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Endothelial progenitor cells (EPCs) move towards injured endothelium or in�amed tissues and incorporate into foci of
neovascularisation, thereby improving blood �ow and tissue repair. Patients with cardiovascular diseases have been shown to
exhibit reduced EPC number and function. It has become increasingly apparent that these changes may be effected in response
to enhanced oxidative stress, possibly as a result of systemic and localised in�ammatory responses. e interplay between
in�ammation and oxidative stress affects the initiation, progression, and complications of cardiovascular diseases. Recent studies
suggest that in�ammation and oxidative stress modulate EPC bioactivity. Clinical medications with anti-in�ammatory and
antioxidant properties, such as statins, thiazolidinediones, angiotensin II receptor 1 blockers, and angiotensin-converting enzyme
inhibitors, are currently administered to patients with cardiovascular diseases. ese medications appear to exert bene�cial
effects on EPC biology. is review focuses on EPC biology and explores the links between oxidative stress, in�ammation, and
development of cardiovascular diseases.

1. Introduction

e vascular endothelium is a key feature in vascular home-
ostasis. Endothelial dysfunction and injury are considered

to be the �rst steps in atherogenesis [1–4]. Recent stud-
ies indicate that endothelial dysfunction and injury in the
vascular wall are repaired by bone-marrow- (BM-) derived
endothelial progenitor cells (EPCs) [5]. Evidence suggests
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that CD133+CD34+KDR (vascular endothelial growth factor
receptor 2, VEGFR2)+-EPCs are mobilised from the BM into
the peripheral blood in response to tissue ischemia or injury
[6]; these cells migrate to sites of damaged endothelium and
differentiate into endothelial cells (ECs) [7], thereby improv-
ing blood �ow and tissue repair [8, 9]. EPCs contribute to
reendothelialisation and neovascularisation. eir bene�cial
effects may be mediated through paracrine secretion of
angiogenic factors and cytokines. Several lines of evidence
indicate that EPCs constitute an important endogenous
system that maintains endothelial integrity and vascular
homeostasis [8]. Patients with cardiovascular diseases, such
as coronary artery disease (CAD), hypertension, heart failure,
and diabetes [10], exhibit reduced EPC number and function
[11].erefore, reduced EPC levels may re�ect a mechanistic
link that confers increased risk of adverse cardiovascular
outcome. Reversal of EPCdysfunction could therefore poten-
tially prevent the progression of cardiovascular and vascular
disease [12].

In various forms of cardiovascular disease, in�ammation
mediates oxidative stress [13], dysfunction, injury, and senes-
cence (cellular aging) of ECs [14, 15]. Inefficient recruitment
of EPCs results in vascular dysfunction and accelerates the
progression of cardiovascular diseases [16]. Augmentation
of vascular repair by the provision of growth factors such
as vascular endothelial growth factor (VEGF) or by direct
migration of EPCs into the endothelium can be protec-
tive and prevent ongoing vascular damage. Because reen-
dothelialisation or neovascularisation is a pro-in�ammatory
response, this process becomes self-sustaining [9]. Recently,
it has become increasingly apparent that these changes
occur in response to oxidative stress [17], possibly as a
result of systemic and localised in�ammatory responses [18].
e interplay between in�ammation and oxidative stress is
involved in the initiation, progression, and complications of
cardiovascular diseases [19]. Evidence from recent studies
suggests that in�ammation and oxidative stress modulate
EPC bioactivity [20].

A clear understanding of EPCbiology is of particular rele-
vance to cardiovascular diseases, as it may provide additional
insight into the pathogenesis of these diseases, as well as novel
targets for therapeutic agents [15, 21]. Recent studies propose
the existence of a dynamic association between in�ammation
[22], oxygen-free radicals (reactive oxygen species (ROS)),
and EPC biology, implying that EPCs may play a key role
in vascular repair under pro-atherogenic conditions [23].
Clinicalmedications with anti-in�ammatory and antioxidant
properties, such as statins, thiazolidinediones, angiotensin
II receptor 1 blockers (ARBs), and angiotensin-converting
enzyme inhibitors (ACEIs), are currently administered to
patients with cardiovascular diseases. ese medications
exert bene�cial effects on EPC biology [21]. is paper
focuses onEPCbiology and explores the links between oxida-
tive stress, in�ammation, and development of cardiovascular
diseases. A better understanding of the in�ammatory and
oxidative mechanisms leading to decreases in the numbers of
EPCs and functional impairment of EPCs may provide addi-
tional insight into the pathogenesis of cardiovascular disease
and lead to the development of novel therapeutic strategies.

2. EPC Biology

e local BM microenvironment, the stem cell niche [24],
plays a pivotal role in the mobilisation of BM-derived
stem/progenitor cells [25]. Growth factors and cytokines
induce mobilisation of stem/progenitor cells with various
proteinases [6]. A�ermobilisation, homing is the �rst process
stem/progenitor cells undergo. is process is fairly rapid
[26]. Adhesion molecules mediate rolling and adhesion of
homing cells to the blood vessel wall [27]. EPCs �nd their way
to the injured endothelium via a complex signalling network
for reendothelialisation (Figure 1) [28].

e other EPC function is neovascularisation. Angio-
genesis and vasculogenesis are the major forms of postnatal
neovascularisation. Angiogenesis is the process of formation
of new vessels from preexisting blood vessels. Vasculoge-
nesis is the process of blood vessel formation via de novo
production of EPC-derived ECs, which in turn form blood
capillaries [29]. Neovascularisation is an important process
in functional recovery from pathological conditions, such
as wound healing and ischemic diseases. Hypoxia is an
important driving force for neovascularisation under various
ischemic conditions [30]. Hypoxia stimulates expression of
many cytokines and growth factors such as VEGF, platelet-
derived growth factor, insulin-like growth factor, and �brob-
last growth factor (FGF), which play critical roles in induc-
tion of neovascularisation [31]. Other cellular components,
including monocytes, T cells, neutrophils, and platelets,
also play signi�cant roles in induction and modulation
of neovascularisation. Preclinical studies have showed that
EPCs with or without combination of growth factors induce
neovascularisation in ischemic tissues [32, 33].

In the context of EPC biology, vasculogenesis enables de
novo formation of vessels via in situmigration, proliferation,
differentiation, and/or incorporation of BM-derived EPCs
into the regenerating vasculature [34]. BM-derived EPCs can
localise to vascular structures during skeletal and cardiac
ischemia [34, 35], wound healing [36], tumor growth [37],
and corneal neovascularization [38]. EPCs also produce var-
ious proangiogenic cytokines and growth factors, promoting
proliferation and migration of preexisting ECs, activating
angiogenesis, and contributing to vascular regeneration and
reestablishment of tissue homeostasis [39]. us, EPCs may
work not only through the activation and support of vascu-
logenesis but also through the activation and mediation of
angiogenesis (the process of new vessel formation)[40, 41].
e paracrine aspect of EPC activity, which re�ects an
indirect contribution to neovascularisation, was con�rmed
by several reports that demonstrated the presence of various
cytokines and other secreted proangiogenic factors in EPCs
(Figure 2) [42, 43].

e close relationship between in�ammation and oxida-
tive stress is now well de�ned [44, 45]. erefore, it is impor-
tant to distinguish whether the observed effect of oxidative
stress on EPC mobilisation and functional status is inde-
pendent of in�ammatory status. Several clinical conditions,
characterised by both increased in�ammation and oxidative
stress, are associated with reduced numbers and impaired
function of EPCs [21].Moreover, the availability and function
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F 2: Illustration of the ability of circulating EPCs to mediate neovascularisation in ischemic tissue.

of EPCs are also adversely affected by risk factors for cardio-
vascular diseases, including hypertension, diabetes, cigarette
smoking, physical inactivity, homocysteine levels (HCY), and
aging [3]. For example, the hypertension pathophysiology
involves a complex interaction of multiple vascular effectors
including the sympathetic nervous and renin-angiotensin-
aldosterone systems and the in�ammatory mediator acti-
vations. Oxidative stress and endothelial dysfunction are
consistently observed in hypertensive subjects, but emerging
evidence suggests that they also have a causal role in the
molecular processes leading to hypertension. Current under-
standing of the molecular mechanisms in the development
of hypertension with an emphasis on oxidative stress and
endothelial dysfunction is important [46]. us, indirect
evidence suggests that in�ammatory status and oxidative
stress, which are related to the pathophysiology of the above-
mentioned conditions and diseases, can adversely in�uence
the number and functional capacity of EPCs [18].

In�ammation is implicated in the pathophysiology of vari-
ous cardiovascular diseases [47]. Proin�ammatory cytokines
stimulate the expression of adhesion molecules on endothe-
lial surfaces, promoting initiation of atherogenesis [4]. In
parallel, these in�ammatory factors stimulate the production
of growth factors such as VEGF and mediate tissue repair
[47]. EPCs are released into the peripheral circulation aer
stimulation by an in�ammatory response and participate in
tissue repair [23]. Animal studies show that EPCs are rapidly
mobilised aer vascular injury, in response to increased

circulatingVEGF levels, and contribute to neovascularisation
of injured tissues [48]. �everal in�ammatory factors [49],
such as tumour necrosis factor-𝛼𝛼 (TNF-𝛼𝛼) [50], interleukin-
1𝛽𝛽 [51], granulocyte macrophage-colony stimulating factor,
and stromal-derived factor-1, modulate EPC mobilisation,
recruitment, and homing [52–54]. Increasing evidence indi-
cates that a transient restricted in�ammatory response may
stimulate EPC mobilisation, while persistent or excessive
in�ammatory stimuli may have deleterious effects, resulting
in decreased numbers of EPCs in the circulation [5]. In
addition, in�ammatory factors and numbers of EPCs may
increase in response to de�cient endothelial regeneration,
leading to vascular repair. Initial observations from animal
studies suggest that in�ammation induces mobilisation of
EPCs. A positive association between C-reactive protein
(CRP� an acute-phase in�ammatory protein produced by
the liver) levels and circulating EPCs has been documented
in patients with stable CAD, suggesting that a systemic
in�ammatory state stimulates EPC mobilisation in these
patients [55]. Although these observations indicate that EPC
mobilisation is closely correlated with variations in the
levels of some in�ammatory factors in humans, there is no
clinical evidence suggesting a causal relationship between
in�ammation and EPC mobilisation [21].

On the other hand, considerable evidence suggests that
high-grade, extensive in�ammatory stimulation may have
the opposite effect on circulating levels of EPCs. Evidence
also suggests that systemic in�ammation induces EPC dys-
function in humans. Clinical studies have demonstrated that
CRP is associated with senescence of EPCs in preeclampsia
patients [56]. In addition, CRP exerts direct inhibitory effects
on EPC differentiation and survival [57], whereas EPCs
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exposed to CRP exhibit decreased angiogenic activity [58].
High levels of TNF-𝛼𝛼 and glucose contribute to a reduction
in EPC number [59, 60]. EPCs that are mobilised in response
to in�ammatory stimulation may be functionally impaired
[61]. Indeed, ample evidence suggests that functional activity
of EPCs is signi�cantly impaired in the presence of high
in�ammatory stimulation, as in cases of heart failure. is
leads to reducedmigratory capacity and impaired clonogenic
potential in EPCs [62].

e basic and clinical evidence supports the hypothesis
that in�ammation leads to functional impairment of EPCs,
but in�ammation seems to play a dual role in EPC mobili-
sation. Low-grade in�ammation induces EPC mobilisation,
whereas high-grade and prolonged in�ammatory stimula-
tion has the opposite effect [21]. Although the mechanisms
regulating this effect are still unclear, prolonged exposure of
BM to increased proin�ammatory stimulation may lead to
exhaustion of the EPC pool. is would eventually lead to
release of fewer functional EPCs and the release of immature
or dysfunctional EPCs. e existing clinical evidence sup-
porting the association between in�ammation and EPCs is
largely circumstantial and observational [21]. Further clinical
studies are required to elucidate the exact mechanisms by
which in�ammation affects EPCmobilisation and functional
activity in humans.

4. EPC Dysfunction and Oxidative Stress

e effects of oxidative stress on EPCs in cardiovascular dis-
ease are now well documented. Oxidative stress occurs when
generation of ROS (or oxygen free radicals) is increased,
and ROS cause oxidative damage to biological structures;
this suggests that ROS play a key role in atherogenesis
[63]. Oxidative stress may also play a crucial role in EPC
mobilisation and functional bioactivity [64]. ROS exert a
direct cytotoxic effect on the vascular endothelium [65].
Increased superoxide generation reduces EPC levels and
impairs EPC function [66].

In addition to the indirect effects of ROS on EPCs,
considerable evidence suggests that ROS exert direct effects
on EPCs. Incubation of EPCs with high levels of hydrogen
peroxide (H2O2) induces apoptosis [67, 68], profoundly
reducing the numbers of EPCs [69]. In a rat model of
myocardial infarction (MI), increased production of ROS is
associated with reduced EPC levels [70]. Conditions associ-
ated with increased oxidative stress lead to the mobilisation
of functionally defective EPCs, which have a lesser capability
of mobilising, migrating, and incorporating into existing
vasculature [71, 72]. However, EPCs produce superoxide
dismutase (SOD), which enhances their ability to offer
vascular protection [73]. erefore, it is clear that conditions
associated with increased oxidative stress not only decrease
the absolute numbers of circulating EPCs but also impair EPC
function, with deleterious effects on vascular homeostasis
[21]. At a clinical level, increased oxidative stress status has
been associated with decreased EPC mobilisation. Indeed,
studies have shown that the number of circulating EPCs is

associated with systemic markers of oxidative stress. Con-
ditions associated with increased systemic oxidative stress
have been associated with decreased EPC numbers in the
peripheral circulation [18]. In this context, high HCY, which
has also been associated with enhanced production of ROS,
decreases the numbers of EPCs and impairs their function,
partly through induction of EPC senescence [74].

Cellular oxidative stress, mediated by oxidised low-
density lipoprotein (oxLDL), plays a key role in the patho-
genesis of atherosclerosis [75]. oxLDL accelerates the onset
of EPC senescence [76]. By contrast, high-density lipoprotein
(HDL), which is considered to be atheroprotective partly
because of its antioxidant and anti-in�ammatory properties,
has a positive impact on EPC physiology [77, 78]. In vascular
biology, protection against oxidative stress is accomplished
by a network of endogenous antioxidant defences, which
exert cellular protective effects by directly scavenging ROS
and reducing their damaging action. Compared with differ-
entiated, mature ECs, EPCs from healthy volunteers express
higher levels of the antioxidant enzymes catalase, glutathione
peroxidase, and manganese SOD. e level of antioxidant
enzyme expression in EPCs may make them relatively resis-
tant to oxidative stress [79, 80]. However, there is insufficient
clinical data to document the effects of classic risk factors on
endogenous antioxidant defence systems in EPCs [81].

ese studies directly implicate oxidative stress for the
functional impairment and reduction in number of circu-
lating EPCs in vascular dysfunction. Oxidative inactivation
seems to play a key role in this regard. Although EPCs from
healthy donors are relatively resistant to oxidative stress [4],
the presence of cardiovascular risk factorsmay alter the redox
state of these cells. e oxidative mechanisms leading to EPC
dysfunction remain unclear. It is still unclear whether a direct
association exists between ROS and functional bioactivity
of EPCs. It is also unknown whether therapeutic strategies
targeting intracellular redox states have the ability to modify
the functional status and mobilisation abilities of EPCs. A
de�nite conclusion regarding the association between ROS
and EPCs can only be drawn aer antioxidant therapies are
shown to improve these parameters of EPC biology [82–85].

5. Therapeutic Strategies

A crucial goal in the treatment and prevention of car-
diovascular diseases is promotion of reendothelialisation
[86, 87]. Since EPCs play a critical role in maintaining an
intact and functional endothelium [8], decreased numbers of
EPCs and dysfunctional EPCs may contribute to endothelial
dysfunction and susceptibility to cardiovascular diseases.
Improvement in the number and function of EPCs could
be bene�cial for patients with impaired vascular function.
Ex vivo expansion of EPCs for therapeutic use is a promis-
ing strategy [88]. erefore, a better understanding of the
molecular mechanisms underlying the reduced number and
impaired functional activity of EPCs is of potentially major
signi�cance, as it could create novel therapeutic targets in
vascular disease.
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As mentioned previously, EPC function is altered in
the presence of excessive oxidative stress and in�ammatory
stimuli. Several studies have reported the bene�cial effects
of several medications with anti-in�ammatory or antioxidant
properties on EPCs, most of which are currently admin-
istered to patients for the management of cardiovascular
pathologies [21]. HMG-CoA reductase inhibitors (statins)
are effective lipid-lowering agents and are able to signi�cantly
reduce cardiovascular mortality and morbidity in patients
at risk for cardiovascular disease [89]. Recent clinical and
experimental data suggest that the bene�ts of statins may
extend beyond their effects on serum cholesterol levels
[90]. Statins increase EPC number and functional activity
[91], thereby contributing to reendothelialisation of injured
vessels [92]. Statins enhance nitric oxide (NO) bioavailability
and exert potent anti-in�ammatory and antioxidant effects
beyond cholesterol reduction [93]; these properties may
contribute to the favourable impact of statins on EPCs [90].
Statins stimulate EPC differentiation and survival [91] and
signi�cantly reduce H2O2-induced apoptosis of EPCs [69].
Statins have emerged as novel and powerful tools to study
cardiovascular biology.e seemingly off-target properties of
statins may have important clinical implications in addition
to lowering serum cholesterol [94].

Angiotensin II regulates blood pressure and contributes
to endothelial dysfunction and atherosclerosis progression
[95]. Impaired EPC function in patients with hypertension
inhibits the endogenous repair of vascular lesions and leads
to the atherosclerosis progression. e number of EPCs in
peripheral blood is inversely correlated with mortality and
the occurrence of cardiovascular events. Angiotensin II-
mediated signalling is implicated in oxidative stress, in�am-
mation, and insulin resistance, factors that cause EPC dys-
function. Angiotensin II-mediated signalling is implicated in
oxidative stress and in�ammation; it accelerates the onset of

EPC senescence via increased oxidative stress [16]. Blockade
of the angiotensin II type 1 receptor may therefore present a
new therapeutic target for enhancing EPC bioactivity [95].

Recent studies on animal models have demonstrated
that ACEIs mobilise EPCs through an anti-in�ammatory
effect [96]. ACEIs also produce a signi�cant increase in EPC
levels in a rat model of MI [70]. At a clinical level, ACEIs
enhance the functional activity of EPCs in patients withCAD,
providing an additional mechanism by which ACEIs exert
clinical bene�ts in CAD patients [97]. Similarly, treatment
with ARBs also increased the number of regenerative EPCs in
diabetic patients [98]. erefore, both ACEIs and ARBs may
have bene�cial effects on EPCs mobilisation and functional
activity, thereby contributing to the repair of injured vascular
endothelium [95, 99].

Peroxisome proliferator-activated receptor (PPAR) ago-
nists reduce vascular in�ammation and oxidative stress and
improve NO bioavailability [100]. PPAR-𝛾𝛾 agonists promote
the differentiation of angiogenic progenitor cells toward the
endothelial lineage [101] and increase EPC number and
migratory activity [102]. Of note, the negative effects of CRP
on EPC survival, differentiation, and angiogenic function are
abrogated by pretreatment of EPCs with a PPAR-𝛾𝛾 agonist;
this provides direct evidence of the salutary impact of anti-
in�ammatory agents on EPC biology [57]. More recently,
PPAR-𝛼𝛼 was found to be essential for microparticle-induced
differentiation of BM-derived EPCs and angiogenesis [103].
e precise mechanisms involved in EPC stimulation by
PPAR agonists have yet to be investigated, and no data are
available on humans.

In addition to clinical drugs, several antioxidative agents
with anti-in�ammatory properties, such as puerarin [104,
105], resveratrol/red wine [106–113], Ginkgo biloba [114],
berberine [115], salvianolic acids [116], and ginsenoside
[117], also have been found to enhance EPC bioactivity
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(Figure 3). In theory, decrease in oxidative stress would
induce mobilisation of EPCs and improve their functionality
[64]. However, there are no clinical data to support this
theory in humans, and large clinical trials testing the effect
of antioxidants on cardiovascular risk resulted in dramatic
failures [65, 118, 119].is therapeutic approach is hampered
by the lack of effective antioxidant strategies for modi�cation
of intracellular redox states in the vascular endothelium.
erefore, when EPC mobilisation and functional status are
shown to be improved aer antioxidant treatment, a causal
association between ROS and EPC biology will be considered
signi�cant in humans. Antioxidant strategies targeting EPC
mobilisation and function may seem tempting, but it is
premature to state that long-term antioxidant treatment
would have any real biological value [82].

erapeutic strategies with speci�cmodulators of in�am-
matory pathwaysmay representmore promising and effective
approaches in the future. erefore, the ability to enhance
EPC number and functional capacity is a common property
of otherwise diverse interventions. As these interventions act
through different mechanisms and affect EPCs at different
regulatory levels, they may act synergistically in optimising
EPC function.

6. Conclusions

EPC bioactivity is affected by in�ammatory and redox sta-
tuses. However, little is known about the effects of anti-
in�ammatory and antioxidant strategies under clinical con-
ditions. is is a limitation of the existing literature. Most
clinical studies demonstrate only associations between EPCs
and vascular events. erefore, more clinical studies are
required for the establishment of EPC measurements as
prognostic markers in cardiovascular disease. Nevertheless,
cardiovascular diseases with increased in�ammatory and
oxidative stress are associated with EPC dysfunction, which
is reversed upon treatment with anti-in�ammatory or antiox-
idant drugs. erefore, in�ammatory and redox signalling
pathways that interfere with EPC bioactivity should be fur-
ther investigated. Additionally, clinical studies are required
to determine whether these pathways are active in vivo.
Future basic and clinical research may provide the basis for
the development of novel targeted interventions to improve
endothelial function and prevent cardiovascular diseases.
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