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Great efforts have been devoted to alleviate uncertainty of detected cancer genes as accurate identification of oncogenes is of
tremendous significance and helps unravel the biological behavior of tumors. In this paper, we present a differential network-based
framework to detect biologically meaningful cancer-related genes. Firstly, a gene regulatory network construction algorithm is
proposed, in which a boosting regression based on likelihood score and informative prior is employed for improving accuracy
of identification. Secondly, with the algorithm, two gene regulatory networks are constructed from case and control samples
independently. Thirdly, by subtracting the two networks, a differential-network model is obtained and then used to rank
differentially expressed hub genes for identification of cancer biomarkers. Compared with two existing gene-based methods (¢-test
and lasso), the method has a significant improvement in accuracy both on synthetic datasets and two real breast cancer datasets.
Furthermore, identified six genes (TSPYL5, CD55, CCNE2, DCK, BBC3, and MUCI) susceptible to breast cancer were verified
through the literature mining, GO analysis, and pathway functional enrichment analysis. Among these oncogenes, TSPYL5 and
CCNE2 have been already known as prognostic biomarkers in breast cancer, CD55 has been suspected of playing an important role
in breast cancer prognosis from literature evidence, and other three genes are newly discovered breast cancer biomarkers. More

generally, the differential-network schema can be extended to other complex diseases for detection of disease associated-genes.

1. Introduction

Treating cancer is quite difficult because more and more
evidence has revealed that cancer is a kind of complex genetic
disease that involves in multiple genes, proteins, pathways,
and regulatory interconnections. In order to provide useful
information for cancer treatment, several landmark studies
[1-3] were performed to uncover oncogenes or biomarkers of
cancer development, progression, or recurrence.
Gene-based approaches have emerged in recent years to
identify sets of tumor-related genes, such as the “top-down”
approach as defined in [4] or “minimal biological input”
in 76-gene Rotterdam signature [5]. These methods usu-
ally utilize microarray gene expression profiling technique
and differential expression analysis to identify the cancer-
associated genes whose expression levels change significantly
among patients suffering from cancer. Though they have been
applied to identification of biomarkers relevant to cancer

developing or progressing, the gene-based approaches sufter
frequently from uncertainty of tremendous candidate genes,
which limits our comprehension to the way that tumor
appears and grows.

To recognize complex interaction patterns, pathways, and
overrepresented biological processes, gene set enrichment
analysis (GSEA) [6] has been exploited repeatedly in the
gene-based approaches. The GSEA focus on groups of genes
that share common biological functions or signaling path-
ways defined, respectively, by gene ontology (GO) [7] or
KEGG [8], and so forth. Recent works also demonstrated that
the detected biomarkers based on GO analysis and pathway
information are more reproducible than individual marker
genes [9]. Those biomarkers can also improve classification
accuracy by 8% compared to the original 70 genes [1].

Increasing evidence suggests that cancer related genes
are usually organized as pathways or gene networks which
consist of a group of interacting genes at molecular level.



Moreover, gene signatures discovered from previous studies
often enrich in common cancer-related pathways and similar
biological processes. The opinion seems to be advocated
and accepted by many researchers that only those which
can significantly enrich in tumor-induced signaling pathways
or relative biological processes are helpful and valuable for
molecular diagnostics [10].

Several network-based methods have been proposed to
identify novel oncogenes, subnetworks, or pathways involved
in tumor progression. Chuang et al. [11] applied a protein
network-based approach to identify biomarkers by extracting
subnetworks from protein interaction databases. They also
demonstrated that biomarkers detected with the network-
based method are more reproducible than individual marker
genes selected without network information. Wu et al. [12]
integrated different types of networks and known gene-
phenotype association information to compute similarity
score and predict disease genes. Frohlich [13] constructed a
consensus signature by mapping different gene signatures on
a protein interaction network, in which a clustering algorithm
was performed based on shortest path distances of different
genes in a protein-protein interaction network. In addition,
Chen et al. [14] developed a network-constrained support
vector machine approach for cancer biomarker identification.
The method results in an improved prediction performance
with network biomarkers by integrating gene expression data
and protein-protein interaction data.

Differential network analysis plays a key role for elucidat-
ing fundamental biological responses as well as discovering
important differences between the different biological states
[15]. In contrast with conventional gene-based methods, by
performing the differential network analysis, more charac-
teristic genes or subnetworks known to be related to disease
development are identified. Valcdrcel et al. [16] inferred a
differential network from males with normal fasting glu-
cose (NFG) and impaired fasting glucose (IFG), in which
shrinkage estimates of the partial correlation are executed
for network construction, and then the differences were
explored by utilizing statistical tests between the two defined
groups (NFG and IFG). Gambardella et al. [17] developed a
powerful procedure named DINA to identify tissue-specific
pathways using a slightly modified information entropy
measure. Although it can discover differences across a set
of networks, DINA is not able to detect distinct network
topologies that have equal density. Iancu et al. [18] revealed
gene coexpression patterns and detected modules using a
custom differential network analysis procedure including
correlation coefficient, clustering, and permutation test. In
addition, West et al. [19] presented differential network
entropy and demonstrated that gene expression differences
between normal and cancer tissue are anticorrelated with
local network entropy changes. These findings may have
potential implications for identifying novel oncogenes.

In this paper, we present a novel differential-network
based inference framework, called network-based statistical
analysis method (netSAM) to detect oncogenes. Using differ-
ential network modeling and functional enrichment analysis
rather than purely the differential expression analysis of a
single gene or pathway, netSAM overcomes some limitations

BioMed Research International

of the gene-based methods, such as uncertainty of iden-
tification or unfitness for generalization. The applicability
and effectiveness of the netSAM algorithm are demonstrated
on simulated and real data through numerous experiments.
Our results show that the netSAM outperforms two gene-
based methods (t-test and lasso) in accuracy, precision, and
overlap ratio, and so forth. Furthermore, we applied netSAM
to identify breast cancer genes from two benchmark datasets
(Wang et al. and Van De Vijver et al.) and obtained a cancer-
associated gene signature consisting of 6 genes (TSPYL5,
CD55, CCNE2, DCK, BBC3, and MUCI), which have been
proven biologically reasonable via GO and pathway analyses.
The literature mining reveals that the resulting signature
possesses higher prediction capability compared to previous
work, and it would be useful in both predicting metastasis of
breast cancer and facilitating treatment decision.

Our contributions in this paper are composed of three
aspects. First, a novel gene regulatory network construc-
tion algorithm is proposed, and its inference ability is
demonstrated accurately and efficiently. Second important
contribution is a scale-free property-based informative prior
score. Third, another important contribution of the proposed
method is the differential-network schema for the identifica-
tion of oncogenes. This framework can be extended easily to
other complex diseases.

The remainder of the paper is organized as follows. In
Section 2, we provide all details of the netSAM. Section 3
presents experimental results and analysis. Conclusions and
future works can be found in Section 4.

2. Materials and Methods

2.1. Differential Network-Based Inference Framework. We
propose a new differential network-based scheme netSAM
to evaluate the relative importance of genes based on the
linkage characteristics of the entire network. Firstly, the
netSAM explores the transcriptional regulatory mechanism
underlying distinct cancer phenotypes by filtering genes that
are differentially expressed as well as by inferring differential
network from “case” and “control” samples. Secondly, the net-
SAM selects the top-scoring interacting genes, which appear
to construct the cancer-related subnetwork, as candidate
genes of cancer susceptibility. In this process, we assume
that the higher score a gene has, the more likely it is a
cancer-associated gene. Finally, we investigate the functional
enrichment of top-ranked genes and evaluate reliability of the
biomarkers. The overall work flow for the present study is
described as follows.

Compared to the gene-based methods, the advantages
or features of the netSAM include (a) identifying onco-
genes by constructing the differential network rather than
differentially expressed analysis, (b) focusing on the “hub”
genes which provide insights into the functional modules or
pathways, and (c) uncovering gene regulatory relationships
via network inference as well as characteristic of the scale-free
network.

In general, the differential network-based detection of
cancer genes includes five steps as described in Figure 1.



BioMed Research International

Screening

—>| differentially
expressed genes

Inferring
differential
network

i)

Ranking genes

Gene expression

Top-ranked genes
and overlapped
genes

by P value and

dataset (GEO etc.) i e

Pathway
analysis

Genetic network
for common
pathways

Differential network-

GO analysi
analysts based biomarkers

FIGURE 1: The flowchart of the scheme: the differential network-based identification of cancer biomarkers.

Step 1. Extracting differentially expressed (DE) genes. In
order to remove the features (genes) that show no or min-
imal discriminatory ability, gene expression data are firstly
processed with log2 transformation and then differentially
expressed genes are determined by two criteria, fold change
of expression level as well as P value of Student’s t-test. In
this step, genes whose value of fold-change larger than 2, and
meanwhile P value less than 0.01 are considered as DE genes.

Step 2. Inferring “case” and “control” networks. Based on
the reduced features, the individual network is inferred
respectively, upon “case” and “control” samples including
three steps as the following.

(i) Computing all regression coeflicients 3 that rep-
resent interactions between genes, where f; =
T .. .. T
X;x; (i#j,1 < i,j < p), x; means the transpose of

x; and x; is the expression profile of gene j.

(ii) Calculating a posteriori score based on likelihood
score and informative prior. To make the degree
distributions of the underlying network satisfy the
scale-free property, the netSAM employs power-law
distribution and linear correlation to construct a prior
probability distribution. Next, performing boosting
updates to obtain an optimal estimation of coeflicients
B.

(iii) Constructing the gene regulatory network G and
the adjacency matrix can be formulated as G;; =

{ 0, if sgn(B;ify)=0  \vhere sgn(-) denotes the sign func-
1, otherwise

tion.
In the network G, the weights of the edges are set to

1 when there is a connection between two genes and 0
otherwise.

Details of Step 2 are given in Algorithm 1 of appendix.
Reasons for choosing the boosting regression include (a) the
adaptability to achieve the optimal balancing of variance and
error, (b) the ability to easily identify genes, and (c) a high
computational accuracy and a low calculation time.

Step 3. Constructing the differential network. Upon the two
networks obtained from “case” and “control” samples, a dif-
ferential network is established through comparing difference
of interactions and subtracting “case” network from “control”
one.

Comparison of the “case” and “control” genetic networks
will reveal many discrepancies, for example, some interac-
tions are unique and only exist in either networks. As pointed
in [15], through network subtraction, the trivial interactions
can be removed and detection of differentially represented
pathways can be performed. Differentially genetic interac-
tions can also be used to identify novel cancer metastasis-
dependent pathways. Thus, network comparison reflects a
landscape of differential genetic interactions especially to the
genetic disease response.

Step 4. Identifying differential network hubs. After building
the differential network, the genes are ranked to identify net-
work hubs according to P value and degree, that is, number
of interactions. With established thresholds for differential
interactions (degree > 5, P value < 0.01), the hubs of the
differential network are identified.

The network hubs, that is, genes with many interactions,
regulate a variety of cellular functions and are essential for
gene-induced lethality or sickness. As previous investigations
have shown [17, 20], many hubs in differential interaction
network serve as key components of cancer-associated path-
ways and can be used to discover cancer-induced genes. Our
experimental results on breast cancer data also demonstrated
that two such differential network hubs, DCK and BBC3, link
to MAPK signaling pathway and metastasis, as reported in
[21, 22].

Step 5. Prioritizing the network hubs. To identify the most
potential cancer genes among the genetic interaction hubs,
prioritization of the differential-network hubs is performed.

For the network hubs discovered from the previous
Step 4, two ranking methods are performed to select the most
promising genes that are associated with cancer. Firstly, Gen-
eRank [23] is employed as computational strategies for gene
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genes, 1 <i < p).

sizee = 0.01,S =10 p.

correlation coefficient.

probability

counter k «— k +1

PO 2(8) 30)
pij = Mmin {1’ ij ﬁji

otherwise, ﬁij =0,

INPUT: #n x p dimensional data matrix X = (x,,...,%; ,.. .,xp),
(n denotes the number of samples and p represents the number of

OUTPUT: An adjacency matrix of graph G.
(1) Initialize iterating counter k = 0, coefficient of the
regression f3; = O forall 1 <1, j < p, A =2, and step

(2) Standardize column vector x; to zero mean and unit
norm for gene i (1 < i < p). Set residual R,® « x,.

(3) Fit px (p — 1) regressions

ﬁij = x]TRi(k) (i:ﬁj, 1<i, j< p), where x]T
means the transpose of x;.

(4) Calculate a posteriori score based on likelihood score and
informative prior as following

log (posteriori score;;) = —log (RSS;;) + log (C?)
C =r(logm (d), log(d)),

nd=d*A>0), d= ) |B.]
1<m<p
where RSS refers to (3) and 7 (-, -) denotes Pearson’s

(5) Find the edge having the best score of posteriori

(IA, ]A) = argmax log (posteriori score“)
(6) Perform thl’e boosting update

ﬁz}(k+l) - E;;(k) + 517(10’ and

6;,17(") =¢- [;,7 sgn (XJIR;(k) ,where £ > 0

and set R* — R® - 6;5("))(; and increment

(7) Repeat Steps 3 to 6 until k = S.

(8) Calculate ﬁj from coefficient matrix B(S),
it g () = se0 (B,

where sgn (-) denotes the sign function.
(9) Return an adjacency matrix of network

0, ifp;=0
G:{eij|eij 6{0,1}}) eij:{ P]

Yy

otherwise

ALGORITHM l: Posteriori score-based boosting regression algorithm for inferring networks as Step 2 of netSAM.

prioritization in the netSAM. The reason to apply GeneRank
is that the algorithm does not require a predefined threshold
of important genes and can provide a reordering of genes
in terms of their importance and connectivity in the entire
network. In GeneRank, a node represents a gene, and an edge
is described with expression profile correlation coefficients.
Additionally, it requires a connectivity matrix of the network,
a vector of differential expression level, and a controlling
parameter as its inputs. Specially, to acquire the ranking
result based on the connectivity of the network as well as the
differential expression level of genes, the controlling parame-
ter is set to 0.5. Secondly, the all hubs are ranked additionally
according to their degrees (i.e., number of edges) in the
differential network. As the degree can indicate connectivity
information and importance of each gene in the whole

network, a new ranking result, which is different from that of
GeneRank, will be generated by utilizing the sort of degrees.
Thirdly, the common genes are selected from the top-ranked
hubs of the two previous ranking lists. Thus, a candidate
gene-set comprised of essential regulatory hubs of the
differential network is obtained. In virtue of the candidate
gene-set, a signature consisting of cancer-associated genes is
determined finally.

In summary, since the differential network spans the vali-
dated differentially expressed genes, the cancer-related genes
discovered upon it can provide stronger predictive power
than traditional gene-based method. Based on differential
network inference framework, the netSAM can be extended
easily to a majority of currently known genetic diseases.
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2.2. Bayesian Criterion and the Posteriori Score. Our method
assumes that the individual network G can be scored accord-
ing to its posterior probability given that data is known.
The main idea is to choose the edge with the largest score
which takes into account the likelihood as well as the prior
information of scale-free network. The notion of the most
probable network structure is made formal by the Bayesian
score criterion, which is simply the posterior probability of G
given X:

P(G|X):P}S((;)’;)()ocP(XIG)-P(G), 1)
logP (G| X)=logP(X|G)+logP(G). (2)

Here, X is matrix of gene expression data, P(X | G) means
the (marginal) likelihood probability, and P(G) means a prior
distribution over network structure G.

Based on the above discussion, the combined score mea-
sure consists of two parts: one is the approximate likelihood,
and the other is the network prior information.

Residual sum of squares (RSS) is a measure of the
discrepancy between the data and an estimation model. A
small RSS indicates a tight fit of the model to the data.
Residual sum of squares can be represented as follows:

2
n n p R
RSS = Z(in _iki)z = Z (xki - z ﬁijxkj> , Q)

k=1 k=1 j=Lj#i

where #n denotes the number of samples and p represents the
number of features (genes).

Accordingly, we define the approximate log-likelihood
score for connectivity strength across genes as follows:

log (likelihood) = —log (RSS). (4)

To capture the mechanisms underlying biology systems
and complex networks, a scale-free network prior is applied.
Scale-free property means that the frequency distribution
n(d) of the connectivity in a network follows a so-called
power law: n(d) ~ d™, where d equals the number of
node degrees in the network. The prior information over the
network G describing scale-free property can be encoded as
the following:

log (priori) = log (Cz) R

C =r(logm (d),log(d)), 3)
nd=d* (>0, d= ) ||
1<sms<p

To quantify the association or connection between genes,

we define the parameter [ as regression coefficient obtained
using boosting regression algorithm. Based on likelihood and
informative prior, we thus can rewrite (2) as the following:

log (posteriori score) = —log (RSS) + log (Cz). (6)

We applied score function mentioned above to select the
fitted edge of network G by computing the largest posterior

score for all possible gene interaction. Solving this problem
leads to the following optimal estimate problem:

/?,- = argmax posteriori score (G; X) . @)
B
Here, f3; denotes all the coefficient of gene i (1 < i < p)
regressed upon other genes through boosting method.

2.3. Functional Enrichment Analysis of Candidate Genes.
Gene set enrichment analysis (GSEA) [6] is a computational
tool that investigates whether a predefined gene set shows sta-
tistical significance. A gene set that contains terms of biologi-
cal process of gene ontology is constructed, and then overrep-
resented GO categories are investigated in the detected cancer
gene signature by conducting GO analysis using the BINGO
plug-in of Cytoscape [24]. Gene ontology functional enrich-
ment analysis is employed, in which the hypergeometric test
is used for functional overrepresentation and false discovery
rate for the multiple hypotheses testing correction. Only the
corrected P values less than 0.05 are considered significant.

Besides, associations between differential genetic inter-
actions and known pathways are investigated. As shown in
the differential network, differential genetic interactions are
much more likely to occur among pairs of genes connecting
two different subnetworks than among pairs of genes within
the same subnetwork. On the basis of these findings, a
map of genes and their differential genetic interactions is
constructed, in which some of hubs have not been previ-
ously linked to cancer development. To validate the newly
identified oncogenes, a pathway analysis is performed using
DAVID and the parameters are set as default numbers. The
significantly enriched functional modules based on KEGG
[8] pathway are investigated.

In brief, GO and pathway analyses indicate the effective-
ness of the netSAM, which highlights potential application of
the method that may be prominent when developing targeted
therapeutics. It is also reasonable to believe that the genes
detected by the netSAM are highly relevant to cancer either
by sharing common cancer-related signaling pathways or by
GO functional terms.

3. Results and Discussion

In this section, results of experiments with synthetic and
real-world data sets are included. We performed a numerical
comparison with two existing algorithms (t-test [25] and
lasso [26, 27]), including GO and pathway analyses. While
they provide efficient inference for medium-scale data, ¢-test
and lasso typically cannot fully capture the relational com-
plexity for large-scale datasets. Experiments demonstrated
the reliability and the effectiveness of the netSAM algorithm.
Furthermore, our algorithm occupied a higher position in the
accuracy/efficiency trade-off. In addition, validation of the
biological reasonability of detected genes as biomarkers was
done through analysis of functional enrichment and a vast
amount of independent literature.

3.1. Simulated Data Experiments. In order to estimate the
accuracy of netSAM algorithm and compare its performance



with two commonly used gene-based algorithms, that is,
t-test and lasso, we generated synthetic data sets by using
the SynTReN [28], which simulates benchmark microarray
datasets with the known underlying biological networks for
the purpose of developing and testing new network inference
algorithms. Through SynTReN, we simulated a biological
network with a known topological structure as well as the
corresponding gene expression data. Although numerous
tuning parameters can be changed to generate datasets of
different sizes and complexity in the software, we kept the
default tuning parameters controlling the complexity aspects
and only changed the ones controlling noise and the size of
dataset being generated.

We generated 100 microarray datasets that consist of
200 genes and 100 sample points (noise 0 = 0.5); the
resulting graphs had approximately 500 connections. For
each generated data set, the network structure learned from
each method was then compared with the true underlying
structure. We ran each experiment 10 times and averaged the
results.

3.2. Comparison of the Accuracy and Robustness with t-Test
and Lasso. Using the synthetic dataset described above, we
evaluated the accuracy and robustness of different identifica-
tion approaches via receiver operating characteristic (ROC),
area under curve (AUC), positive predictive value (PPV), and
false discovery rate (FDR). ROC, AUC, and PPV will have a
value of 1 if the method can perfectly identify the connections
in the genetic network.

Seen from Figure 2, the netSAM algorithm gets compar-
atively lower FDR and higher PPV for more edges than ¢-
test and lasso. Additionally, robustness, AUC against SNR
(signal-to-noise ratio), of biomarker identification over three
algorithms is shown in Figure 2(d). In the figure, the average
AUC of netSAM is about 0.8, which means that netSAM
can select more suited gene biomarkers than ¢-test and lasso.
On the contrary, lasso obtains the worst performance over
four measures against the other two algorithms. It should be
emphasized that these measures depict the inference ability
of three algorithms on the same underlying network.

3.3. Identification of Breast Cancer-Associated Genes Using
NetSAM. In real data experiment, we applied netSAM to
breast cancer gene expression microarray dataset previously
reported by Wang et al. [29] and Van De Vijver et al. [1]. Only
those patients with estrogen receptor positive breast cancer
are used as “case” samples, and the remaining estrogen recep-
tor positive samples are assigned to “control” group. Both case
and control samples are included in our experiments. After
that, the netSAM is applied to the two datasets separately to
get two breast cancer gene-set candidates. Finally, they are
ranked and intersected for detection of breast cancer genes.
Wang et al. dataset was downloaded from NCBI GEO
[30] database GSE2034 [29]. It employs the expression of
22,000 transcripts from total RNA of frozen tumor sam-
ples from 286 lymph node-negative primary breast cancer
samples that contained 77 estrogen-receptor negative (ER—-)
and 209 estrogen-receptor positive (ER+) samples, and gene
expression profiles were analyzed with Affymetrix Human
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Genome UI33A Array (HG-U133A). Van De Vijver et al. [1]
gene expression dataset consists of 295 samples, including 151
lymph node-negative disease and 144 lymph node-positive
disease. There are approximately 25,000 human genes which
were transcribed and labeled to microarrays for each sample.

Estrogen receptors (ERs) are a group of proteins found
inside cells. Once activated, the ER is able to bind to DNA
to regulate the activity of different genes. Estrogen receptor
positive tumors are the most important subtype of breast
cancer. A significant majority (about 70%) of women who
died with breast cancer have estrogen receptor positive (ER+)
tumors. In these cases, estrogen receptors are overexpressed
and referred to as “ER-positive” While molecular biology has
broadened our understanding of breast cancer, we still lack
sufficient knowledge of estrogen receptor positive tumors.
Aiming at promoting comprehension on estrogen signaling
and regulation mechanism contributing to tumorigenesis,
we, therefore, focused on patients with estrogen receptor
positive breast cancer. In the experiments, we chose 80
samples in Wang et al. and 78 ones in Van De Vijver et al.
among the estrogen-receptor positive patients. These selected
patients had been diagnosed with metastasis during their
follow-up visits within 5 years of surgery and were labeled
as “case” group in our study. The remaining 129 and 217
samples, respectively, in the two studies, were then assigned
to “control” group.

Using netSAM, 761 and 938 differential genetic interac-
tions were identified totally on the two datasets, respectively,
among which 342 and 461 interactions were “positive,”
which indicated inducible epistasis, whereas 419 and 477
were “negative,” which indicated suppression. Moreover, we
detected 119 hub genes on Wang et al. dataset and 162 on
Van De Vijver et al. dataset. A subset of 76 genes was found
common between the two candidate gene-sets (119 and 162
genes, resp.). Results of GO and pathway enrichment analyses
for the 76 intersection genes are shown in Sections 3.5 and 3.6.

To obtain a breast cancer gene signature, we firstly
selected the top 10 ranked genes, respectively, from the
two candidate gene-sets (119 and 162). Then, an intersection
set was generated between two top 10 ranked gene sets.
Finally, six intersection genes were regarded as the breast
cancer susceptibility genes, that is, the signature consisting of
TSPYL5, CD55, CCNE2, DCK, BBC3, and MUCL.

In addition, the top 50 ranked genes identified by netSAM
from Wang et al. dataset are shown in Figure 3. Seen from
Figure 3, not only the known breast cancer metastasis genes
(BRCAIL TP53, and ERBB2) but also the novel cancer suscep-
tibility genes such as TSPYL5, CD55, CCNE2, DCK, BBC3,
and MUCI were identified. These recognized genes interact
with many other genes to coregulate the progression and
evolvement of breast cancer. The node size is relevant to the
breast cancer susceptibility which represents the possibility of
gene relating to cancer. Figure 3 was created using Cytoscape
[24].

3.4. Overlap Analysis between Identified Signature and Lit-
erature Reference Gene Set. In this section, we compared
the netSAM with gene-based approaches (t-test and lasso)
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FIGURE 2: Comparison of accuracy and robustness between netSAM, ¢-test, and lasso on 100 synthetic datasets. (a) ROC curves: true positive
rates against false positive rates. (b) FDR curves: error discovery rates against true positive rates. (c) PPV curves: precision versus recall value.
(d) Robustness values (AUC versus SNR) are calculated based on five-fold cross-validation, where standard deviations are shown in error

bars.

on the breast cancer datasets to further examine which
method would obtain better signature. To compare over-
lapped genes through literature mining, we also compiled
a list of cancer-associated genes, BCGS (breast cancer lit-
erature reference gene set), by collecting genes known to
be associated with breast cancer from literature curation
and web-based resources. BCGS includes 452 representative
cancer-associated genes. The gene symbols were searched
as well as extracted from the 1098 PubMed literatures
using keyword (breast cancer” gene AND Humans [mesh]

OR “Breast Neoplasm” [mesh] AND “Neoplasm Metastasis”
[mesh] biological process [go]) in PubMed [31]. These genes
form the basis of our “cancer-associated genes” dataset. We
then utilized overlap ratio between literature-published gene
set BCGS and our candidate genes as evidence of feasibility
and the effectiveness of the netSAM.

When two distinct sets share at least one element in
common, they are “intersecting” or “overlapping” In the
genomic scenario, we utilized an overlap measure to examine
the overlapping capability between the curated gene set BCGS
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FIGURE 3: The breast cancer-related genetic subnetwork consisting of the top 50 ranked genes identified through netSAM method from Wang
et al. breast cancer dataset. Genes are represented as circles, a significant coregulation between two genes as a line.

and the cancer gene set identified with different detection
algorithms. Specifically speaking, the overlap ratio is defined
as the number of intersection genes divided by the number of
identified genes.

To validate predictive power of netSAM, the overlap ratio
and trend analysis of overlap are performed. The comparison
results among netSAM, t-test, and lasso are displayed in
Figure 4 based on Wang et al. and Van De Vijver et al. breast
cancer datasets. The comparison of overlap ratio indicates
that netSAM can identify some novel cancer-causing genes
that are not found by ¢-test and lasso. Only a few of known
breast cancer genes were identified correctly by ¢-test and
lasso. Seen from Figure 4, the netSAM can identify more
overlapped genes than those of the other two methods, which
indicates that the netSAM obtains a better reproducibility
across different data sets in terms of biomarker identification.
Furthermore, Figure 4 also shows that a number of candidate
genes (about 60%) identified by netSAM significantly overlap
with known breast cancer genes in BCGS. Accordingly, we
can conclude that netSAM is a more effective approach for
identifying biomarkers.

Although BCGS consists of 452 genes based on the
results of searching the related articles referenced in PubMed
[31], until now, however, most of genes still have not been
proved to be breast cancer susceptibility genes with absolute
certainty. Thus, when these genes are used as true breast

cancer genes to test the performance of our method, it would
potentially cause some bias.

3.5. GO Analysis. Most cancers, including breast cancer, are
complex disorders that are generally caused by multiple genes
and their complex interactions. By mapping the 76 intersec-
tion genes identified by the netSAM to the gene ontology
(GO) [7] terms, we found 11 GO functional categories, given
in Table 1. The obtained GO terms are consistent to those
in curated literature [32], which suggested that the above
categories largely captures the functional facets of the breast
cancer-specific gene network. Several cellular processes such
as metabolism, cell proliferation and replication, apoptosis,
inflammation, and cell cycle are known to be pivotal for
tumorigenesis. The result of GO analysis indicates that our
discovered signature has an enrichment score (ES) of 0.79,
which means that identified oncogenes contain the majority
of genes contributing to the enrichment score.

The full detail of Gene Ontology enrichment analysis is
shown in Table 1. Tumor genes identified by netSAM are
enriched in important biological processes catalogued in
the Gene Ontology. From Table 1, it can be seen that the
detected oncogenes are significantly enriched in GO terms
of apoptosis, metabolism, immune response, and cell cycle.
Inflammatory response is overrepresented and can be consid-
ered as potential candidate because chronic inflammation is
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TaBLE 1: Significantly enriched GO terms of biological process via BINGO functional annotation analysis for the 76 intersection genes.

GO term Hypergeometric test P value Benjamini correction P-value Frequency of mapped genes (%) Fisher P-value
Immune system process 1.5280E - 14 1.7847E - 11 333 23E-12
Cell cycle 3.5350E - 12 2.0645E -9 20.4 13E-12
Immune response 6.2486E — 12 2.4328E -9 24.7 13E-9
Cell division 1.5915E - 11 4.4740E -9 18.2 13E-11
Nuclear division 2.2983E - 11 4.4740E -9 16.1 7.2E - 12
Apoptotic process 2.2983E - 11 4.4740E -9 16.1 7.2E - 12
Metabolism 3.9513E - 11 5.7689E - 9 16.1 13E-11
Cell proliferation 1.0537E - 10 1.2307E - 8 225 34E-11
Inflammatory response 5.4845E - 8 4.2706E - 6 419 14E - 10
Response to stimulus 6.6080E - 5 1.9433E -3 44.0 5.6E - 10
System development 5.1327E — 4 8.4436E -3 311 23E-11

Overlap ratio

Overlap (intersection/detected genes) (%)

Wang dataset Van De Vijver dataset

Hl NetSAM
B ¢-test
Hl Lasso
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FIGURE 4: (a) Overlaps of the identified genes using netSAM, t-test, and lasso based on Wang et al. and Van De Vijver et al. breast cancer
datasets. (b) Trend of overlap: number of overlapped genes versus top-ranked genes (error bars denote standard deviation estimated over 100

tests).

widely believed to be a predisposing factor for cancer. These
results suggested that the above categories largely captured
the functional facets of the breast cancer specific gene.

3.6. KEGG Pathway Functional Analysis. Gene set enrich-
ment analysis of Kyoto Encyclopedia of Genes and Genomes
(KEGG) [8] pathway was conducted to find additional
supporting evidence as described in Table 2. The enriched
pathways were found. In the enriched pathways, TGF-beta,
p53, and Notch and JAK-STAT signaling pathways are fre-
quently reported to be related to breast tumor metastasis
[33]. Notch signaling pathway may play essential role in the
cross-talk between metastasis and relapse free. Recently, it has
been found that p53 activates the MAPK pathways through

a feedback loop in human cancer. Moreover, we found that
the detected genes were enriched for many known pathways,
such as Apoptosis and Cell cycle. DAVID [34] genetic disease
class category analysis indicated that the Benjamin P value
of Apoptosis and Cell cycle is 1.1E — 6 and 3.3E - 4,
respectively. Six hub genes (TSPYL5, CD55, CCNE2, DCK,
BBC3, and MUCI) were all proved cancer-related hub genes.
From Table 2, one can conclude that identified six genes
significantly enriched in ECM, P53, and cell cycle pathway.

The signaling pathways depicted in Figure5 include
MAPK and JAK-STAT signaling pathways, which were high-
lighted in the top-ranked cancer-related genetic network
identified by netSAM method from Wang et al. breast cancer
dataset.
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TaBLE 2: KEGG pathway functional analysis via DAVID for the 76 intersection genes.
KEGG pathway Count Frequency (%) P value Benjamin
Viral myocarditis 10 10.4 1.6E -8 1.0E-6
Apoptosis 8 8.3 33E-8 1.L1IE-6
Type I diabetes mellitus 8 83 1.0E -7 1.7E-6
Autoimmune thyroid disease 8 83 42E-7 53E-6
Cell cycle 9 9.4 3.1E-5 33E-4
TGF-beta signaling pathway 8 83 1.7E - 4 12E-3
Notch signaling pathway 6 6.2 39E-3 24E -2
ECM-receptor interaction 5 52 83E-3 48E-2
JAK-STAT signaling pathway 7 73 1.2E-2 6.2E-2
P53 signaling pathway 4 4.2 49E -2 2.1E-1
Immune network 3 3.1 8.0E -2 3.0E-1

FIGURE 5: Signaling pathways highlighted in the identified cancer-
related genetic network by netSAM on Wang et al. dataset, including
MAPK and JAK-STAT pathways.

4. Conclusions

In this paper, we proposed netSAM to identify breast cancer-
related genes from two benchmark breast cancer datasets
(Wang et al. and Van De Vijver et al). Using netSAM, we iden-
tified six novel genes (TSPYL5, CD55, CCNE2, DCK, BBC3,
and MUCI) as cancer biomarkers for predicting survival and
metastasis in patients with breast cancer. Each of 6 genes in
our signature not only has links to potential cancer relapse
through the literature, they also have been shown in most
cases to be directly linked to prognostic outcome, metastasis,
and apoptosis. Furthermore, the six novel genes identified

in our experiments are overlapped with the breast cancer
gene set BCGS of literature curation. Further functional
enrichment analysis and independent literature evidence also
confirm that our identified potential cancer-causing genes
are biologically reasonable, indicating the effectiveness of our
method. Moreover, nearly 60% of the 119 oncogenes found by
netSAM were certified as breast cancer susceptibility genes
or known cancer-associated genes through literature mining.
Our results indicate that the resulting signature possesses
higher prediction precisions compared to previous work in
the area and might be useful in predicting metastasis of breast
cancer and facilitating treatment decisions.

TSPYL5 (TSPY-like 5), also known as KIAAI750, is
involved in nucleosome assembly, a process which can alter
the regulatory mechanisms of a cell [35], which is likely
to occur in cancer. TSPYL5 has been previously used as a
prognostic biomarker in breast cancer [36]. In addition, it
has been noted to play a role in the circulation of luteinizing
hormone (LH), which is known to prompt tumor growth in
breasts. Moreover, the individual gene (TSPYL5) is present in
the 17 genes selected by Alexe et al. [3]. CD55 has been used
previously as a prognostic biomarker in gastric cancer. CD55
has been shown to be important in breast cancer prognosis
[37].

CCNE2 encodes a protein similar to cyclin that serves as
regulators of cyclin dependent kinase (CDK). A significant
increase in the expression level of this gene was observed
in tumor-derived cells. CCNE2 has also been conformed
to qualify as independent prognostic markers for lymph
node-negative breast tumor patients and reported to have a
predictive value in ER positive cases among breast cancer
patients [9].

The DCK (deoxycytidine kinase) gene is required for the
phosphorylation of several deoxyribonucleosides and their
nucleoside analogs. It has been used to study resistance to
chemotherapy in myeloid leukemia (AML) and breast cancer
patients [21]. In addition, this particular gene may catalyze
the metabolic activation of gemcitabine, a drug that has been
used to treat several different types of cancer. However, the
exact function of this gene is still unknown.

The BBC3 gene, also known as PUMA, is located on
human chromosome 19q13.3-q13.4 and is homologous with
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a BCL2 family member. BBC3 has a distinguished function in
regulating other genes [38]. Many tumor genes are correlated
with BBC3. The biological role for BBC3 is to induce apoptosis
via the mitochondrial apoptotic pathway. Furthermore, BBC3
is also transcriptionally activated by the tumor suppressor
P53, which is a key regulator of apoptosis and tumor genesis
in breast cancer [22].

MUCI gene encodes a highly glycosylated protein located
on the apical surface of mammary epithelia that is aber-
rantly overexpressed in approximately 90% of human breast
cancers [39]. However, its role in cancer metastasis is yet
less well understood. MUCI protein overexpression has been
associated with cell adhesion inhibition as well as increased
metastatic and invasive potential of tumor cells. This over-
expression allows MUCI to interact with members of the
ERBB family of receptor tyrosine kinases [40].

In the proposed netSAM procedure, a series of statis-
tical methods and techniques were employed. Despite the
difference in methodology, our analysis confirmed some of
previous findings. For example, we also found the correlation
of ERBB2 and MUCI with breast cancer prognosis. Besides,
when we applied traditional gene-based methods (t-test and
lasso) to the gene expression datasets, we found that only a
small part of the known tumor genes was identified as breast
cancer-related genes.

In conclusion, oncogenes found by netSAM can be used
to stratify patients for treatment of the disease as well as
extend perception to the disease mechanism for breast cancer,
supply potential information in clinical decision-making, and
help to reduce costs of therapy. However, these genes could
not yet be fully justified with the current clinical knowledge,
and further experimental validation is urgent. Differential
genetic interaction networks have been proved very powerful
for mapping the pathways that modulate/mediate essential
cell functions. Our work demonstrated that a differential
network-based inference method can provide a powerful tool
for identifying associated genes in human disease.

Future work includes exploring other procedures for
further improving accuracy and efficiency of detection, for
example, using protein interaction network information. It is
also believed that the incorporation of additional biological
data and information would acquire better biomarkers for
disease gene discovery.

Appendix

See, Algorithm 1.
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