particular focus on IL-17
and articular inflammation. Biotherapies targeting directly
or indirectly this cytokine in inflammatory rheumatisms will
also be developed.

2. IL-17: Signaling, Cellular Sources, and
Biological Activities

2.1. IL-17 and IL-17 Receptor Signaling. Originally called
cytotoxic T-lymphocyte-associated antigen 8 (CTLA8), IL-
17 was first identified in rodent T cell hybridoma clones and
subsequently cloned from human CD4+ T cell library [7–
9]. It is the founding member of the IL-17 cytokine family,
which is composed of six members: IL-17 (IL-17A), IL-17B,
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Figure 1: IL-17 cytokines and receptors family.

IL-17C, IL-17D, IL-17E (IL-25), and IL-17F. IL-17 and IL-17F
are highly homologous and bind the same receptor, implying
shared biological activities (Figure 1). In addition, IL-17 exists
as a homodimer or as a heterodimer with IL-17F [10, 11].

The IL-17 receptor family contains fivemembers, from IL-
17RA to IL-17RE, and functional receptors for IL-17 cytokine
family consist of homo- or heterodimers (Figure 1). Both IL-
17 and IL-17 receptor family members have little homology to
other known cytokines and cytokine receptors and are thus
classified as a new cytokine and cytokine receptor families.

IL-17 acts through a heterotrimeric receptor composed
of two IL-17RA chains and one IL-17RC subunit [11, 12].
Such receptor complex is shared with IL-17F and IL-17A/IL-
17F heterodimer. IL-17RA is ubiquitously expressed, with
elevated levels in hematopoietic cells; however, IL-17 main
responsive cells are epithelial and endothelial cells, fibrob-
lasts, and to a lesser extent macrophages, dendritic cells,
and B cells. In contrast, IL-17RC is weakly expressed in
hematopoietic cells, and higher expression is observed in
nonhematopoietic tissues, such as liver, prostate, and joints.
Thus, IL-17RA and IL-17RC differential expression may
explain tissue-specific function of IL-17. Binding of IL-17 to
IL-17RA induces recruitment of IL-17RC to form an active IL-
17RA/IL-17RC complex, inducing mitogen-activated protein
(MAP) kinases, nuclear factor 𝜅 B (NF𝜅B), phosphoinositide
3 kinase (PI3K), and C/EBP signaling pathways [11]. In
addition, NF𝜅B activator 1 (Act 1), an adaptor protein for
IL-17 receptor, is an essential component of IL-17-mediated
signaling and downstream effects [13, 14].

As detailed below, IL-17 is mainly known for its roles
in host defense, inflammation, and autoimmunity, and its
expression is increased in inflammatory tissues [15].

2.2. IL-17: Adaptive and Innate Sources. Whereas IL-17 levels
are low or undetected in normal homeostatic conditions,
IL-17 production is highly increased following diverse stim-
uli, including infection and inflammation. Elevated IL-17
expression is also observed in a number of autoimmune and
inflammatory diseases. IL-17-producing cells mainly belong
to the hematopoietic lineage, comprising both innate and
adaptive immune cells. Interestingly, both IL-1𝛽 and IL-23 are
potent inducers of IL-17 production by these cell subsets.

2.2.1. Adaptive Sources of IL-17. IL-17 has been known to
be produced by T cells for the past 18 years; however, the

identification of IL-17-producing CD4+ T (Th17) cells as a
T helper cell subset distinct from Th1 and Th2 cells [1–
3] has had a tremendous impact on our understanding of
the cytokines and T cell pathways that are involved during
development and maintenance of chronic inflammation.
Th17 cells were first recognized when assessing the role of
IL-23 in various mouse models of chronic inflammation
and autoimmunity, including inflammatory bowel diseases
(IBDs), collagen-induced arthritis (CIA), or experimental
autoimmune encephalomyelitis (EAE, a murine model of
multiple sclerosis) [2, 16, 17]. In addition to IL-23, IL-
1𝛽, IL-21, prostaglandin E2 (PGE2), transforming growth
factor (TGF)-𝛽, and IL-6 regulate development of this cell
subset [16–25]. Furthermore, retinoic acid receptor-related
orphan receptor-𝛾t (ROR𝛾t), ROR𝛼, signal transducer and
activator of transcription 3 (STAT3), Interferon regulatory
factor 4 (IRF4), and aryl hydrocarbon receptor (AHR) are
key transcription factors in the differentiation program of
Th17 cells [26–30]. Mammalian target of rapamycin (mTOR)
and hypoxia-inducible factor 1𝛼 (HIF1𝛼) were also recently
identified as factors positively regulating Th17 development
[31–34]. Although Th17 cells derived their name because of
their ability to secrete IL-17, they also produce elevated levels
of IL-17F, IL-22, IFN-𝛾, tumor necrosis factor (TNF)-𝛼, IL-
6, and CCL20, which have both overlapping and distinct
roles during inflammation and host defense [16, 35]. Th17
cells have been largely described for their key role in the
pathogenesis of inflammatory and autoimmune disorders,
including arthritis, IBD, psoriasis, andmultiple sclerosis, and
targeting the Th17 pathway is showing promising results for
treatment of chronic inflammation [36].

Although IL-17 is considered a CD4+ T cell product,
activated CD8+ T cells are another adaptive source of this
cytokine [37–39]. In linewith distinct subsets of CD4+ T cells,
naive CD8+ T cells can be polarized into different effector
phenotypes, such as type 1 (Tc1), type 2 (Tc2) cells, and
the recently described IL-17-producing CD8+ T cell subset,
defined as Tc17 [40–43]. Tc17 cells display reduced cytotoxic
activity and express molecules of the Th17 program. Data
from an increasing number of reports suggest a possible role
of Tc17 cells during inflammation and autoimmunity [44–47].

Lastly, B cells were very recently identified as an impor-
tant source of IL-17 in response to Trypanosoma cruzi infec-
tion both in mice and human [48]. Such IL-17 production is
independent of ROR𝛾t, ROR𝛼, and AHR and is unaffected
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afterT. cruzi in IL-6 or IL-23 receptor deficientmice, showing
that, in contrast to other cellular sources of IL-17, B cells do
not use the canonical IL-17 program.

2.2.2. Innate Sources of IL-17. IL-17 production by adaptive
immune cells could not explain the existence of early IL-17-
mediated immune responses, and awide range of studies have
shown that IL-17 is also produced by a variety of innate cell
subsets, including 𝛾𝛿 T cells, innate lymphoid cells, and nat-
ural killer cells [49, 50]. Whether mast cells and neutrophils
can produce IL-17 is still under investigation. IL-1𝛽, IL-
23, and downstream-activated transcription factors, ROR𝛾t,
STAT3, and AHR, have been described as important factors
to induce innate IL-17-producing cell development [49, 51].
These innate sources of IL-17 play a crucial role during
stress responses andmucosal host defense. In addition, innate
IL-17 producers have been involved in the development of
autoimmune diseases, such as EAE, arthritis, and colitis [50–
54].

2.3. IL-17 in Host Defense and Autoimmunity. Since its iden-
tification, biological activities of IL-17 have been extensively
investigated. This cytokine has pleiotropic effects that bridge
innate and adaptive immunity and plays critical roles during
host defense against pathogens, as well as during develop-
ment and maintenance of autoimmune and inflammatory
diseases.

IL-17 promotes expression of antimicrobial peptides by
keratinocytes, lung, and gut epithelial cells, such as defensins,
S100A proteins, and lipocalin 2. It also induces secretion
of proinflammatory cytokines (e.g., IL-1, IL-6, and TNF-
𝛼), chemokines (e.g., IL-8, CCL20, CCL2, and CXCL5), and
matrix metalloproteinases (e.g., MMP1, MMP3, and MMP9)
frommultiple target cells, including epithelial and endothelial
cells, fibroblasts, neutrophils, and osteoblasts [55, 56]. Such
effects explain the diversity of IL-17 biological activities in
the organism: promotion of inflammation, protection against
infection, and chemotactic effects that induce recruitment
of Th17 cells, as well as innate cells, such as neutrophils.
Interestingly, IL-17 also cooperates with other cytokines to
promote inflammation, such as TNF-𝛼, IL-6, and IL-1𝛽.

2.3.1. IL-17 in Host Defense. IL-17, as well as Th17-related
cytokines IL-17F and IL-22, protects hosts against several
microbial and fungal pathogens at epithelial and mucosal
tissues, including skin, intestine, and lung. IL-17-signaling
deficiency in mice causes a dramatic reduction in neutrophil
chemotaxis and a subsequent increased susceptibility to
bacterial infection. For example, mice deficient in IL-17
and/or IL-17RA show increased susceptibility to infections
with Klebsiella pneumonia, Staphylococcus aureus, Citrobac-
ter rodentium, and Candida Albicans [57–61]. In addition,
emerging evidence points to an involvement of IL-17 and
Th17 cells during immune protection against parasites and
viruses [61–64]. Interestingly, Bermejo et al. just identified
IL-17-producing B cells as critical to control trypanosome
infection [48].

Several reports support an important role of Th17 cells
during host defense in humans. The IL-23/Th17 pathway is
important during defense against Mycoplasma hominis [65];
human memory T cells specific for C. albicans belong to the
Th17 lineage [66], and patients with chronic mucocutaneous
candidiasis, a heterogeneous group of disorders characterized
by recurrent or persistent infections (predominantly with C.
albicans and to a lesser extent with S. aureus), have reduced
production of IL-17 and IL-22 [67].

Recent genetic studies revealed disease susceptibility
association with IL-17RA autosomal recessive deficiency
[68]. Lastly, patients suffering from hyper-IgE syndrome are
highly susceptible to bacterial and fungal infections and have
impairedTh17 cell differentiation [69–71]. However, the exact
contribution of Th17 cells versus innate immune cells for
protective immunity still needs to be fully determined.

2.3.2. IL-17 in Autoimmunity. In contrast to their protec-
tive role during host defense, IL-17 and other Th17-related
cytokines (i.e., IL-22, IL-17F) can have adverse effects result-
ing in tissue damage.Th17 cells are linked to the pathogenesis
of various human autoimmune and inflammatory diseases,
and IL-17, IL-17F, IL-22, and IL-23 levels are increased in
RA, psoriasis, multiple sclerosis, and IBD [4, 17, 72–75].
Together withTh17 cells, mast cells, neutrophils, Tc17, and 𝛾𝛿-
T cells represent additional sources of IL-17 in inflammatory
diseases [76–78]. IL-17-producing 𝛾𝛿-T cells are involved in
the development of skin, brain, and articular inflammation
in vivo [52, 79–81]. In addition, Tc17 cells cooperate withTh17
cells for the induction of EAE [47].

Consistent with these observations, studies in mice defi-
cient in IL-17 or its receptor and blockade of IL-17 or IL-17
receptor revealed an important role of IL-17 in vivo during
induction and propagation of autoimmunity in animal mod-
els, such as EAE andCIA [82–86]. Interestingly, IL-23 appears
as an essential cytokine to drive the pathogenicity of both
innate and adaptive IL-17-producing cells [87, 88].

2.4. IL-17 in the Joint. Together with IL-1𝛽, TNF-𝛼, and IL-
23, IL-17 is an additional cytokine able to promote articular
inflammation and damage (Figure 2). As detailed in the next
part of this review, elevated levels of IL-17 are found in
patients with autoimmune or inflammatory rheumatisms,
such as RA, spondyloarthritis (SpA), systemic lupus ery-
thematosus (SLE), or systemic sclerosis (SSc) [89–93], and
in vivo studies demonstrated an important role of IL-17 in
autoimmune arthritis by aggravating synovial inflammation
and joint destruction [94, 95]. Conversely, IL-17 deficiency
or inhibition protects from joint inflammation and damage
in animal models of arthritis [82, 96, 97]. Besides Th17 cells,
innate immune cells are also an important source of IL-17 in
inflammatory joint diseases, and both Th17 cells and innate
IL-17 producers have been shown to be important players of
IL-17-induced effects in the joint [52, 98–104].

2.4.1. IL-17 and Bone Metabolism. IL-17 affects bone remod-
eling through its effects on osteoblasts and osteoclasts; it
induces production of PGE2, nitric oxide (NO), and receptor
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activator of NF𝜅B ligand (RANKL) by osteoblasts, leading to
osteoclast differentiation and activation, indirectly in favor of
bone destruction. Interestingly, it was recently shown that IL-
17 can also directly induce osteoclastogenesis from human
monocytes in the absence of osteoblasts, and such effect is
TNF-𝛼 dependent [105]. IL-17 also upregulates production
of proinflammatory cytokines, such as IL-6, granulocyte-
monocyte colony-stimulating factor (GM-CSF), IFN-𝛾, and
TNF-𝛼 by fibroblasts, epithelial, endothelial cells, monocytes,
and bone cells, also in favor of bone loss [89, 106–109]. In
addition, IL-17 increases expression of chemotactic factors by
osteoblasts, such as CCL2 and CXCL5, promoting recruit-
ment of leucocytes, including neutrophils and T cells [108,
110], that are able to produce factors (e.g., IL-6, IL-1, TNF-𝛼,
and RANKL) that will further affect bone resorption.

2.4.2. IL-17 and Synovial Inflammation. IL-17 promotes joint
degradation by acting on synoviocyte activation, survival,
and migration. It increases expression of inflammatory
cytokines and chemokines by synoviocytes, such as IL-
6, IL-8, CCL20, TNF-𝛼, and IL-23p19 subunit. IL-17 also
contributes to the production of matrix metalloproteinases
by the cells, including MMP3, MMP9, and MMP13, which
drive degradation of the extracellular matrix within the
joint [111–116]. Furthermore, IL-17 can synergize with other
inflammatory cytokines, such as TNF-𝛼, IL-1𝛽, or IL-17F
in synoviocytes [114, 117]. IL-17-induced chemokine produc-
tion (e.g., IL-8, CXCL2, CCL20, CCL2, CXC5, and CCL5)
by various cell types, including synoviocytes and synovial
macrophages, contributes to recruitment of neutrophils,
lymphocytes, and macrophages to the synovium, thereby

enhancing inflammation [3, 108, 113, 118, 119]. Interestingly,
IL-17 increases cadherin-11 expression in patients with RA as
well as in mice with CIA, an adhesion molecule contributing
to synovial inflammation and cartilage degradation [120]. IL-
17 also increases IL-6 production by RA synovium explants
while inhibiting type 1 collagen synthesis [121]. Recent data
reported by Kato et al. suggest that IL-17 produced by Th17
cells is more important in the induction of proinflammatory
cytokines rather than in the induction of cell-cell interaction
molecules by synoviocytes, two relevant components of syn-
ovial inflammation [122]. In addition, IL-17 increases survival
and motility of synoviocytes from RA patients [117, 123], and
it was reported that migration of activated RA synoviocytes
has the ability to spread arthritis to unaffected joints [124].

Formation of new vessels largely contributes to the forma-
tion and maintenance of the pannus in RA and, therefore, to
cartilage and bone damage. IL-17 also contributes to angio-
genesis by increasing production of proangiogenic factors
by synoviocytes, such as vascular endothelial growth factor
[125, 126].

2.4.3. IL-17 and Cartilage Remodeling. Another important
target in joint inflammation is cartilage, and destruction of
cartilage is a major consequence of chronic synovitis. Stim-
ulation of normal and osteoarthritic human chondrocytes
with IL-17 induces NO production as well as expression
of genes and proteins associated with joint inflammation
and cartilage degradation, such as inducible NO synthase,
cyclooxygenase 2, IL-1𝛽, IL-6, IL-8, CCL2, and MMP. These
effects are mediated through activation of the MAP kinases,
NF𝜅B, and AP-1 signaling pathways [127–129]. In line with
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these observations, IL-17 inhibits proteoglycan synthesis by
cartilage, and intra-articular administration of IL-17 in mice
leads to cartilage destruction [121, 130]. Effects of IL-17 and
IL-17 receptor signaling in promoting cartilage damage have
been further confirmed in vivo in mouse models of CIA, and
blocking IL-17 or IL-17 receptor deficiency reduces cartilage
degradation [94, 97, 111]. Furthermore, IL-17 can synergize
with other proinflammatory cytokines, such as TNF-𝛼, to
promote cartilage destruction [128, 131].

2.4.4. IL-17 and Enthesitis. The enthesis, located at the junc-
tion of tendon to bone, is the primary site of articular
inflammation in SpA. Increased levels of IL-23 and IL-17 have
been observed in sera frompatients with SpA, like ankylosing
spondylitis (AS) [90, 132–134]. Importantly, IL-23 was very
recently identified as a major cytokine driving entheseal
inflammation in vivo [135]. Notably, IL-23-sensitive cells
in entheses are resident CD3+CD4−CD8−ROR𝛾t+ T cells.
They allow the joint tissue to respond to IL-23 by secreting
proinflammatory cytokines. The IL-23-mediated enthesitis
is reduced in the presence of IL-17 and IL-22 neutralizing
antibodies; however, in contrast to IL-22, IL-17 alone is not
sufficient to induce enthesitis [135].

3. IL-17 and Inflammatory Rheumatisms

3.1. IL-17 in Autoimmune Diseases

3.1.1. Rheumatoid Arthritis. RA is the most frequent autoim-
mune arthritis in the world affecting around 1% of general
population. It is a public health issue because of its chronicity
and the progressive joint destruction experienced by some
patients. The disease is characterized by inflammation of the
synoviumwith a T cell, B cell, and proinflammatory cytokine
infiltration. Etiology and pathophysiology of RA are not fully
understood but an immunological conflict may precede the
development of clinical stages of the disease [136]. Various
environmental factors influence the development of the
disease on specific genetic basis. These external and internal
factors are not completely known, but are subjects of intense
research. Complex immune modulator interactions resulting
from this immunological conflict are at play in the joint, and
therapeutic strategy largely uses this pathogenesis concept.
A great range of immunomodulatory molecules is available
in RA treatment from steroids to biologic and nonbiologic
disease modifying antirheumatic drugs, of which the most
used are, respectively, TNF-𝛼 blockers and methotrexate.
Among proinflammatory cytokines, IL-17 axis seems to be of
importance in RA pathophysiology, and both Th17 cells and
mast cells have been described as IL-17 sources in inflamed
joints of RA patients [102, 103]. Synoviocytes have been
shown to produce CCL20 in autoimmune arthritis like RA,
thus recruitingTh17 cells via CCR6 [103].

Autoimmune arthritis in animal models has been long
considered as Th1 dependent. However, accumulating evi-
dence is now in favor of a crucial role of Th17 cells. In CIA,
development of joint destruction remains present in IFN-𝛾
receptor-deficient mice [137, 138], whereas disease activity

is markedly reduced in IL-17-deficient mice [82] as well as
after blockade of IL-17 [97]. In a quite different model, RAG-
deficient mice receiving naive CD4+ T cells from SKG mice,
that are genetically prone to spontaneously develop chronic
autoimmune arthritis, exhibit aTh17-dependent polyarthritis
[139]. It has been shown that IL-1-receptor-antagonist- (IL-
1Ra-) deficient mice develop spontaneous arthritis secondary
to their increased sensitivity to IL-1 [140], and T cells play
a critical role in this model since IL-1Ra deficient mice
lacking T cells do not develop arthritis [141]. Interestingly,
IL-1Ra-deficientmice present increased number ofTh17 cells,
and spontaneous development of arthritis is abrogated when
associatedwith IL-17 deficiency (or IL-17 neutralization) [140,
142], demonstrating the great involvement of Th17 cells in
this IL-1-driven arthritis model. However, after the onset of
arthritis, neutralization of IL-17 prevents any further increase
of the disease but does not reduce the arthritis score [140].
A critical role of IL-17 in development of arthritis has also
been observed in F759 mice (characterized by increased
STAT3 activation) [143] and specific-pathogen-free K/BxN
mice treated with neutralizing anti-IL-17 antibody [144], two
models of mice predisposed to develop T cell-dependent
arthritis. All these results are in favor of a major role of Th17
cells in the development of T cell-dependent arthritis inmice.

Further experiments have explored the role of Th17 cells
in autoimmune arthritis. On one hand, Th17 cells are proin-
flammatory; they are responsible for inducing the migration
of innate immune cells with, as a result, an increase in the
production of proinflammatory cytokines, chemokines, and
matrix-degrading enzymes from these cells [145]. In addition,
circulatingTh17 cells fromRA patients have the propensity to
induce IL-6, IL-8, and MMP expression by RA synoviocytes
[104], further pointing out the pathogenic role ofTh17 cells in
joint inflammation and degradation. On the other hand,Th17
cells promote autoimmunity; they generate the production
of autoantibodies in several mouse models by enhancing
germinal center formation, for example [146].

Beside Th17 cells, 𝛾𝛿 T cells also contribute to IL-17
production in inflamed joints in the CIA mouse model [52,
147]. Although these IL-17 innate producers exacerbate CIA
in mice [52], a recent study by Pöllinger et al. showed that
in this mouse model of arthritis, Th17 cells, rather than IL-
17+ 𝛾𝛿 T cells, drive osteoclast-mediated joint degradation
[147].

In human RA, there is some evidence of IL-17 involve-
ment. Metawi et al. determined that IL-17 serum levels are
higher in patients with inflammatory arthritis compared to
healthy controls [148]. Th17 and Th22 cells have been found
increased in peripheral blood of patients with RA, and levels
are positively correlated with disease activity [149, 150]. IL-17
has also been found in joint tissue in higher quantity in RA
than in osteoarthritis. It was linked in the same study to the
production of matrix degradation molecules further proving
the role of IL-17 in the pathophysiology of the disease [151].
Results on 𝛾𝛿 T cells in mice are in line with human data
showing that 𝛾𝛿 T cells are not a prominent source of IL-17
in patients with RA [152].
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Taken together, the IL-17/Th17 pathway seems greatly
involved in the initiation process of autoimmune arthritis as
well as in the inflammation stage of the disease, and IL-17-
producing cells represent an attractive target in RA treatment.

3.1.2. Systemic Lupus Erythematous. SLE is an autoimmune
disease characterized by its chronicity and the reciprocation
of flare and remission periods. It can affect a lot of organs,
among them joints, kidneys, skin, or nervous system [153].
Patients with SLE usually exhibit antinuclear antibodies,
whose pathogenicity remains unclear. The prevalence rate
displays large worldwide variations, due to genetic and
environmental factors, and SLE affects around 0.2 to 2 in
1000 individuals [154]. It is predominantly a disease of
women with a mean sex ratio of 1 to 9, male to female.
Level of disease severity is extensive, and treatments range
from preventive measure and hydroxychloroquine to heavy
immunosuppressive drugs.

Pathophysiology is far from fully understood but great
advances have been made in the past few years. It involves
complex interaction between environmental and genetic fac-
tors, and the presence of circulating autoantibodies directed
against intracellular antigens, such as DNA, appears to be
one of the major events in disease initiation [153]. These
autoantibodies are involved in the pathogenesis since they
complexwith antigens, thus activating effector responses.The
resulting tissue destruction exposes more intracellular anti-
gens and sustains the reaction.Throughout the importance of
these autoantibodies, SLE has traditionally been considered
as a B cell-dependent disease. However, there is increasing
evidence that T cells have a major place in SLE mechanisms.
In this context, the role of Th17 cells during SLE has recently
become subject of increasing attention [155].

It has been shown that the phenomenon of organ injury
following ischemia is greatly dependent on Th17 cells in
MRL/lpr mice, a lupus-prone model of mice [92, 156]. This
is partly reversed by CD4 depletion or IL-17 deficiency,
especially regarding tissue damages. At baseline, MRL/lpr
mice present a higher frequency of IL-17-producing cells
than nonautoimmune mice like B6 strain (unpublished data,
[155]). Higher production of IL-17 is observed from SNF1
(lupus-prone mice) splenocytes cultured with nucleosomes
than from B6 splenocytes [157]. A decrease of both IL-17
production and ofTh17 cell infiltration in the kidney is found
altogetherwith clinical improvement observed after tolerance
induction with a histone-derived peptide. Taken together,
these results confirm that Th17 cells are increased in lupus
models, but they also seem to be involved in pathogenicity.

Similar IL-17/Th17 involvement is demonstrated in BXD2
mice (a strain of mice genetically engineered to develop
autoimmune manifestations), where the humoral response is
strongly increased.This is not independent of the presence of
IL-17-producing cells since they have been demonstrated to
have a major impact on germinal center development in the
spleen [158]. Again, besides their proinflammatory profile,
Th17 cells play a direct role in autoimmunity generation.
In this context, the recent description of T follicular helper
(TFH) cells, T cells helping B cells in an extrafollicular

location, is of great importance [159]. This cell population
has been observed in lupus-prone strains of mice.Those cells
produce IL-17 and IL-21, the latter playing the job of helping
B cells. However, it has been proposed that high production
of IL-17 favors IL-21 secretion, giving an indirect role to IL-17
in the generation of autoimmunity by TFH.

In human, IL-17 is able to increase immunoglobulin
production and thus anti-DNA antibodies in cells from SLE
patients [155]. Indirect evidence of the role of IL-17 in human
SLE is the increased level of that cytokine along with IL-
23 and IL-21 in patient sera [160–162]. The origin of IL-17
seems to be CD4+ T cells and CD3+ double negative T cells.
Patients with SLE have increased number of circulating IL-
17-producing Th17 cells and CD3+ CD4− CD8− T cells than
healthy controls, and the frequency of Th17 cells correlates
with disease activity [98, 162–164]. More interestingly in
the pathogenesis point of view, IL-17 has been histologically
found in lupus nephritis, and IL-17 expression positively
correlates with disease activity [160, 164, 165]. Finally, genetic
associations with SLE have been highlighted with Th17-
associated molecule polymorphisms as IL-21, and genetic
variants decreasing Th17 differentiation are associated with
a higher risk of developing SLE [166]. The very recent
identification of IL-17-producing B cells as important players
to combat trypanosome infection [48] begs the question of
whether IL-17 production by B cells in SLE is dysregulated.

3.1.3. Systemic Sclerosis. SSc is a rare connective tissue disease
characterized by excessive extracellular matrix deposition
in internal organs, like skin and lungs [167]. It affects
approximately 1 per 10000 adult individuals and is highly
dependent on the geographical location [168]. The ratio
of women to men is about 4 : 1. Although survival in SSc
has improved over the past several decades, SSc is still
associated with a poor outcome. Despite the heterogeneity
of the disease, disfigurement associated to cutaneous lesions,
arthritis, fatigue, and dyspnea recapitulate the majority of
patient complains. Besides, the major causes of invalidity
and impairment of vital prognosis are digital ulcers, lung
fibrosis, and pulmonary arterial hypertension. Therapeutic
weapons used in SSc are largely nonspecific but lead to a
slight decrease in mortality rates. Clinical progresses are
mostly linked to vascular treatments and immunosuppressive
strategy, although widely used in severe cases, such therapies
have limited efficiency and are associatedwith significant side
effects [169].

To date, SSc pathophysiology is still largely unknown,
explaining the poor effectiveness of therapeutic strategy
in SSc. Pathology includes vascular abnormalities, immune
activation, and fibrosis [170], but the relationships between
the three entities are still matter of debate. Accumulating
evidence is in favor of a role of T cells in those mechanisms
[167]. First, genetic studies indicate that most of the gene
polymorphisms associated with SSc involve genes coding
for molecules controlling T cell differentiation or activation,
some shared with other autoimmune disorders like SLE [171,
172]. Second, histological examination of SSc skin during
the early oedematous inflammatory phase of the disease
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demonstrates the presence of mononuclear cell infiltrates
containing T cells, with perivascular distribution, preceding
the development of fibrosis and overt vasculopathy [173].
These findings led to the hypothesis that T cells provide
important stimuli that drive collagen synthesis in fibroblasts,
propelling these cells to the forefront of SSc pathophysiology.
Defining the T cell subsets at play has been the next challenge,
and this issue is far from completely solved. On one hand,Th2
cells, mainly through their prototypic cytokines, are certainly
involved in the disease fibrosis process [174]. On the other
hand, some evidence points out the role of IFN-𝛾 and Th1
cells [175]. However, accumulating reports over the last few
years highlighted IL-17 and Th17 cells as important actors of
the disease [176, 177].

IL-17 has been shown to be involved in the develop-
ment of bleomycin-induced mouse lung fibrosis in an IL-1-
dependent way [178]. In two different models of mouse SSc,
importance of IL-17 was suggested. In bleomycin-induced
skin fibrosis, the loss of IL-17 decreases the fibrotic process,
and higher IL-17 mRNA levels are found than in wild-type
skin [179]. IL-17 deficiency also attenuates skin thickness
in tight skin 1 (TSK-1) mice, a strain of mice presenting
spontaneous mutation in fibrillin-1 gene and used as a
model of SSc. Furthermore, IL-17 stimulates directly collagen
synthesis in rodent fibroblasts [180]. Animal models are
poorly relevant for SSc human pathogenesis, but these are
first clues of IL-17 involvement.

Increased levels of IL-17 are detected in the sera and
bronchoalveolar lavage fluids of SSc individuals [181].We and
others observed an increase inTh17 andTh22 cells frequency
in peripheral blood of SSc patients, further enhanced by
some SSc treatment viamonocyte production of IL-23 among
others [176, 182]. In the skin of SSc patients, we recently
showed an increase in IL-17-producing cells with an inverse
correlation to the skin fibrosis score [177]. In vitro, IL-17 is
able to partially inhibit the expression of 𝛼-smooth muscle
actin induced by TGF-𝛽 and to induce the secretion ofMMP1
in human dermal fibroblasts, and conversely to rodent,
human fibroblasts do not produce collagen in response to
IL-17. The difference in mouse and human responses to IL-
17 may be explained by species-specific characteristics in
the IL-17 biology, as it has been previously seen for Th17
differentiation, bringing caution towards murine models
regarding the extrapolation of therapeutic strategies [183].
The hypothesis that, in humans, IL-17 and Th17 cells in SSc
could be more related to inflammation, autoimmunity, and
possibly to the generation of autoantibodies is seductive, and
until now, no direct argument for the role of this pathway in
the SSc arthritis pathophysiology has been reported in the
literature.

3.2. IL-17 in Inflammatory Arthritis

3.2.1. Psoriatic Arthritis. Psoriatic arthritis (PsA) belongs to
the spondylarthritis group of diseases and is characterized
by a chronic inflammation of joints and skin. Peripheral
and axial joints can be affected by the disease, with a
potential breach of enthesis and synovial membranes in

the meantime. PsA is a frequent inflammatory rheumatism,
nearly as frequent as RA, as it concerns about 0.3 to 1%
of general population [184]. Its presentation and course
are highly variable. Mostly, skin involvement precedes joint
inflammation, but the osteoarticular lesions may be present
before the development of psoriasis in 10% of cases. Psoriasis
is completed with arthritis in one-third of the patients
during the development of the disease. The persistence of
inflammation in joints can lead to destruction and severe
disabilities. Until now, therapeutic strategies in PsA are often
directly inspired by those used in RA.

Nevertheless, despite common features, PsA differs from
RA in some aspects. The early events in PsA pathogenesis
occur in genetically predisposed subjects and aremediated by
T cells interaction with antigen-presenting cells.The location
of the first immune conflict is not really defined but TNF-𝛼
seems to play an important role, and TNF-𝛼 blockers remain
highly used and efficient treatments of the disease. The first
antigen is still unknown; nevertheless, it induces a T cell-
specific reaction followed by a proinflammatory cytokine
secretion cascade. PsA, as with other rheumatic inflam-
matory disorders, was considered until recently as a Th1-
dependent disease with IFN-𝛾 playing an important role in
the generation of that cascade. Psoriatic disease encompasses
psoriasis and the involvement of musculoskeletal and gas-
trointestinal and ocular systems. Thus, PsA pathogenesis is
closely connected to that of psoriasis. Much less information
is available in PsA pathogenesis than in skin psoriasis, but
both have susceptibility associated with alleles of the IL-12B
and IL-23R genes [185, 186]. Moreover, IL-12/23 p40 subunit
is elevated in sera of PsA patients [187]. Given the importance
of IL-23 inTh17 biology, it suggests a role of this subset in PsA.
Finally, with the importance of the IL-17 pathway in psoriasis
and in autoimmune arthritis murine models, the role of IL-
17/Th17 has been naturally evoked in PsA. IL-17 is increased
in PsA synovial tissue and fluid. IL-17RA is overexpressed by
PsA synoviocytes [188], is functionally active, and regulates
the synoviocyte secretion of proinflammatory cytokines and
matrix metalloproteinases tightly involved in the joint dam-
ages observed in PsA. Another indirect evidence of the role
of IL-17 in PsA pathogenesis has been recently reported with
the involvement of the adaptor protein Act1 in the disease
through genome-wide association or functional studies [189,
190]. The correlation between disease activity and levels of
IL-17 or Th17 cytokines in synovial fluid is variable [188,
191]. Differences in disease patterns or treatment regimen in
studied population could be the reason of this discrepancy. It
appears that the earlier and themore free of any treatment the
patient is, the more correlated is the disease activity with Il-17
rates. These findings are in accordance with the bone erosive
role of IL-17 demonstrated in vitro and highlight its role not
only in the skin, but also in all major components of psoriatic
disease.Whether or not innate immune cells contribute to IL-
17 production in PsA is still unknown.

3.2.2. Ankylosing Spondylitis. AS is a systemic disease charac-
terized by enthesopathy and ossification of the joints [192]. It
is the most frequent member of the spondylarthritis group,
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and its prevalence ranges between 0.2 and 1.2% of general
population. Affecting more often men than women (3 : 1), its
peak is around the third decade of life.The clinical character-
istic of AS is the axial joint damages, most notably the sacroil-
iac joints. Ossification and ankylosis are typical of the disease,
but wide extraarticular manifestations can occur such as
digestive and ocular but also and less frequently heart or lung
damages. These extraarticular manifestations, expressing the
systemic nature of the disease, are also involved in the thera-
peutic strategy. All spondyloarthropathies are associatedwith
human leukocyte antigen (HLA)-B27 expression, the highest
association is yet in the case of AS, as 90% of patients are
HLA-B27 positive.

Thepathogenic role ofHLA-B27 inAShas been and is still
debated. Hypotheses are as varied as arthritogenic peptide
presentation, aberrant folding of surface heavy chains, or
enhancing of intracellular microbial survival [193]. AS is an
inflammatory disease, and to date, no specific antibodies have
been identified. The immune system is still highly involved
in the disease pathogenesis. The privileged association with
HLA-B27might be a clue for CD8+ T cells involvement. Even
so, transgenic HLA-B27 rats, used as prototypic AS rodent
model, present colitis and arthritis independently of CD8+ T
cells, raising the question of other important players in the
disease pathogenesis. Some proinflammatory cytokines are
constantly increased in AS patients, such as TNF-𝛼, IL-6, and
IL-2 receptors [194].

Pathophysiology of AS has been recently enriched with
genetic and more precisely genome-wide association studies,
linking the disease to IL-23 receptor gene [195].Other findings
are in favor of the IL-23/IL-17 pathway involvement notably
in murine models [36].

SKG mice are genetically prone to develop autoimmune
arthritis, and curdlan injection can drive spondylarthritis
symptoms [196].The pathology is at least partly driven by IL-
17-secreting 𝛾𝛿T cells and IL-17 deficiency ameliorates symp-
toms [197]. IL-23 was also very recently shown to be directly
involved in AS and more precisely in the development of
enthesitis in a collagen antibody-induced arthritis mouse
model [135]. IL-23 induces AS in mice through the activation
of IL-17/IL-22-producing ROR𝛾t+CD3+CD4−CD8− T cells
directly located in the entheses. The mice phenotype is not
only enthesitis, but it also recapitulates all features of AS [135].

In human, IL-17 is expressed in sacroiliac joints biop-
sies from AS patients. However, many arguments converge
towards the involvement of innate immune cells. Notably,
mast cells, neutrophils, and 𝛾𝛿 T cells seem to be good
candidates as IL-17-secreting cells in AS joints [101]. More
indirectly, IL-23R expression has been found increased in
active sites of the disease in AS patients, such as tendon-
bone junction and aortic root [135]. Finally, Bowness et al.
recently raised an interesting issue by establishing a link
between HLA-B27 and IL-17 pathway [198]. They showed
that APC expressing B27 𝛽2 microglobulin-free heavy chain
homodimers are prone to induce the proliferation of specific
Th17 cells. These cells produce IL-17 and/or IFN-𝛾 due to a
high plasticity and are found in AS patients, suggesting their
involvement in the disease pathogenesis [198].

4. Therapeutic Applications: Strategies
and Molecules Targeting the IL-17/Th17
Pathway in Inflammatory Rheumatisms

Regarding all the findings involving the IL-17/Th17 pathway
in inflammatory rheumatisms, the idea to target this pathway
has become more and more attractive. The topic is discussed
as a strategy more than a single treatment because of the
complexity of the inflammatory process at play in IL-17
biology. There are several potential targets in the cascade
leading to IL-17 effects, and we will describe those currently
under consideration.

Standard treatment in RA is association of methotrexate
together with a TNF-𝛼 blocker when an adequate response is
not achieved.

4.1. Direct Targeting of IL-17. Directly targeting the cytokine
is a classic strategy in biologic development based on mon-
oclonal antibodies production. Owing to TNF-𝛼 blockers
such as monoclonal antibodies (infliximab, Remicade and
adalimumab, Humira) or receptor-targeting fusion protein
(etanercept, Enbrel), a great experience and hindsight regard-
ing this type of treatment exist in rheumatology.

Several molecules are in the pipeline of development
with some advanced data of clinical trials (http://www.bio-
century.com/targets/il-17).

Two monoclonal antibodies directed against IL-17 are
currently tested in humans. Ixekizumab (LY2439821), a
humanized hinge-modified IgG4 IL-17-specific antibody
developed by Lilly is in a phase III trial for psoria-
sis and for PsA (clinicaltrial.gov, identifiers NCT01597245,
NCT01624233, and NCT01646177). It has already completed
a phase I and a phase II trial in RA ([199] and clinicaltrial.gov,
identifiers NCT00966875). Secukinumab (AIN457), a fully
human IL-17-specific IgG1k monoclonal antibody generated
by Novartis is also in advanced clinical development. This
molecule is in phase III for chronic plaque psoriasis, PsA,
RA, and AS, and in phase II for chronic noninfectious uveitis
[200, 201].

First results from trials with both antibodies are quite
encouraging with an improvement in symptoms and a good
safety profile. In a double-blind, placebo-controlled, parallel-
group, phase IIA study (𝑁 = 36) in moderate to severe
psoriasis, a single infusion of secukinumab (3mg/kg) resulted
in rapid and sustained improvement of psoriasis symp-
toms, with at week 4, 83% of secukinumab patients versus
11% of placebo patients achieving significant efficacy [201].
The effect was less impressive in a double-blind, placebo-
controlled phase IIA study assessing safety and efficacy of
subcutaneous secukinumab in PsA. The difference in rate
of American College of Rheumatology 20 score (ACR20)
response at week 6, with secukinumab or with placebo, was
not statistically significant. Significant efficacy compared to
placebo was finally reached at weeks 12 and 28.

Other IL-17-targeted antibodies are in early clinical devel-
opment, such as SCH-900117 and RG4934. Brodalumab
(AMG827), a human anti-IL-17RA antibody developed by
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Amgen/MedImmune has shown remarkable efficacy for the
treatment of psoriasis in a phase II double-blind, placebo-
controlled, dose-ranging study [202] and is currently in Phase
II trial in RA and PsA [203].

In addition, new strategies under consideration aim to
inhibit biological activities of more than one cytokine. For
example, Roche is testing a blocking antibody targeting both
IL-17A and IL-17F (RG7624, no clinical information available;
Roche website and [36]). In addition, based on the synergistic
activities of IL-17 and TNF-𝛼, an anti-TNF-𝛼/IL-17 bispecific
neutralizing antibody (ABT-122, Abbott) is being tested in
phase I in RA (Abbott website and [36]).

4.2. Indirect Targeting of the IL-17 Pathway. Current or
in development tools for targeting the IL-17/Th17 pathway
are also showing promising results to treat inflammatory
rheumatisms.

4.2.1. IL-23 and/or IL-12 Targeting. Ustekinumab (Stelara)
is a human monoclonal antibody engineered by Janssen
Biotech that targets the p40 subunit of IL-12 and IL-23,
and therefore inhibits both IL-23 and IL-12 signaling. It
has been approved for psoriasis treatment since 2009 [204].
In a phase II double-blind, placebo-controlled, crossover
study in patients with active PsA, subcutaneous injections
of ustekinumab significantly reduced signs and symptoms
of PsA and improved skin lesions and physical function in
patients [205, 206]. Ongoing phase III trials will establish the
benefice/risk profile of ustekinumab in this disease.

Given the major role of the IL-23/IL-17 pathway in
inflammation and autoimmunity, new drugs in development
specifically aim to neutralize only the IL-23 pathway and
three anti-p19 neutralizing antibodies,MK-3222,CNTO1959,
and AMG 139, respectively, developed by MERCK, Janssen
Biotech, and Amgen/MedImmune are currently in clinical
trials for psoriasis, as well as Crohn’s disease for AMG 139
[203, 207]. Only available clinical data reported that admin-
istration of MK-322 in psoriatic patients markedly decreases
cutaneous inflammation. Such effects are associated with a
significant reduction of T cells, dendritic cells, neutrophils,
and macrophages in the inflammatory infiltrate [208]. These
promising results suggest that neutralization of IL-23 but
not IL-12 could be sufficient to inhibit downstream signaling
cascades involved in disease development.

In this context, clinical trials assessing the effect of IL-23
blockade could also represent an interesting approach for the
treatment of inflammatory rheumatisms.

4.2.2. IL-6 Targeting. IL-6 is another proinflammatory cytok-
ine involved in the development of joint inflammation, and
Tocilizumab (RoActemra) has proven its efficacy for few years
in RA patients and is also approved since 2011 for treatment of
systemic juvenile idiopathic arthritis [209]. It is a humanized
anti-IL-6 receptor monoclonal antibody developed by Roche
that binds both soluble and membrane bound IL-6 receptor
and prevents IL-6 binding to its receptors [210]. The use
of Tocilizumab is growing in RA patients, particularly in

those with an inadequate response to methotrexate or TNF-
𝛼 inhibitors therapies [211–213]. It is administered through
intravenous infusion every four weeks and can be used
as a monotherapy or in combination with methotrexate.
Interestingly, a recent clinical trial compared the efficacy of
tocilizumab versus adalimumab (anti-TNF-𝛼 antibody) as
monotherapy in RA and revealed a significant greater disease
improvement in patients treated with tolicizumab [214].

While IL-6 targeting is showing efficiency in RA, toli-
cizumab therapy has been disappointing in SpA patients [214,
215].

Other IL-6 targeting therapies in development include
BMS945429, a humanized anti-IL-6 antibody engineered by
Alder Biopharmaceuticals, and sarilumab, a human anti-IL6
receptor 𝛼 (IL-6R𝛼) antibody codeveloped by Regeneron and
Sanofi [214]. Phase II, double-blind, randomized, placebo-
controlled studies showed that BMS945429 or sarilumab
treatment associated with metothrexate induced significant
improvement of disease activity in patients with active
RA and inadequate response to methotrexate [214, 216]. If
sarilumab is giving promising results for RA treatment, a
phase II clinical trial assessing the effect of this anti-IL-6R𝛼
antibody in AS did not show any significant efficacy [214].

4.2.3. IL-1 Targeting. IL-1 targeting started in 1993 with
anakinra (Kineret), a recombinant IL-1 receptor antagonist
developed by Amgen, which inhibits both IL-1𝛼 and IL-1𝛽
activities. It was approved for RA treatment in 2001 and is
being tested in a number of diseases, including autoimmune
and autoinflammatory diseases (e.g., severe atopic dermatitis,
osteoarthritis of the knee), but also in diseases that are not
inflammatory, like heart failure and type 2 diabetes [217].
Treatment with anakinra is fastidious for RA patients as it
has to be daily injected because of its short half-life, and its
efficacy is similar to other biologics; therefore, anakinra is not
among first-line therapies.

Two other IL-1 targeting agents have been approved for
the treatment of cryopyrin-associated periodic syndromes:
rilonacept (Arcalyst, Regeneron), a soluble decoy receptor,
and canakinumab (Ilaris, Novartis), a humanized mon-
oclonal antibody against IL-1𝛽. Several additional agents
blocking IL-1 are in clinical trials in several diseases (e.g.,
stroke, diabetes, and chronic inflammatory diseases) and
target the IL-1 receptor, IL-1𝛼, IL-1𝛽, or caspase 1 (crucial
for IL-1𝛽 activity). IL-1𝛽 and IL-1 receptor neutralizing
antibodies are currently tested in arthritis and joint diseases
[217].

4.3. Targeting Signaling Pathway Molecules. Transcription
factors modulators are very trendy among developing ther-
apeutic strategies, and in USA, it represents 13% of current
U.S. Food and Drug Administration-approved drugs.

4.3.1. ROR𝛾t and/or ROR𝛼 Inhibition. As mentioned before,
ROR𝛾t is both necessary and sufficient for induction of
IL-17 production in human cells. This transcription factor
represents potential therapeutic target and can be blocked
by specific inhibitors. As ROR family is earlier in the IL-17
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production cascade, its targeting can not only diminish the
secretion of this cytokine but also favors the shift from Th17
towards regulatory T cells.This more complex effect could be
of interest in the treatment of autoimmune diseases where an
imbalance between effector and regulatory T cells has been
observed. Nevertheless, as not being the only transcription
factor involved in Th17 differentiation, ROR𝛾t inhibition
might not have a complete IL-17 suppressive effect.

Small molecules have been described as capable of
inhibiting the ROR family and thus target the IL-17 pathway.
Digoxin, a cardiac glycoside, has been shown to be a specific
inhibitor of ROR𝛾t independently of ROR𝛼 [218]. SR1001 is
a high-affinity synthetic ligand for both ROR𝛼 and ROR𝛾t,
and Solt et al. demonstrated its inhibitory effect on differenti-
ation and function on Th17 cells. It induces conformational
changes in the molecule, leading to a higher affinity for
corepressors and lower for coactivators [219]. Ursolic acid
is a third molecule involved in the inhibition of the IL-
17 pathway through its action on the ROR family member
ROR𝛾t [220]. Evidence for this molecule efficacy on IL-17
modulation in autoimmune diseases is still limited to in vitro
or murine studies. To our knowledge, no molecules directly
targeting ROR family are currently at clinical trial phase in
human. Nevertheless, because it regulates ROR𝛾t expression,
forkhead box P3 (FoxP3) upregulation can indirectly induce
a decrease of IL-17 production. Molecules such as sim-
vastatin (3-hydroxy-3-methylglutaryl coenzyme A reductase
inhibitor), commonly administrated in atherosclerosis treat-
ment, enhance FoxP3 expression and inhibit the production
of IL-17 [221].

4.3.2. Janus Kinases (JAK)-STAT3 Inhibition. As stated be-
fore, IL-23, IL-6, and IL-21 are involved in Th17 differentia-
tion, and they all act through the JAK-STAT signaling path-
way. Thus, STAT3 has become an interesting potential target,
at the convergence point of different upstream activators. It
has been recently shown in vitro that STAT3 inhibition in
synovial T cells of RApatients suppressesTh17 pathway [222].
Research in that field remains at the discovery stage; this
demonstration is being done using siRNA, andno therapeutic
molecules are currently tested in human clinical trials in
the domain of autoimmune diseases. However, clinical trials
are completed in the area of oncology, and this experience
might be useful in a near future in the immunology field as it
happened for rituximab [223].

On the other hand, the anti-JAK strategy is far much
advanced with the development of tofacitinib, an oral JAK
inhibitor, tested in a phase III clinical trial in the treatment
of RA [224].This molecule directly inhibits the production of
IL-17 and IFN-𝛾, resulting in a decrease of proinflammatory
cytokine production and synovitis [225]. Tofacitinib effect
is also assessed for other inflammatory diseases involving
IL-17 such as psoriasis or ankylosing spondylitis. STAT3
and JAK are closely linked as the second phosphorylates
the first leading to its nuclear translocation and biological
activity [226]. Inhibition of JAKmoleculesmight have several
effects, but it was demonstrated that tofacitinib inhibits IL-17
secretion in vitro [227]. This could be one of its mechanisms
of action.

4.3.3. Phosphoinositide 3-Kinase𝛿-Subunit (PI3K𝛿) Inhibition.
The PI3K/Akt pathway is involved in both the pathogenesis
of RA and IL-17 production [228, 229]. It is therefore a
potential target in the scope of research in the autoimmunity
therapeutic agent field. ZSTK474, a general PI3K inhibitor,
has shown the ability to inhibit synovial inflammation,
osteoclastic activity, and finally collagen-induced arthritis in
vitro and in murine models [230]. Class 1 PI3K exhibits two
isoforms of the catalytic subunits, p110𝛾 and p110𝛿 that are
enriched in leucocytes. The selective inhibition of one of
those subunits has attracted a major interest due to data of
in vitro models notably in collagen- or in antigen-induced
arthritis [231–233]. Finally, the rationale seems to be strong
enough in RA and SLE literature to bridge the gap between
the bench and bedside research. Promising results have been
obtained with the p110𝛿 inhibitor CAL-101 in the field of
lymphomas giving reassuring data about the safety of this
molecule, but clinical trials are still ongoing, and data remain
unpublished [234].

5. Conclusion

It is now clearly demonstrated that IL-17 is deeply involved
in autoimmune and inflammatory processes. Joint is a prime
target of IL-17 action, and all compartments appear to be
concerned by the action of this cytokine. Mechanisms are
intensively studied because of potential therapeutic strategies
that may arise. All of the pathogenesis is far from elucidated,
but despite this fact, many molecules that target the IL-
17/Th17 pathway are already under development or even
tested in clinical trials for the treatment of autoimmune or
inflammatory diseases.

Very recently, a new mechanism has been pointed
out in the IL-17-autoimmunity interaction, bringing a new
component in the system going awry: salt. Two different
studies showed that in an isotonic culture medium, an
elevated sodium chloride (NaCl) concentration promotes the
differentiation of Th17 cells in vitro [235, 236]. One even
brought in vivo evidence of the proautoimmune effects of a
high-salted diet. These intriguing studies reassert the role of
environmental factors in these diseases. It also emphasizes
that there is not one Th17 cell but Th17 cells. These cells act
differently to protect or to damage tissues, leading to an even
more complicated story than it was initially imagined, and
certainly quite far from what is observed in animal models.

Acknowledgment

The authors thank Cristina Tato for her careful reading of the
paper.

References

[1] L. E. Harrington, R. D. Hatton, P. R. Mangan et al., “Interleukin
17-producingCD4+ effector T cells develop via a lineage distinct
from the T helper type 1 and 2 lineages,” Nature Immunology,
vol. 6, no. 11, pp. 1123–1132, 2005.

[2] C. L. Langrish, Y. Chen, W. M. Blumenschein et al., “IL-23
drives a pathogenic T cell population that induces autoimmune



BioMed Research International 11

inflammation,” Journal of ExperimentalMedicine, vol. 201, no. 2,
pp. 233–240, 2005.

[3] H. Park, Z. Li, X. O. Yang et al., “A distinct lineage of CD4 T
cells regulates tissue inflammation by producing interleukin 17,”
Nature Immunology, vol. 6, no. 11, pp. 1133–1141, 2005.

[4] F. Annunziato, L. Cosmi, V. Santarlasci et al., “Phenotypic and
functional features of humanTh17 cells,” Journal of Experimen-
tal Medicine, vol. 204, no. 8, pp. 1849–1861, 2007.

[5] V. Dardalhon, A. Awasthi, H. Kwon et al., “IL-4 inhibits TGF-
𝛽-induced Foxp3+ T cells and, together with TGF-𝛽, generates
IL-9+ IL-10+ Foxp3-effector T cells,”Nature Immunology, vol. 9,
no. 12, pp. 1347–1355, 2008.

[6] T. Duhen, R. Geiger, D. Jarrossay, A. Lanzavecchia, and F.
Sallusto, “Production of interleukin 22 but not interleukin 17
by a subset of human skin-homing memory T cells,” Nature
Immunology, vol. 10, no. 8, pp. 857–863, 2009.

[7] E. Rouvier, M. F. Luciani, M. G. Mattei, F. Denizot, and P. Gol-
stein, “CTLA-8, cloned from an activated T cell, bearing AU-
rich messenger RNA instability sequences, and homologous to
a herpesvirus Saimiri gene,” Journal of Immunology, vol. 150, no.
12, pp. 5445–5456, 1993.

[8] Z. Yao, W. C. Fanslow, M. F. Seldin et al., “Herpesvirus Saimiri
encodes a new cytokine, IL-17, which binds to a novel cytokine
receptor,” Immunity, vol. 3, no. 6, pp. 811–821, 1995.

[9] Z. Yao, S. L. Painter, W. C. Fanslow et al., “Human IL-17: a novel
cytokine derived from T cells,” Journal of Immunology, vol. 155,
no. 12, pp. 5483–5486, 1995.

[10] S. Aggarwal and A. L. Gurney, “IL-17: prototype member of an
emerging cytokine family,” Journal of Leukocyte Biology, vol. 71,
no. 1, pp. 1–8, 2002.

[11] S. L. Gaffen, “Structure and signalling in the IL-17 receptor
family,” Nature Reviews Immunology, vol. 9, no. 8, pp. 556–567,
2009.

[12] D. Toy, D. Kugler, M. Wolfson et al., “Cutting edge: interleukin
17 signals through a heteromeric receptor complex,” Journal of
Immunology, vol. 177, no. 1, pp. 36–39, 2006.

[13] H. C. Seon, H. Park, and C. Dong, “Act1 adaptor protein is an
immediate and essential signaling component of interleukin-17
receptor,” Journal of Biological Chemistry, vol. 281, no. 47, pp.
35603–35607, 2006.

[14] Y. Qian, C. Liu, J. Hartupee et al., “The adaptor Act1 is re-
quired for interleukin 17—dependent signaling associated with
autoimmune and inflammatory disease,” Nature Immunology,
vol. 8, no. 3, pp. 247–256, 2007.

[15] J. K. Kolls and A. Lindén, “Interleukin-17 family members and
inflammation,” Immunity, vol. 21, no. 4, pp. 467–476, 2004.

[16] K. Boniface, B. Blom, Y. J. Liu, and R. de Waal Malefyt,
“From interleukin-23 to T-helper 17 cells: human T-helper cell
differentiation revisited,” Immunological Reviews, vol. 226, no. 1,
pp. 132–146, 2008.

[17] N. J. Wilson, K. Boniface, J. R. Chan et al., “Develop-
ment, cytokine profile and function of human interleukin 17-
producing helper T cells,” Nature Immunology, vol. 8, no. 9, pp.
950–957, 2007.

[18] K. Boniface, K. S. Bak-Jensen, Y. Li et al., “Prostaglandin E2
regulates Th17 cell differentiation and function through cyclic
AMP and EP2/EP4 receptor signaling,” Journal of Experimental
Medicine, vol. 206, no. 3, pp. 535–548, 2009.

[19] M. J.McGeachy andD. J. Cua, “Th17 cell differentiation: the long
and winding road,” Immunity, vol. 28, no. 4, pp. 445–453, 2008.

[20] B. Zygmunt and M. Veldhoen, “T helper cell differentiation.
More than just cytokines,” Advances in Immunology, vol. 109,
pp. 159–196, 2011.

[21] F. Annunziato and S. Romagnani, “Mouse T helper 17 pheno-
type: not so different than in man after all,” Cytokine, vol. 56,
no. 1, pp. 112–115, 2011.

[22] Z. Chen, C. M. Tato, L. Muul, A. Laurence, and J. J. O’Shea,
“Distinct regulation of interleukin-17 in human T helper lym-
phocytes,” Arthritis and Rheumatism, vol. 56, no. 9, pp. 2936–
2946, 2007.

[23] E. Volpe, N. Servant, R. Zollinger et al., “A critical function
for transforming growth factor-𝛽, interleukin 23 and proin-
flammatory cytokines in driving andmodulating human TH-17
responses,”Nature Immunology, vol. 9, no. 6, pp. 650–657, 2008.

[24] E. Bettelli, M. Oukka, and V. K. Kuchroo, “TH-17 cells in the
circle of immunity and autoimmunity,”Nature Immunology, vol.
8, no. 4, pp. 345–350, 2007.

[25] C. Chizzolini, R. Chicheportiche, M. Alvarez et al., “Prostagl-
andin E2 synergistically with interleukin-23 favors humanTh17
expansion,” Blood, vol. 112, no. 9, pp. 3696–3703, 2008.

[26] I. I. Ivanov, B. S. McKenzie, L. Zhou et al., “The orphan nuclear
receptor ROR𝛾t directs the differentiation program of proin-
flammatory IL-17+ T helper cells,” Cell, vol. 126, no. 6, pp. 1121–
1133, 2006.

[27] X. O. Yang, B. P. Pappu, R. Nurieva et al., “T helper 17 lineage
differentiation is programmed by orphan nuclear receptors
ROR𝛼 and ROR𝛾,” Immunity, vol. 28, no. 1, pp. 29–39, 2008.

[28] X. O. Yang, A. D. Panopoulos, R. Nurieva et al., “STAT3
regulates cytokine-mediated generation of inflammatory helper
T cells,” Journal of Biological Chemistry, vol. 282, no. 13, pp.
9358–9363, 2007.

[29] M. Veldhoen, K. Hirota, A. M. Westendorf et al., “The aryl
hydrocarbon receptor links TH17-cell-mediated autoimmunity
to environmental toxins,”Nature, vol. 453, no. 7191, pp. 106–109,
2008.
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